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Two recent articles by Dunham [5] and Flusser [10] have presented examples of
Leonhard Euler’s work in algebra. Both papers are a joy to read; watching Euler
manipulate and calculate with incredible facility is a pleasure. A modern mathe-
matician can see the logical flaws in some of the arguments, yet at the same time
be aware that the mind behind it all is that of a unique master.

These two articles reminded me how much fun it is to read Euler. In researching
the evolution of the differential a few years ago, I found the work of Euler
refreshingly different from that of other seventeenth- and eighteenth-century
mathematicians. One can read about Euler’s use and misuse of infinite series in
most histories of mathematics (e.g. [2, pp. 486—490]). This paper offers a glimpse at
how Euler used infinitesimals and infinite series to compute differentials for the
elementary functions encountered in a typical undergraduate calculus sequence. I
hope the reader of this brief survey of Euler’s work with differentials will seek,out
original sources such as [8] and [9]. As Harold Edwards [7] has cogently argued, we
have much to learn from reading the masters.

Euler and the 18th Century

Euler (1707-1783) was the most prolific and one of the most influential mathe-
maticians who ever lived. He made major contributions to both pure and applied
mathematics and his collected works amount to over 70 volumes. So strong was his
influence that historians like Boyer [2] and Edwards [6] refer to the eighteenth
century as the Age of Euler.

Euler made the function concept fundamental in analysis. He saw a function as
both any quantity depending on variables and also as any algebraic combination of
constants and variables (including infinite sums or products). This is obviously not
a modern definition of a function. Still, Euler used his function concept to maximal
advantage. As we examine some of Euler’s computations, keep in mind the
immense insight and unity he achieved with the function approach—a point of
view we now take for granted.

In his Introducio in analysin infinitorum (1748), one sees the first systematic
interpretation of logarithms as exponents. Prior to Euler, logarithms were typically
viewed as terms of an arithmetic series in one-to-one correspondence with terms of
a geometric series [3]. Euler viewed trigonometric functions as numerical ratios
rather than as ratios of line segments. He also studied properties of the elementary
transcendental functions by the frequent use of their infinite series expansions
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[6, p. 270]. Euler often used infinite series indiscriminately, without regard to
questions of convergence.

Euler’s understanding and use of differentials within the framework of functions
is the focus of this paper. Before presenting his work, a word about the differential
before Euler.

For Leibniz (1646-1716) the differentials dx and dy were, as the name sug-
gests, (infinitesimal) differences in the abscissa x and the ordinate y, respectively
[4, pp. 70-76]. The infinitesimal was considered to be a number smaller than any
positive number. The omission of the “even smaller” higher-order infinitesimals
such as (dx)? or dxdy, which were deemed negligible relative to dx and dy, was
basic to his methods. So powerful were the notation and methods that the
differential calculus was truly a differential calculus for nearly one and a half
centuries: The differential (and not the derivative) was the main object of study.

Leibniz gave other interpretations of the differential, but the mathematicians
working in the early eighteenth century tended to favor Leibniz’s formulation of a
differential as an infinitesimal. It appears in the work of Johann Bernoulli
(1667-1748) and in the first calculus textbook, Analyse des infiniment petits pour
Pintelligence des lignes courbes (1696), which was written by L’Ho6pital and which
made free use of Bernoulli’s ideas (see [18, p. 315]). Euler was one of Bernoulli’s
pupils.

Many of Euler’s results and infinite series discussed below were known to
Newton, Leibniz, Bernoulli, and others. Euler’s work with differentials is unique,
however, in his definition of infinitesimals as absolute zeros and in his heavy
reliance on infinite series to develop his differential calculus.

Differentials as Absolute Zeros

In his Institutiones calculi differentialis (1755), Euler stated: “To those who ask
what the infinitely small quantity in mathematics is, we answer it is actually equal
to zero” [18, p. 384]. Euler felt that the view of the infinitesimal as zero adequately
removed the mystery and ambiguity of statements such as “The infinitesimal is
smaller than any given quantity” or the postulate of Johann Bernoulli that
“Adding an infinitesimal to a quantity leaves the quantity unchanged.”

Euler then said that the quotient 0/0 can actually take on any value because

n-0=0
for all real » and therefore, he concluded,

n O

1 0 M

He noted that if two zeros can have an arbitrary ratio, then different symbols
should be used for the zero in the numerator and the zero in the denominator of
the fraction on the right-hand side of equation (1). It is here that Euler introduced
the Leibnizian notation of differentials.

