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While investigating an armed robbery, officers Jones and Smith pursued independent lines of
inquiry. Both obtained different testimony placing the suspect close to the scene of the crime at
about the time it took place. Upon comparing notes, however, they had to drop charges, since
the pooled testimony conclusively proved that the suspect could not possibly have been at the
scene of the crime when it was committed. Adapted from Tribe [9, p. 1367]

Two events, A and B, in a probability space (S, P) are customarily classified as
being either independent [i.e., P(4 N B)= P(A)P(B), or P(B|A)= P(B)] or
dependent [i.e., P(A N B)# P(A)P(B), or P(B|A)+# P(B)]. The relationship of
dependence, however, lends itself very naturally to a further classification, namely
P(B|A)> P(B) versus P(B|A) < P(B) [or P(A N B)> P(A)P(B) versus P(4 N
B) < P(A)P(B)]. The former might be called “positive relevance” and the latter
“negative relevance;” in this light, independence might also be called “irrelevance.”

If the distinction between dependence and independence is deemed important,
certainly the distinction between positive and negative relevance is even more so.
Evidence tells us little if we know that it is relevant to some hypothesis, but do not
know the direction in which it affects the probability. Nonetheless, the distinction
between positive and negative relevance is so rarely encountered, that it even lacks
an accepted label or term.

In the present paper we first suggest a threefold classification of dependence
relationships between pairs of events, then point out some misconceptions concern-
ing these relationships, and, lastly, speculate as to the reasons that it is not
customarily employed.
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Analyzing Dependence Relationships. We begin by introducing some nota-
tions and definitions. Consider only strictly uncertain events X, i.e., 0 < P(X) < 1.

A7Bif P(B|A)> P(B); A\Bif P(B|A)< P(B); ALBif P(B|4)= P(B).

As shown in Table 1, this threefold classification describes the different ways in
which knowledge of the occurrence of A can affect the probability of B. It can
increase it (7); it can lower it (\); it can leave it unchanged (L) (note that these
relationships are not set-theoretical ones, but rather are induced by the probability
function P). Surprisingly, perhaps, it turns out that these relationships do not
behave in a systematic or “orderly” fashion, and fail to fulfill several natural
expectations.

Table 1.
Threefold Classification of Probabilistic Dependence Relationships.

Formal relationship P(B|A)> P(B) P(B|A) < P(B) P(B|A)= P(B)
Notation A7B ANB ALB
Name of relationship A supports B A weakens B B is independent of 4

Classification of dependence | Positive dependence | Negative dependence | Independence

Theorem 1. The dependence relationships between events are symmetrical, i.e.,
A7 B if and only if B/ A
ANB if and only if BNA
ALB ifandonly if B1A.

The proof follows directly from the definitions, and we skip it here.

Theorem 1 allows us to use the directional name of the relationship (e.g., “A4
supports B”’) and the nondirectional classification (“4 and B are positively depen-
dent”) interchangeably. This result should not be surprising, unless one tends to
confuse conditionality with causality [5], [10]. In that case it may seem (erroneously)
that A 7B when A is a cause of B, but that since B may not be a cause of A4, the
converse, B/ A4, need not hold (see Example 1 in the Appendix).

More intriguing is the following theorem:

Theorem 2. The relationships 7, N, and L are not transitive.

A formal proof for independence and for negative dependence can be derived by
a reductio ad absurdum argument from the symmetry and the nonreflexivity of
these relationships. Since 4 N B implies B\ A (and A L B implies B L A), transitivity
would result in the absurdity 4\A4 (and A L 4). The same argument cannot be
applied to 7, since A does support itself.

It is not surprising that \, is not transitive. One might expect it, in fact, to be
intransitive, since, in a manner of speaking, a negation of a negation is tantamount
to an affirmation (see Example 2 in the Appendix). For analogous reasons, one
might expect /7 to be transitive. That it is not can, however, be demonstrated by a
Venn diagram, as in Figure 1, which depicts three events such that 4 supports B, B
supports C, but A does not support C. The graphic counterexample incorporated
into Figure 1 might be even more illuminating if it were given a concrete interpreta-
tion as in the following example:
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Let 4, B, and C denote the following events, defined in the adult male
population: A—having a full head of white hair; B—being over fifty years old;
C—being completely bald. Then A 7B, since there are proportionately more men
over fifty among those with white hair than in the adult male population at large;
B A7C, since there are proportionately more bald men in the over-fifty age bracket
than in the adult male population at large; but clearly 4\ C, since men with full
heads of white hair are not bald.

