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1. Introduction. If ten winning lottery tickets paid as follows
{85, $50, $50, $50, $50, $55, $55, $60, $75, $100},

how much would you be willing to pay for the next assumed winning ticket? Would
you pay the mean (i.e., average) amount p = $55 won? Or, would you disregard the
extreme winning payoffs and pay the median (i.e., middlemost) amount p* = $52.50
won? Perhaps you would be willing to pay the modal (i.e., most likely) amount
o = $50 won. One thing is clear: These representative-type averages, called mea-
sures of central tendency, seem rather close together when compared with the range
(R = $100 — $5 = $95) in amounts won.

$52.50
$5 $50 $55 $100

Apparently the range is too large a measure of dispersion for effectively compar-
ing p, p*, and p,. But what about the other common measure of dispersion, the
standard deviation ¢? Since o is based on deviations from the mean, none of which
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are larger than the range, we always have ¢ < R/ B for some constant B > 0. On
the other hand, R/A < o for a large enough constant 4 >0. Thus, R/4 < ¢
< R/ B and it seems only natural to ask if we can use o to effectively thread p, u*,
ko> and R together. In the previous set of lottery winnings, for example,

10 2
iz1(x; — 55)
o= \/————————10 ~22.47,
and we see that

R R
<o<% and |p—p*,[po— p¥ | p—pl <o

V2(10) 2

The preceding inequalities hint at several beautiful relationships, among the basic
measures of central tendency and dispersion, that are not mentioned in most
statistics texts. Our objective is to call attention to these important, yet frequently
overlooked, relationships. Accordingly, we offer some elementary derivations and
extensions of the following:

The range R, standard deviation o, mean p, median p*, and mode p, (having frequency

m) of a set of real numbers {x, < x, < - -+ < x,}satisfy
k3
R ococttd o I
‘/2_,1 n
| — p* <o, (In)
|u0—u[<\/—:?-o, and |u0—y*|<%-o. (1II)

(The symbol [a] denotes the greatest-integer less than or equal to a.)

The above inequalities are particularly noteworthy since they provide students
with simple checks as to whether their computations of these measures are of the
right order of magnitude. Note, for example, that [n*/4] = n*/4 for n even, and
[n?/4] = (n* — 1)/4 for n odd. Thus, R/\2n < 6 < R/2 for all n.

Finally, these inequalities have an aesthetic appeal—most notably, the attractive
manner in which they combine and interlace such important statistical notions.
Other related results will be given—as, for example, a simple proof that

n n

Dlx— p* <X |x;— & for every real number §. (IV)
i=1 i=1
In this spirit, we shall also show that:
If {x, < x, < - -+ < Xx,)} is partitioned into nonempty sets A = {x, < - -+ < x,} and
B={x,,, < :-- < x,} with respective means X, and Xg, then
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Rl (X, <x,<x,,<X<puto-

V)

n—r '

A simple application of (V) leads to another interesting inequality that extends

(.

2. Range Bounds for the Standard Deviation. The key ingredient in this
article is the Cauchy—-Schwarz inequality

(2)(2)(2) 0

for real numbers {a;,b;,:1 < i< n}. A particularly useful form of (1) can be
obtained by taking b, = x;, — p and by noting that 37_, (x; — u)* = no?. Substituting
and squaring in (1), we get

n 2 n
[ Sac-n} < Sat) @
i=1 i=1

If ;=1 for x; > p and a; = —1 for x; < y, then (2) reduces to

> |x;— u| < ne. 3)

i=1

The first inequality in (I) follows from (2). Specifically,

R=(x,— u)+(p—x) <2 Yno .

To establish the second inequality in (I), define the real-valued (standard deviation)
function

o: E"—R

}:](t—t)

:l»—ﬂ

t={(t,t,.. .,t,-,)*”>0(t)=

where 7= (1/n)S"_,t,. We abbreviate o(x) for our original set x = {x, < x,

< -+ < x,} by 6. Using the definition of ¢ and (1), one can easily verify that
o(Au) = |A|jo(u) and o(u*v) < a(u)+ o(v) 4
for all scalars A € R and vectors u = (u;,u,, . . ., 4,) and v = (v,0;, . . . , v,) in E".
For any constant vector a = (a,a, . .., a) in E", one also has
6(a)=0 and o(u=xa)=o(u). 3)
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Now let y = (py, 3, - - - » ), Where y; = (1/R) - (x; — x;) fori = 1,2, ..., n. Then
O=yi<y< << y=1

and

o=0(y)-R (6)
follows from (4) and (5). Our focus is on o(y). Let ¢,(1 < i < n— 1) denote the
vector (0,0, ...,0,1,1, , 1) having zeros for the first i coordmates and ones for

the remaining n—i coordinates. Then
n—1
Y= 21 (Viv1 = 2i)e
and, since 372{ (1 — ) =1,

o(y) < max od(e) ©)

