COMPUTER
== | CORNER
/

< A Edited by
Eugene A. Herman

In this column, readers are encouraged to share their expertise and experiences with computers as
they relate to college mathematics. Articles may illustrate how computers can be used to enhance
pedagogy, solve problems, or model real-life situations. Readers are also invited to submit interesting
(not necessarily original) algorithms in a structured language or pseudocode, with explanatory text to
make the purpose and validity clear.

All manuscripts for this column should be prepared according to the guidelines on the inside front
cover and sent to:

Eugene A. Herman
Department of Mathematics
Grinnell College

Grinnell, IA 50112

Automatic Differentiation and APL

Richard D. Neidinger

Richard Neidinger is an Assistant Professor of Mathematics
at Davidson College in North Carolina. He received a B.A.
from Trinity University in San Antonio and an M.A. and Ph.D.
from the University of Texas at Austin. He came to Davidson
in 1984 after completing the Ph.D. under the direction of
Professor Haskell Rosenthal. His research interests focus on
functional analysis, although he also enjoys applications of
the computer.

Automatic differentiation is an unorthodox approach to differentiation, and APL is
an unorthodox approach to computer programming; their combination yields a
beautiful and powerful tool. By combining the formal rules of differentiation with
numerical evaluations of successive derivatives as they are produced, automatic
differentiation makes it possible to evaluate high-order derivatives of a function at a
point with accuracy equal to that provided by symbolic differentiation, but at a
fraction of the cost in computer time and space. The ability of APL to “think” in

238

terms of vector operators makes it an ideal language for the implementation of
automatic differentiation. We shall develop several small programs that enable the
user to evaluate (not just approximate) the derivatives up to order n of any
elementary function (i.e., any function obtained by algebraic means from polynomi-
als, logarithms, exponentials, trigonometric functions, and inverse trigonometric
functions).

No previous experience with APL or automatic differentiation is required; in
fact, each topic enhances the exposition of the other. The language APL will be
explicated through solving this problem, for which it is so well-suited. The ideas of
automatic differentiation will be discussed while a remarkably simple (and original)
implementation is developed. The method of recursive evaluation of higher-order
derivatives by using a vector operation that embodies Leibniz’s rule is an extension
of previous work. A good exposition of the mathematics of automatic differentiation
(without actual implementation) is [5], which inspired this paper. To compare
implementations of automatic differentiation in more conventional languages, see
[6], [7], and [11]. All of the computer work was originally done on an IBM PC using
the inexpensive Pocket APL system by STSC.

Let us introduce the idea of automatic differentiation with a problem. Suppose
that we want to find the values of the function f and its first ten derivatives at the
point a =1, where f(x)=(x-csc(x))/In(arctan(exp(x))). The idea of computing
the symbolic derivatives by hand is absurd and, in fact, the task overwhelmed a
standard commercial program designed for the purpose. Numerical methods (based
on difference quotients) could be used to obtain approximate answers rather
quickly, but the difficulty of obtaining reasonable accuracy (cf. [7]) grows rapidly
with the order of the derivative. Anyway, our desire is to evaluate these derivatives
with accuracy limited only by computer representation (roundoff) error. Automatic
differentiation is a very different approach that is theoretically exact and computa-
tionally practical; indeed the above problem is solved in Section 2.

While symbolic differentiation uses “the rules” on symbols, automatic differen-
tiation uses “the rules” with values. Calculations are performed in a system of
vectors. An example illustrates the considerations that arise. Suppose h(x)=
sin(u(x)) and the vector (u(a),u’(a),u”(a),...,u™(a)) is known. We wish to
compute (h(a), h'(a), h"(a),..., K™ (a)). A typical calculus student could produce
a formula for A”(a) in terms of u(a), u’(a), and u’’(a). However, a general
algorithm, to produce A(™ for an arbitrary n, involves recursive formulas and
iterative programming. Section 2 develops such algorithms. Section 1 considers the
case n =1, where the overall structure of automatic differentiation is clear and an
APL implementation is straightforward.