Euler denoted an infinitely small quantity by dx. Here dx =0 and adx = 0 for
any finite quantity a. But for Euler these two zeros are different zeros that cannot
be confused when the ratio adx/dx = a is investigated [18, p. 385]. In a similar
way dy/dx can denote a finite ratio even though dx and dy are zero. “Thus for
Euler the calculus was simply the determination of the ratios of evanescent
increments—a heuristic procedure for finding the value of the expression 0/0” [1].
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The neglect of higher-order infinitesimals was also explained employing quo-
tients. Noting that dx = 0 and (dx)? = 0, where (dx)? is a zero (or infinitesimal) of
second order, Euler reasoned that

dx + (dx)*=dx
because

dx + (dx)’

=1+4+dx=1.
dx *

By the same reasoning, Euler established that

dx+ (dx)" ' =dx

for all n> 0. The omission of higher-order differentials was frequently utilized by
Euler in finding the differential dy, where y is a function of x.

Computations with Elementary Functions

The computations discussed in this section are all found in Euler’s Institutiones
calculi differentialis. Their most noteworthy feature is the use of power series
expressions for functions from the outset, with no mention of questions of
convergence. Thus, whereas in modern textbooks the justification of such infinite
series expansions is an advanced topic in differential calculus, for Euler they were
the foundation for the calculation of derivatives.

To find dy if y=x" (n any real number), Euler used the binomial expansion
[9, p. 99]. If x is increased by an infinitesimal amount dx, then y experiences a
change of dy where

dy=(x+dx)"—x"

n(n—1)

N X" (dx)’+ -

=nx""Vdx+

=nx""ldx

upon the omission of the higher-order infinitesimals (dx)?, etc. Newton and
Leibniz did similar computations for finding the derivative of y =x", Leibniz using
a comparable differential argument while Newton worked with fluxions [6, p. 192].
Within the rigorous context of

(x+Ax)" —x"
Ax—0 Ax

we all use the essence of this computation (for positive integer powers of x) in our
first semester calculus courses.
Euler derived the product rule as follows:

d(pq) =(p+dp)(q+dq)—pq
=pdq +qdp +dpdq
=pdq +qdp

where the last step is due to the omission of the higher-order infinitesimal dp dg.
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Similar computations were done by Leibniz [4, p. 143]. This argument is analogous
to the proof of the product rule still found in a few present-day textbooks (e.g.,

(12].

Euler’s derivation of the quotient rule is unique in its use of a geometric series
[9, p. 103]:

1 1
q+dq q

1
1+dq/q)

Then

Cg+dqg g

+d
d(p)_p p P
q

p

q+dq gq

d_‘f)_ﬂ
a q*) q

=(p+dp)

=(p+dp)

_% _rlq

a q*

_qdp—pdq

q2

In chapter 6, Euler found the differentials of transcendental functions. For
computing the differential of the natural logarithm (which he denoted by the single
letter “¢” but which we will denote by the usual “log”), Euler used Mercator’s

series [9, p. 122]:
22 23

log(l+z)=z——+—— .
og(l+z)=z >+

Given y = log(x) then

dy =log(x +dx) — log(x)
dx
= log(l + —)
x

dx  (dx)* (dx)’

x 2x? 3x3

dx

X

To illustrate the chain rule, Euler did many examples. For instance, if y = log(x")
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then letting p =x" yields y = log(p), which implies that dy =dp/p where dp =
nx" 'dx. Thus dy =ndx/x.

Euler’s computation of dy for y = log(x) can be found in a modern nonstandard
analysis text [15, p. 65]. This may seem unremarkable since nonstandard analysis
was developed by Abraham Robinson in the mid-twentieth century to place the
notion of infinitesimals and their manipulation on solid logical ground. In fact, it is
rare to find nonstandard analysis arguments that are exactly like Euler’s, because
nonstandard analysis arguments are rarely done in the context of infinite series
(see [11] and [16]).

As an example of Euler’s work with trigonometric functions, consider the
computation of dy for y = sin x [9, p. 132]. For this purpose he explicitly used the
sine and cosine series

x* X

sinx=x—§+§—--- (2)
x*  x*

COSX=1—E+H—"' (3)

to show that sin(dx) = dx and cos(dx) = 1. He obtained these results by substitut-
ing dx into (2) and (3) and ignoring higher-order differentials. He also employed
the trigonometric identity

sin(a + b) =sinacos b + sin b cos a. (4)
Thus, using (4):

dy =sin(x +dx) —sin x
= sin x cos dx + sin dx cos x — sin x
=sin x + cos xdx — sin x
=cos xdx.