I<i<n-—1

follows from (4). The coordinates of ¢; have mean (n — i)/n, and so

o(ei)=\/%{i(”T_i)2+(n—i)(£)2} =ﬂ1—;i

Therefore, we can obtain max,_;.,_,06(e;}) by maximizing the discrete function
=xs

F(i)y=(n—i)i
fori=1,2,...,n— 1. A few simple calculations reveal that
2
14— . when # is even
) max 1F(z) 5
Sisno n 4_1 , when #n is odd

Therefore,

- v[n*/4] 2/4
| max_o(e) =g -y, max_ F() = ®)

Substitution of (8) into (7), and then (7) into (6), yields the second inequality in ().

Remark: Sher, using (2), recently showed in [6] that 0 < R/2. Our second inequal-
ity in (I) 1s sharper than o < R/2 since [n2 /4]=n?/4 when n is even, and
[n?/4] = (n®> — 1)/4 < n?/4 when n is odd. It is interesting to note that R/2 is the

,/ 2
best approximate upper bound for o since / \/ —(1/n%

creases to % as n becomes large.
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The inequalities in (I) do more than provide range bounds for o; they also
provide information on how dispersed the scores {x; < x,< - < x,} are. A
good way to see this is to consider the following form of Tchebycheff’s Theorem:

For any value £ > 0, there are at most M = n/{? terms satisfying |x; — p| > £o.

(This can also be stated and verified by replacing “ > and “at most” by “>” and
“less than.”) To verify this, assume that M terms satisfy |x; — p| > £o. Then

ME> <Y (x;— p)*< > (%, — p)*=no® and M<§.
M j=1

The following example illustrates how (I) refines Tchebycheff’s Theorem.

Example 1. Assume that n > 2 and let £ = 1. Then there are at most n terms (and
possibly none!) that satisfy |x; — p| > 0. According to (I), however, at least one of
the data’s endpoints meets this condition. (Otherwise, R = |x, — p| + |x, — p| < 20
and R/2 < o contradicts ¢ < R/2.) Thus, at least one endpoint is not within ¢
distance of p.

How Many Standard Deviations Apart are the Mean, Median, and Modg?

[easyres of Contral Temdeney
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If we take ¢ =yn, then there are no terms satisfying |x; — p| >yn o. Therefore,
Tchebycheff’s Theorem shows that R =|x, — u| + |x, — u| < 2yn ¢ and R/(2Vn)
< o. (This also follows since no> = 3"_, (x;, — u)* implies that |x; — u| <yn o for
each i.) But R/(y2n) < o from (I), and this lower bound is better than R /(2yn ) by
a factor of V2.

Finally, consider £ = M . Then at most one term (necessarily x, or x,,) satisfies
|x; — p >\/r_172_ o. This is the same as stating that at least » — 1 terms (one of which
must be x, or x,) satisfy |x; — y| <\/r—z—/—2_ o. But all this follows directly from (I) as
well, since, |x; — p| >\/l;72— ¢ and |x, — p >\/r—1ﬁ ¢ together yield the contradiction
that R >\2n ¢ and 0 < R/\/ﬂ

3. Here we shall again use (3) in order to establish that

lp—p* <o, 0

|Ho_ﬂ|<\/':—1 -0, and |P«o_l"*|<%'° Ly

for the ordered set of real numbers {x; < x, < - -+ < x,}. But first, for the sake of
completeness, let us formally define the median. If # {x; < {} denotes the number
of terms in {x, < x,< --- < x,} that are less than the real number { (and
#{x; < ) is defined similarly), then the median of {x; < x, < --- < x,} is any
real value p* that satisfies

#x <pr) << H{x<p)

Example 2. 1f n is even, any value p* € [x, /5, X(,, /5 +.1] can be taken as the median
(although it is customary to take p* as the midpoint 3(x,/, + X(,/2+1) Of this
interval). If # is odd, then p* is uniquely defined as x .1y /-