1. Calculating First Derivatives; An Introduction to APL

We wish to calculate the value of the derivative of an arbitrary function at an
arbitrary point a. Every function is associated with a numerical vector as indicated
in Table 1, where s denotes a constant scalar.

Table 1
function vector at a
h(x) H = (h(a), h'(a))
u(x) U=(u(a), u'(a))
v(x) V=(v(a),v'(a))
d(x)=x X=(a,l)
c(x)=s C, =(s,0)

239

The goal is to calculate H when given the formula for A(x). Suppose that A(x) is
given as an arithmetic operation combining u(x) and v(x), and that U and V are
known. Then, we need only define a corresponding vector operation on U and V
that yields H. But this operation is determined by a differentiation rule! For
example, if A(x) = u(x) + v(x), then H= U + V. Similarly, if A(x) = r - u(x), then
H=rU. If h(x)=u(x) v(x), then H= U TIMESV, where we define

U TIMESV = (u(a) -v(a),u'(a)-v(a) +u(a)-v'(a)).

This idea also applies to composition with transcendental functions. As an example,
suppose that h(x) = sin(u(x)) and that U is known. Then H = SIN U, where we
define

SINU = (sin(u(a)),cos(u(a)) - u'(a)).

It is now obvious that such vector operators, with built-in chain rule, could be
defined for all of the usual operations and functions of calculus.

Ultimately, the hypothesis that U and V are known rests on the last vectors in
Table 1; X and C, are known. The expression for any elementary function f(x) can
be translated into the corresponding vector operations ultimately applied to X or C..
The result will be F=(f(a), f’'(a)). Consider, for example, f(x)= 7x + 3. Using
automatic differentiation,

F=7X+C,=17(a,1)+(3,0) = (7a + 3,7),

which yields f(a)=7a+ 3 and f’(a)="1. Or, take any typical formula, say f(x) =
sin(x?). Then F = SIN(X TIMES X). Indeed,

F = SIN(X TIMES X) = SIN((a,1) TIMES (4,1)) = SIN(a - a,1a + 1a)
= SIN(a?,2a) = (sin(a?),cos(a?) - 2a).

This unusual method of evaluation would be practical in a computing environ-
ment featuring numerical vector calculations and the ability to define new vector
operations. APL is A Programming Language characterized by easy vector and
matrix calculations enabled by using a large and expandable library of functions or
dyadic operators. In fact, all programming is thought of as adding functions or
operators to the library. Work may then be done in the immediate execution mode.

Let’s go to the APL immediate execution mode and observe vector addition and
scalar multiplication. Our entries will be indented, and the computer’s response will
be at the left margin. A space separates elements in a vector.

873 72+ 4197
12 8 12 5

2 x 362
6 12 4

Xe31

X + (2xX) + 70
16 3

X[01]
3

X[11
1

The left arrow assigns the vector 3 1 to the global variable X. The next line
calculates (f(3), f'(3)) for the function f(x) = x + 2x + 7. Elements of a vector are

240

referenced with an index starting with zero. This indexing was chosen (by APL
command O/0 « 0) so that X[k] would refer to the kth derivative.

All of the many functions and operators built into the APL language are called
by special character symbols. Most of the unusual symbols used in this paper are
summarized in the appendix. Glance over this now and use it for reference. Because
there are so many operators, absolutely no order priority is specified. All lines are
executed from right to left with parentheses necessary to specify otherwise. This is a
common point for errors, since it is fairly unusual.

Any new vector operator is defined in the function definition mode. The first del
{an upside down delta) starts the definition and the second del ends the definition,
returning to the immediate execution mode.

V H e U TIMES V
[11] H ¢ (UL01xVL[O01), (ULOIxV[11)+(UL11xVLO1)
[21 v

VHe SINU
[1] H ¢ (10UL0]), (20UL0]1)IXUL1]
[21 v
X €01
SIN X

(The circle functions 1© and 20 represent sin and cos, respectively.)