This is the most beautifully efficient computation of all those presented, espe-
cially when compared to the usual limit computation of the derivative of y = sin x.
There one needs to work as follows:

sin(x +Ax) i sin x cos(Ax) + sin(Ax)cos x — sin x
————— = lim

Ax—0 Ax Ax—0 Ax

~sin(Ax) cos(Ax) —1
=cosx llm ——— +sinx lim ———
Ax—>0 Ax Ax—0 Ax

Then y’' = cos x is obtained using two limits (which must be proven):
sin x

li =1 5
xl—rg) X ()

and
. cosx—1
lim — =0
x—0 X

The first of these limits is captured in Euler’s equation sin(dx) = dx. The second
limit is comparable to Euler’s equation cos(dx) =1 or cos(dx) — 1 = 0. Although
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Euler’s derivation is computationally more compact than the standard modern
approach, the latter is logically sound. Any method for differentiating the sine
function must deal in particular with (5). This is proven geometrically, since in the
standard modern approach one defines at the outset the geometric meaning of the
trigonometric functions (i.e., cosine and sine parametrize the unit circle). The
proof of (5) is relatively easy when compared to the difficulty involved in showing
the geometric meaning of the functions Euler defined (without regard to questions
of convergence) as the sums of the power series (2) and (3). ,

In Euler’s three-volume Institutiones calculi integralis (1768-1770), he defined
integration, like Leibniz and Johann Bernoulli, as the formal inverse of the
differential. He used the integral symbol and wrote, for example,

fnx"‘ldx=x"
fdx/x=logx
fcos xdx =sin x

all plus or minus an appropriate constant. The first volume of this work reads like
a modern calculus textbook chapter on techniques of integration. Integration by
substitution, by parts, by partial fractions, and by trigonometric substitution are all
illustrated in a logical and systematic way. Undoubtedly, Euler’s well-organized
and all-encompassing use of differentials in a function context did much to solidify
the popularity of the differential and integral notations on the continent.

The Total Differential

Euler’s Institutiones calculi differentialis was the first systematic exposition of the
calculus of functions of several variables. He understood a function of n variables
to be any finite or infinite expression involving these variables. As soon as he
introduced these functions, Euler addressed the question of the relationship
among the differentials of all the variables involved.

He obtained the result that if

V=f(x’ y, Z)
then
dV=pdx+qdy +rdz,

where p, g, and r are all functions of x, y, and z [9, pp. 144-145]. He arrived at
this formula in an interesting way. If X is a function of x alone and is increased by
an infinitesimal amount dx, then

dX =Pdx

by the usual one-variable argument. Similarly, if Y and Z are functions of y alone
and z alone respectively, then

dY = Qdy
and
dZ =Rdz.
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If V=X+Y+Z (i.e., a special function of three variables) then

dV=dX+dY+dZ
=Pdx+ Qdy + Rd:z.

If VV=XYZ, then
dV = (X +Pdx)(Y +Qdy)(Z +Rdz) — XYZ.

This simplifies (upon omission of higher-order differential terms such as ZPQ dxdy)
to

dV=YZPdx + XZQdy + XYRdz.

From these two examples, Euler expected that any algebraic expression of x, y,
and z has differential

dV=pdx+qdy +rdz (6)

because a function of three variables can be thought of as a sum of products of
these variables. He generalized the result for any number of variables [9, p. 146].

Later in the same work, he addressed the concept of partial differentiation
[9, pp. 156-157]. If y and z are held constant, then by equation (6)

dV=pdx

as there is no change in y or z. (Notice how, for Euler, no change in y is not the
same as saying dy is the infinitesimal change in y, even though he defined
infinitesimals as being zero.) He then wrote

p=(dV/dx),

where the parentheses about the quotient remind one that p equals the differen-
tial of V' (with only the x being variable) divided by dx. Similar meanings apply to
q =(dV/dy) and r = (dV/dz). This was Euler’s notation and understanding of the
concept of partial derivatives. The current symbol d dates from the 1840’s [14].
Obviously, (6) becomes

dV = (dV/dx) dx + (dV/dy) dy + (dV/dz) dz,

although Euler did not explicitly write this.