Figure 1.
. A Venn diagram showing 4 #B, BAC & A\ C.

It is possible to relate properties of 2to properties of .

Theorem 3. A7 B if and only if ANB.

From this theorem, we can derive all others relating 7 to \, such as 47 B if and
only if ANB, A7 B if and only if 4 7B, etc. Since these theorems enable us to form
analogous theorems for ” and for i, we shall address ourselves below to 7 only.

The following is a list detailing properties that do not hold with respect to 7,
although one might expect them to.

Theorem4. A7C,B”’CsAN B2C.
Theorem 5. A C,B7CsA4\U B7C.
Theorem 6. C/4,C/ B3 C/4A N B.

Theorem7. C74,C7B3C/ A U B.

Note that the same theorems apply to negative dependence and to independence as
well.!

IThis list is, of course, redundant, since Theorem 6 follows from 4, and 7 follows from 5 by symmetry.
Less obvious is that 5 follows from 4 (and 7 from 6) by successive applications of a corollary of Theorem
3 (namely, 47 B if and only if 47 B), in conjunction with DeMorgan’s laws (i.e., the theorems relating
N to U via complementation, e.g., 4 N B= A4 U B).
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False Expectations Concerning Dependence Relationships. Theorems 4
through 7 have some startling implications for inductive inference. For example,
Theorem 4 means that even though two items of evidence may individually support
some hypothesis C, their conjunction might not; in fact, it might even weaken it!
Such vagaries of evidential relevance, neglected by mathematicians, have been
studied primarily by philosophers (e.g., [3], [6], [8]).

The fact that philosophers have seen fit to warn against possible acceptance of
these properties suggests that there is an intuitive tendency to do so. The readers
may check their own intuitions to verify their appeal. Some informal results, which
we gathered during a classroom survey, indicate that college students tend to believe
that the properties do hold.? One subject, in explaining why he believed that A/ C
and B7C implies A N B2C, captured nicely what we believe to be a prevalent
intuition, and we quote: “If 4 supports C and B supports C, then their conjunction
does so all the more!”

Despite endorsing these relationships in the abstract, when subjects were given
specific, concrete examples of the premises of Theorems 4 through 7, they readily
drew the correct inference from the data even when it ran contrary to the
conclusion expected in the abstract. This makes us feel that the best way to treat
these relationships in the classroom is through examples (see Examples 3 and 4 in
the Appendix).

One such example, due to Carnap [3, p. 382], appears in Table 2. Table 2
concerns ten people who are simultaneously distributed according to three dichoto-
mous variables: Sex (M-male, F-female); Age (Y-young, O-old); Marital status
(S-single, W-wed). A person is now drawn at random. It is easy to verify, for
example, that SAF and O F while S U O\ F, in support of Theorem 5. The reader
may enjoy the exercise of finding counterexamples to the other properties in Table 2
as well.

Table 2.
Distribution of Ten People by Age, Sex and Marital Status
(after Carnap [3]).

S w
(Single) (Wed)
Y
(Young) M,M M,F, F
5 -
(O1d) F,F,F MM

A less technical example, closer to the ways one might encounter 7 in real-life
reasoning, appears at the opening of this paper [9]. We now supply the details that
resolve the apparent puzzle posed by this example.

The armed robbery, known to have taken at least fifteen minutes, was committed
between 3:00 a.m. and 3:30 a.m. Jones learned E,—that the suspect was seen in a
car close to the scene of the crime at 3:10 a.m. Since the evidence places the suspect

2 A more detailed description of our little experiment can be obtained by writing to the authors.
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near the scene of the crime at the right time (“opportunity”), he reassessed his initial
probability for G—the event that the suspect was involved in the robbery, P(G| E,)
> P(G), i.e., E,7G. Smith learned that the suspect was seen in a bar close to the
scene of the crime at 3:20 a.m. Following Jones’ reasoning, he concluded that
E,7G. Upon comparing notes, they realized that the conjunction of their investiga-
tive efforts essentially supplies the suspect with an alibi. Thus the initial probability
of G drops, ie., E, N E,\G.