To differentiate f(x)=x2 at 3 by automatic differentiation, define the vector
X < 31 and perform the calculation F= X TIMES X. (Alternatively, x? could be
handled by defining a vector operator U POWER r.) Thus the above computation
XTIMES X yields (f(3), f/(3)). Similarly, the above SIN X produces (f(0), f'(0))
for the function f(x)= sin(x).

In general, given a function f(x), we define a function FDF(a) that returns the
vector F = (f(a), f'(a)). The point of evaluation is variable. For example, consider
f(x)=x*—"Tx.

V F ¢ FDF a
€ a,l
€ (X TIMES X) - 7xX

[11
[21
[31

R e

FDF 5
“10 3

FDF 72
18 711

In order to change the function, we use “v FDF[2]” which means “redefine line 2
of the previous FDF definition.” Line 1 remains the same. For example, we evaluate
f and f’ for f(x)=sin(x2).

241

vV FDFL21]
[2] F ¢« SIN (X TIMES X)
[31 V
FDF O
00
FDF "1
0.8414709848 ~1.080604612

We need a dozen more one-line programs, similar to TIMES and SIN, to embody
the vector operations corresponding to the typical derivative rules of elementary
calculus. These programs will be left for the reader. Because of the strange symbols
for the primitive functions in the appendix, Table 3, the corresponding vector
operators may be given standard names such as COS and EXP without any
confusion. Together, the fourteen one-line programs and the two-line program FDF
are saved as a workspace, named AUTODIFF, in the APL environment. (In APL,
we do not save and retrieve individual programs; we save and retrieve libraries of
functions, called workspaces. Typically, a user will have several different workspaces,
each designed for a particular type of work.) The AUTODIFF workspace enables
the user to evaluate the derivative of any elementary function. The user simply edits
line 2 of FDF, entering the desired formula (written in vector operators). Dyadic
operators, TIMES and DIV, allow the expression to be written in typical “infix”
form.

The AUTODIFF workspace generalizes, with very little change, to enable the
user to evaluate the gradient of any elementary multivariate function. Although this
development follows a different track from Section 2, the implementation of
automatic differentiation for gradients is a significant and beautiful application of
APL. Since the inception of automatic differentiation in [10], applications have been
to multivariate analysis. (cf. [1]). Automatic differentiation for gradients uses a
generalization of Table 1. At a point p = (a, b, ¢), associate each function u(x, y, z)
with the numerical vector U= (u(p), u,(p), u,(p), 4,(p)) or (u(p),grad u(p)). Then
X=1(a,1,0,0), Y=(b,0,1,0) and Z = (c,0,0,1). The automatic differentiation op-
erators on these vectors are the same as above except that the first derivative is
replaced by the gradient. In APL, this is accomplished by replacing U[1] and V[1]
by 1JU and 1}V respectively. Moreover, this will work for any number of
variables since 1| U always returns the gradient vector. The revised workspace,
consisting of fourteen one-line programs (no loops or conditionals) and a driver
FGRADF, enables the evaluation of the gradient of any elementary function in any
number of variables! An exposition of this is available from the author.

2. Calculating Higher-Order Derivatives

In order to evaluate derivatives up to order n at the point a, we generalize Table 1.

Table 2
function vector at a
h(x) H=(h(a), K'(a), k"(a),..., h'"(a))
u(x) U= (u(a), w'(a),u"(a),...,u"(a))
v(x) V= (v(a),v'(a),v"(a),...,v"(a))
id(x) = x X=(a,1,0,0,...,0)
c(x)=s C,=(s,0,0,0,...,0)

242

We will simply write U= (u, u’,u”,...,u™) where the dependence on a is under-
stood. Again, if A(x) is a combination of u(x) and v(x) where U and V are known,
then we will define a corresponding vector operation on U and V that yields H. All
of the APL functions of Section 1 will require new, generalized versions (stored in a
new workspace).

In a blank APL workspace, we define the global variable “order” to store the
value of n. All programs will refer to order. The following function returns C,. (See
the replicate function in the appendix, Table 4.)

order ¢ 4

vV VECTOR ¢« C s
[11] VECTOR ¢ s,order/0
[21 v

Cc 2
20000

The space of vectors of the form U= (u, u’, u”,..., u™)is linear in the sense that
if h(x)=s-u(x)+t-v(x) then H=sU+ V. Since X and C, are known, linear
functions are ready for automatic differentiation. Let’s try f(x)=7x+ 3 and
evaluate F = (f(a), f'(a),..., f™(a)) for different values of a and n.