X2l w* 1% /2y +1 (n, even)

* A
Xy Xy X3 B™ = X(n+1y 2 Xp_2 X,y %, (n,0dd)

The preceding example provides a visual proof of a rather interesting fact.
Consider any real value ¢ (mark such a point on the line above), and observe that
foreachi=1,2,...,[(n+ 1)/2]:

|, = p*| + X, — 0¥ < |x; — &+ X, — €, )

with equality holding if and only if x; < £ < x,_,, . If we sum (9) over all the data,
there follows the important result that

n n
z |x;— p*| < 2 |x;— | for every real number §. av)
i=1 i=1
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It is a simple matter now to prove that | u — u*| < o. Indeed,

n
> |x— pl < no
i=1

by (3), and an application of (IV) yields

n

> x; — np*

i=

n

<LlSx-u<o
ni3

1
— ¥l =21 =
| = p* =~

S |-

e

Remark: Evidently R/V2n & |u — u*| for any set of data having p = u* and
R # 0. The other, perhaps enticing, conjecture that | u — u*| < R/y2n may or may
not be true. For instance, it is easily verified that | u — p*| < R/y2n for 1 < n < 4.
On the other hand, p — p* =2 £ 1/V10 = R/\2n for the set {0,0,0,1,1).

Our next point of interest concerns the mode of {x; < x, < - -+ < x,}. Suppose
that p, exists and has frequency m. The first inequality of
n n
Iuo—u|<\/; o and [po—p¥ <0 (IIT)

is clear since m|uy— p> < S"_,(x; — p)*> = no?; the second inequality in (III)

follows from (IV) and (3). Specifically, m| py — p*| < 37_|x; — p*| < 7o |x —
< ho.

Remark: 1t should be noted that | py— p*| < |pg— p| + |p — p*| < (A +yn/m)o,
and 1 +yn/m < n/mforn/m>@3+5)/2.

The inequalities in (IIT) provide the following observation: The mean appears to
be “more strongly attracted” to the mode than does the median.

4, Other Useful Inequalities. Suppose we partition the set {x; < x, < « -
< x,} into nonempty subsets

A={xl<x2<”.<xr} and B={xr+l<xr+2<“'<xn}

whose means are denoted X, and X, respectively. It may be surprising to observe

that
— 0 n / <Xx,<x.<x < X, < +0- L V
‘ll x ) r x r 1 x B x u n . ( )

We see that X, < x, < x,,; < Xz. The other two inequalities are easily obtained
from the Cauchy-Schwarz inequality. If we choose

o= 1—r/n, for 1<i<r
! —r/n, for r+l1<i<n]’

then

Sal=r(1-L) and 3 a(x—p)=rE - p
i=1
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Substituting these expressions into (2) and simplifying, we get
= 2_(hn—r
(%= w)<(2L) o (10)

Since

n
np= > x;=rx, + (n—rxg,

i=1

we can solve for X, — u. Substituting the right-hand side of

mnm (25

into (10), we obtain

(xs = my' < (2= ) o (11)

n—r

Thus, by taking square roots in (10) and (11), we get (V).

Remark: 1t is interesting to note that when n is even and r = n/2, both |X, — y|
< o and |Xgz — p| < o follow from (V). This indicates a rather heavy concentration
of values about p. (Think of the centers of mass, X, and X, being within o distance
of the total center of mass p.)

A simple application of (V) yields the following for r = 1,2, ..., [ ﬂ—;l—l ]:

n—r n—r
p <X, <X, S pto- — - (VD

The first inequality in (VI) has already been established in (V). Since r < (n + 1)/2,
we also have r<n—r+1 and x,<x,_,,;. Now let y,= —x,_,,, for each
i=1,2,..., n Then the first inequality in (VI) can be used to relate the mean p(y)
and the standard deviation a(y) of { y, < y, < -+ < y,} by

n—r

)=o) Y <o
But it is well known (or easily verified!) that u(y) = —p and a(y) = 0. And since
Y, = —X,_,., the above inequality can be rewritten as

Xp_,p1 S p+o- n:r .

