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Euler's 1736 paper on the bridges of Kdnigsberg is widely regarded as the earliest 
contribution to graph theory-yet Euler's solution made no mention of graphs. In this 
paper we place Euler's views on the Kinigsberg bridges problem in their historical 
context, present his method of solution, and trace the development of the present-day 
solution. 

What Euler didn't do 
A well-known recreational puzzle concerns the bridges of Kinigsberg. It is claimed 
that in the early eighteenth century the citizens of Kinigsberg used to spend their 
Sunday afternoons walking around their beautiful city. The city itself consisted of 
four land areas separated by branches of the river Pregel over which there were seven 
bridges, as illustrated in Figure 1. The problem that the citizens set themselves was to 

Figure 1. K6nigsberg 
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walk around the city, crossing each of the seven bridges exactly once and, if possible, 
returning to their starting point. 

If you look in some books on recreational mathematics, or listen to some graph- 
theorists who should know better, you will 'learn' that Leonhard Euler investigated 
the Kinigsberg bridges problem by drawing a graph of the city, as in Figure 2, with 
a vertex representing each of the four land areas and an edge representing each of the 
seven bridges. The problem is then to find a trail in this graph that passes along each 
edge just once. 
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Figure 2. The K6nigsberg graph 

But Euler didn't draw the graph in Figure 2-graphs of this kind didn't make their 
first appearance until the second half of the nineteenth century. So what exactly did 
Euler do? 

Ko N INGSBERGA 

Figure 3. Seventeenth-century Konigsberg 
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The Konigsberg bridges problem 
In 1254 the Teutonic knights founded the Prussian city of K6nigsberg (literally, king's 
mountain). With its strategic position on the river Pregel, it became a trading center 
and an important medieval city. The river flowed around the island of Kneiphof (lit- 
erally, pub yard) and divided the city into four regions connected by seven bridges: 
Blacksmith's bridge, Connecting bridge, High bridge, Green bridge, Honey bridge, 
Merchant's bridge, and Wooden bridge: Figure 3 shows a seventeenth-century map of 
the city. K6nigsberg later became the capital of East Prussia and more recently became 
the Russian city of Kaliningrad, while the river Pregel was renamed Pregolya. 

In 1727 Leonhard Euler began working at the Academy of Sciences in St Peters- 
burg. He presented a paper to his colleagues on 26 August 1735 on the solution of 'a 
problem relating to the geometry of position': this was the Kinigsberg bridges prob- 
lem. He also addressed the generalized problem: given any division of a river into 
branches and any arrangement of bridges, is there a general method for determining 
whether such a route exists? 

In 1736 Euler wrote up his solution in his celebrated paper in the Commentarii 
Academiae Scientiarum Imperialis Petropolitanae under the title 'Solutio problema- 
tis ad geometriam situs pertinentis' [2]; Euler's diagram of the K6nigsberg bridges 
appears in Figure 4. Although dated 1736, Euler's paper was not actually published 
until 1741, and was later reprinted in the new edition of the Commentarii (Novi Acta 
Commentarii ...) which appeared in 1752. 
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Figure 4. Diagram from Euler's 1736 paper 

A full English translation of this paper appears in several places-for example, in 
[1] and [6]. The paper begins: 

1. In addition to that branch of geometry which is concerned with distances, and which 
has always received the greatest attention, there is another branch, hitherto almost un- 
known, which Leibniz first mentioned, calling it the geometry of position [Geometriam 
situs]. This branch is concerned only with the determination of position and its prop- 
erties; it does not involve distances, nor calculations made with them. It has not yet 
been satisfactorily determined what kinds of problem are relevant to this geometry of 
position, or what methods should be used in solving them. Hence, when a problem was 
recently mentioned which seemed geometrical but was so constructed that it did not re- 
quire the measurement of distances, nor did calculation help at all, I had no doubt that it 
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was concerned with the geometry of position-especially as its solution involved only 
position, and no calculation was of any use. I have therefore decided to give here the 
method which I have found for solving this problem, as an example of the geometry of 
position. 

2. The problem, which I am told is widely known, is as follows: in K6nigsberg ... 

This reference to Leibniz and the geometry of position dates back to 8 September 
1679, when the mathematician and philosopher Gottfried Wilhelm Leibniz wrote to 
Christiaan Huygens as follows [5]: 

I am not content with algebra, in that it yields neither the shortest proofs nor the most 
beautiful constructions of geometry. Consequently, in view of this, I consider that we 
need yet another kind of analysis, geometric or linear, which deals directly with position, 
as algebra deals with magnitudes ... 

Leibniz introduced the term analysis situs (or geometria situs), meaning the analysis 
of situation or position, to introduce this new area of study. Although it is sometimes 
claimed that Leibniz had vector analysis in mind when he coined this phrase (see, for 

example, [8] and [11]), it was widely interpreted by his eighteenth-century followers as 

referring to topics that we now consider 'topological'-that is, geometrical in nature, 
but with no reference to metrical ideas such as distance, length or angle. 