V F ¢« FDF a
[1] X ¢ a,l,(order-1)/0
[2] F € (7xX) + C 3

[31 v
FDF 2

17 7 0 0 0
order ¢« 10
FDF 74

25 7 00 0 00O0O0O00O0

For h(x)=u(x)v(x), we need to define the vector operator TIMES such that
H = U TIMESV. We can easily calculate that h=wuv, i’ =u'v+w’, " =u"v+
2u'v’ + w”, and hA® =u®v + 3u"v+ 3u'v” + uw®. Indeed, the higher derivatives
are formed as in the binomial theorem, a fact that is known as Leibniz’s rule:

RO = (0)u®v + (1k)u* Dy + -+ + (klk)uw®,

where we have used the APL notation for the binomial coefficients (see appendix).

To implement Leibniz’s rule, we shall define a vector operator BDOT (for
“binomial dot product”). Specifically, if P = (py, p1,---, Pr) and Q = (4o, G1>---» 4x)
then we define

PBDOTQ = (O!k)Pk‘10+ (“k)Pk—l‘h + - +(k!k)Poqk-

(The program defining BDOT will be given presently.) For the remainder of this
paper, the importance of Leibniz’s rule, reformulated as follows, cannot be overem-
phasized:

h(x)=u(x)v(x)=>r®=(u,u,...,u®)BDOT (v, v,...,v").

The vector H = (h, k’,..., k) will be built by catenating one entry at a time,
using BDOT to perform Leibniz’s rule. Thus the operator TIMES is described
by the following pseudo-APL program. (Observe that ((k+ 1)1 U) returns
(u, w',...,u®), the (k + 1)-length initial segment of U.)

243

VH ¢ U TIMES V
[1] H ¢« ULO0IxVIO]
[2] FOR k ¢« 1 TO order

[31 H ¢ H, ((k+1)1TU) BDOT ((k+1)1V)
[4]1 NEXT k
[51 v

Unfortunately, such a simple looping structure does not exist in APL. The actual
program shows the best (line 5) and the worst of APL. The new symbols are
explained immediately following the program.

V H ¢ U TIMES V 3k
[11] H ¢ ULOIxVIO]
[2]1 =(order=0)/0 AStop if order=0
[3] keO
[4] Loop: kek+1l
[5] H ¢ H, ((k+1)1TU) BDOT ((k+1)1V)
[6]1 -(k<order)/Loop
[71 v

The variable k is declared to be local by listing it preceded by a semicolon in the
function header. The APL symbol a indicates that the remainder of the line is a
comment. The line — (k < order)/Loop means if k& < order then branch to the line
labeled Loop. (Specifically, k£ < order evaluates as 1 for true or 0 for false; then the
replicate function creates 1 or 0 copies of the word Loop. The result is — Loop
which means goto Loop, or — “empty vector” which means goto the next line. Also,
— 0 means exit the program. Other APL programmers may implement this loop
with different branches written with different symbols, though we’ve covered all the
reader will need to know.)

We still have to define the operator BDOT. Let P and Q be any vectors of length
k + 1, for any k > 0. Let BINOMCOEFS be the vector (0'k),(1k),...,(k!k). Now
P BDOTQ is given by multiplying corresponding elements of BINOMCOEFS, 0,
and the reverse of P, followed by summing across the resulting vector. In APL
notation: + / BINOMCOEFS X (¢P) X Q.

There are several ways to generate the vector BINOMCOEFS. To use i!k directly
on each call to BDOT is very inefficient. These coefficients will be stored in a global
variable that is essentially Pascal’s triangle. In fact, the familiar algorithm for
constructing Pascal’s triangle is imitated using vector addition in the program
PASCAL.