The way the occurrence of one event affects the probability of another event is a
very important relationship for probabilistic inference. The disappointing irregular-
ity of this relationship may help to explain why it has been largely ignored by
mathematicians, and why standard texts in probability theory fail to define or
discuss it.> There is just very little that can be systematically said about it.
Nonintuitive theorems such as listed above are among the obstacles confronting
philosophers who were interested in building a “calculus of induction,” confirma-
tion or relevance [3], [6].

Our impressions suggest that the student "who has not explicitly studied the
properties of dependence relationships will supply his or her own, often erroneous,
intuitions regarding their behavior. In particular, without being cautioned, one may
automatically assume that positive dependence is transitive and that it satisfies the
properties claimed by Theorems 4-7 not to hold. These implicit assumptions are not
so deeply entrenched, however, as to be impossible to extinguish. We believe that a
discussion, accompanied by examples, will convince most students of their falla-
ciousness. This effort is worthwhile in spite of the fact that counterexamples to the
false intuitions may be ecologically rare in “real life” or in scientific work. Usually,
converging evidence is cumulative, and conjunctions support a tested hypothesis
beyond the impact of each individual piece of evidence. Studying the characteristics
of dependence relationships seems important not so much for its applied value, but
rather for its theoretical importance and for its significance for the methodology of
“convergent operationalism” [2 p. 129].

Probabilistic Versus Deductive Inference. Probabilistic support has often been
looked upon as a degraded kind of deductive proof. That is to say, enhancing the
probability of a hypothesis is regarded as a step toward proving it. This notion
might well be the source of people’s erroneous expectations. They may merely be
attributing to 7 the properties of the logical relationship of implication, denoted —.
Note that substituting - for /7 necessitates replacing =% by = in Theorems 4-7,
since all four properties are true for logical implication. However, evidential support
is not just a weak form of logical proof, and probabilistic inference is not a
degraded form of deductive inference. The two are different systems* with different
rules [1]. This, perhaps, is the most important lesson from our discussion. Table 3
classifies some simple rules of probabilistic and deductive inference with respect to
their truth or falsity. The table should be read as follows: By substituting ~ for R,
we obtain a statement concerning positive dependence. By substituting — for R, we
obtain a statement concerning logical implication. The truth value of these state-

3Nevertheless, a problem concerning \ can be found in Holm [7, p. 348].

*N and U are used for both systems because their use in set theory is fully analogous to conjunction
and disjunction in logic. In fact, historically one of the earliest systems of notation used N and U for
conjunction and disjunction, respectively. In recent times, A and V have been more commonly used for
conjunction and disjunction.
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Table 3.
Cross Classification of Rules Governing Logical Implication and Probabilistic Support?.

Logical Implication (L)
A—->B

True False

ARA ARB=> BRA
o~ True - .
Z ARB= BRA ARB= ARB
=
° 5 ARB & BRC=> ARC
& 4rB False ARC & BRC=(A N B)RC ARB:”: P’e“edlfs B
Ao ARC & BRC=(A4 U B)RC emporatly

The relationship R should be replaced, in turn, by both = and .~ and the truth value of the

resultant proposition verified.
9Probabilistic support ( /) can be replaced by probabilistic weakening (\) everywhere, except for
ARA, since \ is nonreflexive.

ments is then determined by their row or column classification, respectively. For
instance, in the first line of the upper right cell of the table, we read ARB = BRA.
This means that for probabilistic support A7 B=> B7A is true (by row), while for
logical implication 4 - B=> B— A is false (by column).

Note that the cell “False-False” is devoid of mathematical characteristics. The
“temporally precedes” relationship was included for didactic reasons because of its
psychological significance. We wished to emphasize that neither probabilistic sup-
port nor logical implication entails a cause-and-effect relationship. 4 may imply or
support B even when A is the effect and B is the cause (as when 4 means “rain”
and B means “clouds”), or when both are caused by C.