Euler's Konigsberg letters 
It is not known how Euler became aware of the K6nigsberg bridges problem. However, 
as we shall see, three letters from the Archive Collection of the Academy of Sciences 
in St Petersburg [3] shed some light on his interest in the problem (see also [10]). 

Carl Leonhard Gottlieb Ehler was the mayor of Danzig in Prussia (now Gdansk in 
Poland), some 80 miles west of Kinigsberg. He corresponded with Euler from 1735 to 
1742, acting as intermediary for Heinrich Kiihn, a local mathematics professor. Their 
initial communication has not been recovered, but a letter of 9 March 1736 indicates 

they had discussed the problem and its relation to the 'calculus of position': 

You would render to me and our friend Kiihn a most valuable service, putting us greatly 
in your debt, most learned Sir, if you would send us the solution, which you know well, 
to the problem of the seven Kinigsberg bridges, together with a proof. It would prove 
to be an outstanding example of the calculus of position [Calculi Situs], worthy of your 
great genius. I have added a sketch of the said bridges ... 

Euler replied to Ehler on 3 April 1736, outlining more clearly his own attitude to 
the problem and its solution: 

... Thus you see, most noble Sir, how this type of solution bears little relationship to 
mathematics, and I do not understand why you expect a mathematician to produce it, 
rather than anyone else, for the solution is based on reason alone, and its discovery does 
not depend on any mathematical principle. Because of this, I do not know why even 
questions which bear so little relationship to mathematics are solved more quickly by 
mathematicians than by others. In the meantime, most noble Sir, you have assigned this 
question to the geometry of position, but I am ignorant as to what this new discipline 
involves, and as to which types of problem Leibniz and Wolff expected to see expressed 
in this way ... 
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Figure 5. Ehler's letter to Euler 

Around the same time, on 13 March 1736, Euler wrote to Giovanni Marinoni, an Italian 
mathematician and engineer who lived in Vienna and was Court Astronomer in the 
court of Kaiser Leopold I. He introduced the problem as follows (see Figure 6): 

A problem was posed to me about an island in the city of Ktbnigsberg, surrounded by 
a river spanned by seven bridges, and I was asked whether someone could traverse the 
separate bridges in a connected walk in such a way that each bridge is crossed only 
once. I was informed that hitherto no-one had demonstrated the possibility of doing this, 
or shown that it is impossible. This question is so banal, but seemed to me worthy of 
attention in that geometry, nor algebra, nor even the art of counting was sufficient to 
solve it. In view of this, it occurred to me to wonder whether it belonged to the geometry 
of position [geometriam Situs], which Leibniz had once so much longed for. And so, 
after some deliberation, I obtained a simple, yet completely established, rule with whose 
help one can immediately decide for all examples of this kind, with any number of 
bridges in any arrangement, whether such a round trip is possible, or not ... 
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Figure 6. Euler's letter to Marinoni 

Euler's 1736 paper 
Euler's paper is divided into twenty-one numbered paragraphs, of which the first as- 
cribes the problem to the geometry of position as we saw above, the next eight are 
devoted to the solution of the Kinigsberg bridges problem itself, and the remainder 
are concerned with the general problem. More specifically, paragraphs 2-21 deal with 
the following topics (see also [12]): 

Paragraph 2. Euler described the problem of the K6nigsberg bridges and its gen- 
eralization: 'whatever be the arrangement and division of the river into branches, and 
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however many bridges there be, can one find out whether or not it is possible to cross 
each bridge exactly once?' 

Paragraph 3. In principle, the original problem could be solved exhaustively by 
checking all possible paths, but Euler dismissed this as 'laborious' and impossible for 
configurations with more bridges. 

Paragraphs 4-7. The first simplification is to record paths by the land regions rather 
than bridges. Using the notation in Figure 4, going south from Kneiphof would be 
notated AB whether one used the Green Bridge or the Blacksmith's Bridge. The final 
path notation will need to include an adjacent A and B twice; the particular assignment 
of bridges a and b is irrelevant. A path signified by n letters corresponds to crossing 
n - 1 bridges, so a solution to the Kinigsberg problem requires an eight-letter path 
with two adjacent A/B pairs, two adjacent A/C pairs, one adjacent A/D pair, etc. 

Paragraph 8. What is the relation between the number of bridges connecting a land 
mass and the number of times the corresponding letter occurs in the path? Euler devel- 
oped the answer from a simpler example (see Figure 7). If there is an odd number k of 
bridges, then the letter must appear (k + 1)/2 times. 

Figure 7. A simple case 

Paragraph 9. This is enough to establish the impossibility of the desired Kbinigsberg 
tour. Since Kneiphof is connected by five bridges, the path must contain three As. 
Similarly, there must be two Bs, two Cs, and two Ds. In paragraph 14, Euler records 
these data in a table. 

region A B C D 

bridges 5 3 3 3 
frequency 3 2 2 2 

Summing the final row gives nine required letters, but a path using each of the seven 
bridges exactly once can have only eight letters. Thus there can be no Kijnigsberg tour. 