V PASCAL n ;ROW
[1] ROW ¢ 1
[2] ROW AThis line prints the variable ROW
[3] TRIANGLE ¢ 1
[4] Loop: ROW ¢ (ROW,0) + (0O,ROW)
[5]1 ROW
[6]1] TRIANGLE ¢ TRIANGLE,ROW
[7]1 -=((pROW)=n)/Loop
[81 v

244

PASCAL 10

[

1

2

3 1

4 4 1

510 10 5 1

6 15 20 15 6 1
7 21 35352171

8 28 56 70 56 28 8 1

9 36 84 126 126 84 36 9 1

10 45 120 210 252 210 120 45 10 1

PRREPRRERREPRRERRPP

As long as order < 10, we will not need to run PASCAL again. For simplicity and
efficiency, the global variable TRIANGLE is simply a long vector. Thus BDOT
must extract the “row” of length m =k + 1. Finally, we have the actual BDOT
program.

V scalar « P BDOT Q ;m;BINOMCOEFS
{11 m « p,P

[2] BINOMCOEFS ¢ mt ((m-1)xm+2)!{ TRIANGLE
[3]1 scalar ¢ +/ BINOMCOEFS x (®P) X Q

[41 v

(One technical footnote: the comma in line 1 of BDOT converts the argument
into a vector. It is only necessary in case P is a scalar as opposed to a vector of
length one.)

Let us test the TIMES operator by calculating the first four derivatives of
f(x)=x3at —2.

vV FDFIL[21]
[2] F ¢ X TIMES X TIMES X
[3]1 V

order € 4

FDF ~2

8 12 712 6 O

Now we can concentrate on finding recursive mathematical formulas for other
kth-order differentiation rules. The function BDOT will prove to be extremely
useful. Consider first the quotient rule.

Suppose h(x)=u(x)+ v(x). We wish to find #® in terms of the “known”
vectors U and V. Straightforward iteration of the quotient rule gets very messy and
appears difficult to reproduce without using symbolic (literal string) manipulation.
Instead, observe that u(x) = A(x)v(x) and use Leibniz’s rule. The kth derivative is

u® = (h,n',10",..., h(k)) BDOT (v, v’,v",..., U(k))
= h®y + (b, ', h”,..., h*=D 0) BDOT (v, v', v", ..., o®).
This equation can be solved for A®:
RO = [u® — (b, b, h",..., hR*=D,0) BDOT (v, v, v", ..., v®)] + 0.

245

This is a relatively simple recursive formula. If H is built one entry at a time as in
TIMES, H will be (h, k', h”,..., h*~D) when it is time to evaluate #¥. Thus DIV
is defined as follows.

VHe€¢UDIVV ;k
[11] H ¢« ULO01+VIO]
[2] -(order=0)/0
[31 keO
[4]1 Loop: ke¢k+1
[51 H ¢« H, (ULk] - ((H,0) BDOT (k+1)1TV)) + VIO]
[6]1 -(k<order)/Loop
[71 v

We test DIV on f(x)=1+x.

vV FDF[2]
[2] F ¢« (C 1) DIV X
[31 Vv

FDF 10

0.1 70.01 2E™3 "6E"4 2.4E74

Next, suppose that h(x)=e“*, We seek to define the EXP operator so that
H=EXPU, or (h, W', h",...,h™)=EXP(u, u, u”,...,u™). Thinking recursively,
we observe that h'(x) = h(x)u’(x). Then Leibniz’s rule yields h” =
(h, K)BDOT (u’, u”) and, in general,

RO = (h, k,..., K~ D)BDOT (v, u”,..., u®).

Thus we arrive at the following definition of EXP. (Observe that 1| U returns the
vector (u', u”,...,ut™).)