It is worth noting that Euler’s exposition of differentials for functions of several
variables immediately followed his work with differentials for functions of one
variable. Exploring the differential calculus for both single and multivariable
functions before passing on to integration is an old idea which I think has merit. It
gives the calculus sequence a stronger focus and unity, by concentrating effort on
one basic concept (the derivative) in various settings before moving on to its
inverse. A recent textbook by Small and Hosack [17] takes this approach. Perhaps
we will see more of this, especially since computer algebra systems such as Derive,
Maple, and Mathematica have taken the pain out of such tasks as surface
sketching.

Differentials in Multiple Integrals

Euler frequently let his readers in on his thought processes, even when the
procedures seemed fruitless. This was mathematics being done for all to see, not a
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slick modern textbook treatment. There was no taking down the scaffolding a la
Gauss.

Euler, in De formulis integralibus duplicatis (1769), gave one of the first clear
discussions of double integrals. In the first half of the eighteenth century,
[{f(x,y)dxdy denoted the solution of d°z/dx dy = f(x, y) obtained by antidiffer-
entiation. Euler supplemented this by providing a (thoroughly modern) procedure
for evaluating definite double integrals over a bounded domain R enclosed by arcs
in the xy plane. Euler used iterated integrals:

[ 7ev)dsas = ['ax ["*7za

f1()

where z = f(x, y). For z > 0, Euler saw this as a volume, since [zdy gives the area
of a “slice” (parallel to the y-axis) of the three-dimensional region above R and
under z =f(x, y), and the following integration with respect to x “adds up the
slices” to yield the volume [8, p. 293]. This is perhaps the first time Leibniz’s
powerful differential notation was used in tandem with a volume argument
employing Cavalieri’s method of indivisibles [2, p. 361].

Euler also interpreted dxdy as an “area element” of R. That is, R is made up of
an infinite set of infinitesimal area elements dxdy. This is most clearly seen when
Euler attempted to change variables [8, pp. 302-303]. And it was here that Euler
ran into difficulties.

He reasoned that if dxdy is an area element and we change variables via the
transformation

x=x(t,v)=a+mt+vVl—m?
y=y(t,0) =b+tVl-m? —mv

(a translation by the vector (a, b), a clockwise rotation through the angle «, where
cos a = m, and a reflection through the x-axis), then dxdy should equal dtdv. But

dx =mdt +dvVl —m?
dy =dtV1l —m? —mdv

and multiplication gives

dxdy =mV1—m? (dt)* + (1 —2m?) dtdv — mV1—m? (dv)’.

Euler rejected this as wrong and meaningless. (How many calculus students
wonder, explicitly or implicitly, why we cannot just multiply the differential forms
for dx and dy?) Euler decided to attack the problem in a formal non-geometric
way, not using area elements but rather by changing variables one at a time (for
details, see [13]). In this way he arrived at the correct general result:

,y)
a(t,v

[[£(xoyydxdy = [[£(x(t,0),¥(, v)) dtdv.

In 1899, another great mathematician with a computational flair, Elie Cartan,
arrived at the straightforward multiplicative result Euler sought, by using
Grassmann’s exterior product with differential forms. This is a formal product
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where the usual distributive laws hold but with the conditions that
dxdx=dydy =0
and
dxdy = —dydx

(see [17, p. 514], and [13]). Thus, for Euler’s differentials

dxdy = (mdt +dvV1 —m? )(dt\/l - m? —mdv)
=dtdtmV1 —m? —mPdtdv + (1 — m?)dvdt — dvdvmV1 — m?
= —m?dtdv + dvdt(1 —m?)
= —m?dtdv — dtdv(1 —m?)
= —dtdv.

The minus sign appears because the transformation (involving a reflection) does
not preserve orientation. In general, given any transformation from the fv-plane to
the xy-plane, the exterior product yields

a(x,
dxdy =259

a(t,v)

Conclusion

Even in this rudimentary survey of Euler’s work with differentials in calculus, it is
fascinating to watch a genius grapple with an ambiguous concept (infinitesimal)
and attempt to clarify it (absolute zero)—however flawed the attempt. Reading
Euler has enriched my teaching of the calculus by keeping me mindful that my
students are tackling a subject whose foundations humbled the greatest minds of
the past. Even the seemingly fruitless paths can be instructive, as we have seen. It
took mathematicians about 150 years to come up with the exterior product for
differential forms that Euler needed for the change of variables formula in
multiple integrals. How many other Eulerian dead ends may be worth pursuing?
Again, the advice of Harold Edwards [7] points the way for the teacher and the
researcher: “Read the masters!”
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Sum of Squares via the Centroid
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—Sydney H. Kung
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