Paragraphs 10-12. Euler continued his analysis from paragraph 8: if there is an 
even number k of bridges connecting a land mass, then the corresponding letter appears 
k/2 + 1 times if the path begins in that region, and k/2 times otherwise. 

Paragraphs 13-15. The general problem can now be addressed. To illustrate the 
method Euler constructed an example with two islands, four rivers, and fifteen bridges 
(see Figure 8). 
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Figure 8. A more complicated example 

This system has the following table, where an asterisk indicates a region with an 
even number of bridges. 

region A* B* C* D E F* 

bridges 8 4 4 3 5 6 
frequency 4 2 2 2 3 3 

The frequencies of the letters in a successful path are determined by the rules for even 
and odd numbers of bridges, developed above. Since there can be only one initial 
region, he records k/2 for the asterisked regions. If the frequency sum is one less 
than the required number of letters, there is a path using each bridge exactly once that 
begins in an asterisked region. If the frequency sum equals the required number of 
letters, there is a path that begins in an unasterisked region. This latter possibility is 
the case here: the frequency sum is 16, exactly the number of letters required for a path 
using 15 bridges. Euler exhibited a particular path, including the bridges: 

EaFbBcFdAeFfCgAhCiDkAmEnApBoElD. 

Paragraph 16-19. Euler continued with a simpler technique, observing that: 

... the number of bridges written next to the letters A, B, C, etc. together add up to 
twice the total number of bridges. The reason for this is that, in the calculation where 
every bridge leading to a given area is counted, each bridge is counted twice, once for 
each of the two areas which it joins. 

This is the earliest version known of what is now called the handshaking lemma. It 
follows that in the bridge sum, there must be an even number of odd summands. 

Paragraph 20. Euler stated his main conclusions: 

If there are more than two areas to which an odd number of bridges lead, then such a 
journey is impossible. 
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If, however, the number of bridges is odd for exactly two areas, then the journey is 
possible if it starts in either of these two areas. 

If, finally, there are no areas to which an odd number of bridges lead, then the required 
journey can be accomplished starting from any area. 

Paragraph 21. Euler concluded by saying: 

When it has been determined that such a journey can be made, one still has to find how 
it should be arranged. For this I use the following rule: let those pairs of bridges which 
lead from one area to another be mentally removed, thereby considerably reducing the 
number of bridges; it is then an easy task to construct the required route across the 
remaining bridges, and the bridges which have been removed will not significantly alter 
the route found, as will become clear after a little thought. I do not therefore think it 
worthwhile to give any further details concerning the finding of the routes. 

Note that this final paragraph does not prove the existence of a journey when one is 
possible, apparently because Euler did not consider it necessary. So Euler provided a 
rigorous proof only for the first of the three conclusions. The first satisfactory proof 
of the other two results did not appear until 1871, in a posthumous paper by Carl 
Hierholzer (see [1] and [4]). 

The modern solution 
The approach mentioned in the first section developed through diagram-tracing puz- 
zles discussed by Louis Poinsot [7] and others in the early-nineteenth century. The 
object is to determine whether a figure can be drawn with a single stroke of the pen in 
such a way that no edge is repeated. Considering the figure to be drawn as a graph, the 
general conditions in Paragraph 20 take the following form: 

If there are more than two vertices of odd degree, then such a drawing is impossible. 

If, however, exactly two vertices have odd degree, then the drawing is possible if it starts 
with either of these two vertices. 

If, finally, there are no vertices of odd degree, then the required drawing can be accom- 
plished starting from any vertex. 

So the 4-vertex graph shown in Figure 2, with one vertex of degree 5 and three 
vertices of degree 3, cannot be drawn with a single stroke of the pen so that no edge 
is repeated. In contemporary terminology, we say that this graph is not Eulerian. The 
arrangement of bridges in Figure 8 can be similarly represented by the graph in Fig- 
ure 9, with six vertices and fifteen edges. Exactly two vertices (E and D) have odd 
degree, so there is a drawing that starts at E and ends at D, as we saw above. This is 
sometimes called an Eulerian trail. 

However, it was some time until the connection was made between Euler's work and 
diagram-tracing puzzles. The 'K•nigsberg graph' of Figure 2 made its first appearance 
in W. W. Rouse Ball's Mathematical Recreations and Problems of Past and Present 
Times [9] in 1892. 

Background information, including English translations of the papers of Euler [2] and Hierholzer [4], can be 

found in [1]; an English translation of Euler's paper also appears in [6]. 
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Figure 9. The graph of the bridges in Figure 8 
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If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathe- 
matics to keep happy. Alfr6d Renyi 

(Quoted in P. Turin, "The Work of Alfr6d R6nyi," Matematikai Lapok 21 (1970) 
199-210) 
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