V H ¢« EXP U ;k;UPRIME
[1] H ¢ *ULO0]
[2] -=(order=0)/0
[31 UPRIME ¢ 1lU
[41 keO
[5] Loop: kek+1
[6] H ¢ H, H BDOT kTUPRIME
[7]1 =(k<order)/Loop
(81 v

Whereas the definition of EXP used BDOT (and iteration) directly, the LN
operator will use DIV. Suppose that A(x)=In(u(x)). Then A’(x)=u'(x) + u(x).
Assuming that U is known, the vector UPRIME (1| U, as in the EXP program)
corresponding to u’(x) is also known (up to order — 1 derivatives of u’). Therefore,
we may evaluate the vector corresponding to 4’(x) by calling the DIV operator, as is
done in the next program. (The APL function "k | U drops the last & elements of
U; thus (1) U returns U= (u, o', u”,...,ut" D))

246

VH ¢ INU
[1] H € #UILO]
[2]1 -(order=0)/0
[31 order ¢ order-1
[4] H ¢ H, (1lU) DIV ("1lU)
[5]1 order ¢ order+l
[6]1] V

As we shall see, most other functions or their derivatives (as in LN) can be given
in terms of previously defined operations. The last real challenge of typical calculus
functions is SIN and COS.

Suppose that h(x) = sin(u(x)). Let g(x)=cos(u(x)). Then A'(x)=g(x)u'(x)
and g'(x)= —h(x)u'(x). Using Leibniz’s rule, h” = (g, g’)BDOT (v, u”) and
g"” = —(h,) BDOT (', u”). In general,

h=(g,g,...,g% V)BDOT (¢, u",...,u®) and
g®=—(n,n,...,h*"DYBDOT (v, u",...,u®).

This jointly recursive definition can be used to generate the vectors H and G
simultaneously. The vectors H and G will be respectively named SINU and COSU
in the following APL program. Rather than include this entire program in two
functions SIN and COS, we define one function SINCOS which adds (or replaces)
the global variables SINU and COSU to the workspace library of variables. (There
is no provision in APL for output parameters except for one function value.) The
functions SIN, COS, TAN, and COT may all call SINCOS and return the appropri-
ate value.

vV SINCOS U ;Kk;NEWSIN;UPRIME
[1]1] n The results are returned in the global
variables SINU and COSU
[2] SINU ¢« 10ULO0]
[31 COSU « 20UIL0]
[4] -(order=0)/0
[51 UPRIME ¢« 11U
[6]1 keO
[7]1 Loop: kek+1
[8]1 NEWSIN ¢ SINU, COSU BDOT kTUPRIME
[9]1 COSU ¢« COSU, -(SINU BDOT kTUPRIME)
[10] SINU ¢« NEWSIN
[11]1 »(k<order)/Loop
[121 v

VH € SINU
[1] SINCOS U
[2] H ¢ SINU
[31 v
VH € COS U
[1] SINCOS U
[2] H ¢ cosSU
[31 V¥
VH e« TAN U
[11] SINCOS U
[2] H € SINU DIV COSU
[31 v
VH € COT U
[1]1] SINCOS U
[2] H ¢ COSU DIV SINU
[31 v

247

For convenience, we add RECIP, SEC, and CSC.

V H ¢« RECIP U
[1] He€¢ (C 1) DIV U
(21 v

VHe SECU
'[11] H € RECIP COS U
[21 v

VHe¢ CSCU
[1] H ¢ RECIP SIN U
[21 v

ARCTAN and ARCSIN are like LN in that their derivatives are given in terms
of previously defined operations. (The variable U in the programs below is a value
parameter; that is, changes to U within the program do not affect variables (used as
actual arguments) outside the program.)

V H ¢ ARCTAN U ;UPRIME
[11] H € ~30UL0]
[2] -(order=0)/0
[31 UPRIME ¢ 1lU
[4] U ¢ ~1lU
[51 order ¢ order-1
[61] H ¢ H, UPRIME DIV ((C 1) + U TIMES U)
[7] order ¢ order+l
[81 v

V H ¢ ARCSIN U ;UPRIME
[1] H ¢ ~10oUlO0]
[2] =(order=0)/0
[31 UPRIME ¢ 11U
[4] U ¢ ~1lU
[5]1 order ¢ order-1
[61 H ¢ H, UPRIME DIV SQRT ((C 1) - U TIMES U)
[7]1 order ¢ order+l
[81 vV

The vector operator SQRT has not yet been defined, and it is a fitting finale.
Suppose that h(x) =\/u(x). Observe that A'(x)= u'(x) + (2h(x)). Thus
2h(x)h'(x) =u'(x). By Leibniz’s rule,

u® =2% (h, i',..., h*"D)BDOT (', h",..., h®).