In the cell “False(P)-True(L)” we find rules that are true only for logical
inference, and in the “True(P)-False(L)” cell we find rules that are true only for
probabilistic inference. We have dwelt in this paper on people’s inclination to
expect the rules true for logical implication to hold for probabilistic inference. We
have not considered the other side of the same coin, i.e., the fact that sometimes the
dual generalization takes place. In other words, sometimes rules that apply to
probabilistic support are (falsely) considered true with respect to logical implication.
Thus, in the cell “True(P)-False(L)” we find two rules that students of Introductory
Logic often find unintuitive. In fact, since the logical relationship of implication and
fallacies therefrom have been extensively studied, the misconceptions in this cell
even have standard names. They are called, respectively, “the Fallacy of Affirming
the Consequent” and “the Fallacy of Denying the Antecedent” [4, p. 295]. These
are not fallacies with respect to 7. Thus, the misconceptions typical for both cells in
the diagonal true/false indicate that people tend to ascribe the same properties to
logical implications and to probabilistic support, as if they have a shared pool of
intuitions about these two methods of inference.

An explicit discussion of dependence relationships could both highlight the
distinction between these two modes of thought and alert the student to the pitfalls
of generalizing from one system to the other.
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Appendix

Example 1. An urn contains two white balls and two black balls. We shake the urn
thoroughly and blindly draw out two balls, one after the other, without replacement.

Let W, denote the event “the first ball drawn is white,” and let B, denote: “the
second ball drawn is black.”

Clearly W7 B,, since P(B,) =1 whereas P(B,| W) = 2. However, when asked
about P(W,| B,), students often answer 1, claiming that subsequent events cannot
affect the outcomes of previous ones [5). This causal reasoning erroneously implies
that W,/ B, but B, L W,. Actually, however, the information about the subsequent
event affects the uncertainty with regard to the previous event. Since the self-same
black ball cannot be drawn twice P(W, | B,) also equals 2, i.e., B, /W,.

Example 2. The somewhat vague expression “a negation of a negation is tanta-
mount to an affirmation” can be given a concise explication, as, for instance,
below: Suppose three witnesses, X, Y, and Z, are giving the following testimonies:

X: “Y is untrustworthy.”
Y: “Z is untrustworthy.”
Z: “The butler did it.”

Let A, B, and C be the following events:

A: X is telling the truth, i.e., Y is untrustworthy.
B: Y is telling the truth, i.e., Z is untrustworthy.
C: Z is telling the truth, i.e., the butler did it.

Now, 4\ B since
P(B|A) = P(Z is untrustworthy | Y is untrustworthy)

< P(Z is untrustworthy) = P(B).

‘Also B\ C since
P(C| B) = P(the butler did it| Z is untrustworthy)

< P(the butler did it) = P(C).

However, AXC, since indirectly X’s testimony (which is assumed to be true)
supports Z’s trustworthiness (by discrediting Y’s testimony regarding Z’s untrust-
worthiness), i.e.,

P(C|A) = P(the butler did it| Y is untrustworthy) > P(the butler did it) = P(C).

Example 3. In what follows, 4 L C, BL C, but A N B ¥ C (see Theorem 4).
We independently toss two dice, one white and one black. Consider the following
events:

A—an even outcome on the white die.
B—an even outcome on the black die.
C—an even sum.
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These three events satisfy: P(C)=1/2; P(C|4)=P(C|B)=1/2;1ie,ALC

and BLC.

However, P[C|(4 N B)]=1> P(C),ie,A N B/C.

Example 4. Consider the following anecdote (related by Gardner [6, p. 121]):

A research project shows that 3/5 of a group of patients taking a certain pill are immune
to colds for five years, compared with only 2/5 in the control group who were given a
placebo. A second project shows that 3/5 of a group receiving the pill were immune to
tooth cavities for five years, compared with 2/5 who got the placebo. The combined
statistics could show that twice as many among those who got the placebo are free for five
years from both colds and cavities compared with those who got the pill.

Let us denote: _
C—immune to colds (C—not immune to colds).
T—immune to tooth cavities (7—not immune to tooth cavities).

Suppose an experiment involved 10 patients, of whom 5 received the pill and 5

received the placebo. The following list of outcomes conforms to all the experimen-
tal results described above:

Pill Placebo
cnrT cNnT
cnNnT cNT
cNnT cNT
cnrT cnT
cnT cnNnT

Note that Pill”C and Pill 7T, while PillNC N T (see Theorem 6).
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