We may find a recursive formula giving 4 in terms of one BDOT operation. The
details are left to the reader.

Almost all functions commonly used, such as hyperbolic functions, could be
defined in terms of the preceding operations, as were RECIP, SEC, and CSC. One
could define U POWER r to be EXP(r X LN(U)). However, in many special cases it
is more efficient, less restrictive, and more accurate to use repeated TIMES, the
RECIP function, or SQRT. (It is difficult to directly implement a general real power
function.) POWER is left undefined, as in the language Pascal, so that the user must
choose the expression appropriate to the application.

248

We may now enter any elementary function f(x) in FDF, any a, and any order
and then evaluate f(a), f'(a),..., f©%9(a). We are limited only by computer
representation (roundoff) error and computation time. (The limitation of TRIAN-
GLE can be raised.) Let’s try the example from the introduction.

V FDFIL[2]
[2] F ¢ (X TIMES CSC X) DIV LN(ARCTANC(CEXP X))
[31 v

order ¢ 10

FDF 1

6.018945428 75.953764719 27.62437643 T139.6701361
1021.683358 79127.489017 98448.35779 "1236873.597
17767053.52 7287085222.7 5154373690

The above calculation took less than 4 seconds on an IBM PS/2 Model 50
without a math coprocessor. Finding some other method to check the above answers
is a real challenge. Symbolic differentiation using the software “CALCULUS” [2]
verified f(1) and the first three derivatives. However, the third derivative was 90
lines long, with 36 characters (no spaces) in each line. Producing the third derivative
from the second took over 15 seconds. There was not enough room for the fourth
derivative. Numerical approximations of the higher derivatives verified the first few
digits of each entry but that was all the accuracy obtained by approximation.
Automatic differentiation appears more reliable than any other available method.

Our implementation is very accurate through about 20 derivatives, but there are
limitations. Even though our method is theoretically exact, we are dealing with the
finite number system of a computer. For high values of order, the massive number
of calculations (using the huge numbers in TRIANGLE) may result in significant
roundoff error. An abrupt loss of significance has been observed in some examples
around the 25th derivative.

One application of FDF is to the calculation of Taylor polynomial coefficients
for f(x). Indeed, this problem is essentially equivalent to calculating derivatives. In
[6] these Taylor coefficients are recursively generated and derivatives are found from
the coefficients (cf. [4]).

3. Conclusion

Automatic differentiation is interesting mathematics and, when implemented in
APL, it is a powerful, accurate, clear, and practical tool for finding the numerical
value of derivatives at a point. For first derivatives, automatic differentiation is
simply an implementation of the set of differentiation rules at a point as presented
in most calculus books. The idea of calculating in a system of vectors (originating
implicitly in [10]) is the unusual twist that distinguishes the present method.
Cumbersome computer code in BASIC and FORTRAN may have been a deterrent
to the awareness of automatic differentiation as an alternative to the old established
methods. In contrast, the APL code of Section 1 is very simple. Mathematical
symbolism is imitated in APL by the large and expandable library of operators and
functions and the vector orientation of the language. These features fit automatic
differentiation very well. Indeed, for higher-order derivatives, the symbolism of APL
aids in the mathematical derivations. Specifically, the encapsulation of Leibniz’s rule
as the dyadic operator BDOT leads to recursive formulas for the kth derivatives of
other mathematical operations and functions. These recursive formulas are interest-
ing from a purely mathematical viewpoint. From a practical viewpoint, the method

249

is unmatched in its ability to calculate the value of high-order derivatives at a point.
Were it not for the evident lack of clear programming structures in APL (and thus
its unpopularity), our implementation would be ideal.

Concerning the language APL, we observe that APL is heavily dependent on the
use of an interpreter as opposed to a compiler. We’ve seen the usefulness of the
immediate execution mode in a workspace of user-defined functions and global
variables. Even the lack of clear programming structures encourages good use of the
interpreter. Loops are very inefficient in interpreted languages since each line must
be retranslated into machine code on each pass through the loop. In APL, a /ine of
code is powerful enough to perform tasks usually relegated to a loop (or even nested
loops) in other languages. The program BDOT is a typical example of what can be
accomplished without any loops or conditional branches. Another characteristic of
an interpreter is that it requires less advance notice of data types, array dimensions,
and function calls. This ability is thoroughly exploited in APL, and simplifies this
application where we constantly deal with vectors of different lengths.

There is further work to be done in automatic differentiation. Given the ease with
which the methods for differentiating a function of one variable generalize to
multivariate functions, the next obvious step is to design an APL workspace that
calculates all partial derivatives up to any given order for any elementary multivari-
ate function. For a fixed order, differentiation rules could easily be directly pro-
grammed. However, arbitrary order would require recursion formulas as in Section
2. Considering the ability of APL to handle arrays of arbitrary dimensions as easily
as vectors, this task is within reach, and the author is preparing such a sequel.
Another area that needs to be pursued is the theoretical and empirical analysis of
the numerical limitations of this method as indicated at the end of Section 2.

Appendix: Selected APL Symbols

Table 3. Primitive scalar functions.

XxY multiplication the circle functions
X+Y division 10Y sin(Y)
X*Y X to the power of Y 20Y cos(Y)
*Y e to the power of Y 30Y tan(Y)
®Y natural logarithm of Y T10Y arcsin(Y)
XY binomial coefficient, Y choose X “30Y arctan(Y)

A scalar function operates on each element of a vector argument, as in scalar
multiplication. If a dyadic scalar function has two vector arguments of equal length,
the operation is applied to corresponding elements, for example 5 32X 491 =20
27 2.

Table 4. Vector manipulation functions.

eY length of Y, returns the number of elements in vector Y

+/Y sum across Y, returns the sum of all elements in vector Y

X, Y catenate vectors X and Y

K1Y take the first k elements of Y, returns this k element vector
K1Y drop the first k elements of Y, returns the remaining vector
&Y reverse Y, returns the elements of Y in reverse order (a vector)
k/x replicate x, returns a vector consisting of k copies of x

250

REFERENCES

1.

H. Kagiwada, R. Kalaba, N. Rasakhoo, and K. Spingarn, Numerical Derivatives and Nonlinear
Analysis, Plenum, New York-London, 1986.
J. G. Kemeny, CALCULUS for the IBM PC, True BASIC Inc., Hanover, NH, 1985.
E. J. LeCuyer Jr., Teaching mathematics using APL, College Mathematics Journal 17 (1986)
344-358.
R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics,
2, SIAM, Philadelphia, 1979, 24-31.
L. B. Rall, The arithmetic of differentiation, Mathematics Magazine 59 (1986) 275-282.
__, Automatic differentiation: Techniques and applications, Lecture Notes in Computer Science
120, Springer-Verlag, Berlin-Heidelberg-New York, 1981.

, Differentiation in Pascal-SC: Type GRADIENT, ACM Trans. Math. Software 10 (1984)
161-184.
M. Rubinstein and S. D. Lewis, APL: A language for modern times, PC: The Independent Guide to
IBM Personal Computers (PC Magazine) 3 (April 3, 1984).
J. R. Turner, Pocket APL Reference Guide, STSC Inc., Rockville, Maryland, 1985.
R. E. Wengert, A simple automatic derivative evaluation program, Communications ACM 7 (1964)
463-464.
A. S. Wexler, Automatic evaluation of derivatives, Applied Mathematics & Computation 24 (1987)
19-46.

Classroom Computer Capsules

Authors are invited to submit
articles for a new section,
Classroom Computer Capsules,
which will feature illuminating
examples of using the computer
to enhance teaching. These
short articles will demonstrate
the use of readily available
computing resources to present
or elucidate familiar topics in
ways that can have an immediate
and beneficial effect in the
classroom.

251