The thrust of (V1) is that |£— p| < o-\(n—r)/r for every real value ¢ in the

interval [x,,x,_, ]
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Example 3. Consider the important case where £ = p*. Then (VI) yields a nice,
crisp proof of (II). To see this, take r=[(n + 1)/2). If n is even, r = n/2 and
n—r+1=(n/2)+ 1. Furthermore, (n — r)/r =1. Therefore, (Example 2) u*
€lx,,x,_,,] and |u — p*| < o follows from (VI). If n is odd, then r = (n + 1)/2
and (n—r)/r=(n—1)/(n+ 1). Therefore, p* = x, and it also follows from (VI)

that |p — p*| <y(n—1)/(n+1) -0 <o.

5. Probability Distributions. A random variable on a probability space (S, P) is
simply a real-valued mapping X on (S,P). Notationwise, P(X = x) denotes the
probability of the set X ~!(x) = {s € §: X(5s) = x).

P(X=x)=P{X~'(x)} = P(5,U Sy

In this section, we shall briefly consider random variables that take on a discrete
(i.e., finite or countably infinite) set of values X(S)={x, <x, < ---}. It is
standard, in this context, to let P(X = x;) be denoted p; for each natural number i.
A discrete random variable X has expected value

E(X)=zxi i (12)

and standard deviation

S(X)=\/2i{xi_E(X)}2Pi =\/Zixi2Pi_ {E(X)}2 ’ (13)

provided that the above sums are absolutely convergent. (Thus, E(X) and s(X)
always exist when X (S§) is finite.)

The mode of X is defined as any value p, € X(S) that has the absolute maximal
probability p,. (The mode does not exist when each member of X(S) = {x; < x,
< - -+ < Xx,} has the same probability since 1/n = max, ., p; is a relative, but
not absolute, maximal probability.)

The median of X is not always uniquely defined; it is any real value p* that
satisfies

Z pis

x < pu*

< Z Di- (14)

x; < u*

N
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Example 4. The set of seven numbers {0,1,1,1,2,2,3}, also written {(x;, f):
1 fi=T7y={O, 1),(1,3),(2,2),(3,1)}, may be v1ewed as a probability distribu-
tion (e pr=£/T): 1< i <4} ={(0,5),(1,3),(2:3). G, )}

pi= 171 3/1 2/1 1)1
2 3

o

(1<k<7)

xl j;
ot
ne
22
3T

In general, every finite set of real numbers {(x;, f ): 2 —1 fi= N} can be viewed
as a probability distribution {(x;, p;=f,/N):1<i < n}. This set and its corre-
sponding distribution have the same range. The mode and the median can also be
taken as the same value. Furthermore,

n

E(X)-—-'Ex,.p,:-]b— éxif,:,u (15)
1 i=1

i=

and

s(x) = \/z, x2p— (E(X))? =\/(1/N)2’}=1x,.2ﬁ— p? =o. (16)

Example 5. Consider the distribution {(x;, p;): 1 < i < 6} = {(5,.1),(50, 4),(55, .2),
(60,.1),(75,.1),(100,.1)}, where it is understood that X(S)= {x;:1< i < 6} for a
random variable X on some probability space (S, P). Clearly, X(S) has a range
R =95. Furthermore, p,= 50 corresponds to p,=.4. A few simple calculations
reveal that E(X) = 55 and s(X)~22.47. And, according to (14), the median is any
value p* €[50, 55). Thus our inequalities

EQX)— p* < s(X) and |po— ¥ < |po— E(X)| < —= -s(X)

1
Vpo
are consistent with (II) and (III). Although s(X) <(\/ [6*/4] / 6) -R, it is not true
that R/ \'/2(6) < s(X), as might have been anticipated from (I). This seeming
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anomaly can be cleared up once we observe that { p;: 1 < i < 6} is a set of rational
numbers having a lowest common denominator (LCD) of N = 10. Indeed, our
distribution {(x;, p;):1 < i < 6} and the corresponding set of ten numbers {(x;, f;
=10p;): 1 < i < 6} (our set of winning lottery payoffs described in the introduc-
tion) have the same range and the same mode. Furthermore, E(X)= p and
5(X) = o by (15) and (16). If we take the median of {(x;, p;):1 < i <6} to be the
uniquely defined median p* = 52.50 of {(x;, f):1< i< 6}, then everything in
(I)—(IIT) can be rewritten for {(x;, p):1 < i < 6} once we replace “n” by “N” and
“m/n” by “PO-”

One question still remains here: Do (IT) and (IIT) hold for every possible median
p* €[50,55) of {(x;, p)):1 < i< 6}? The answer is affirmative. Suppose £ is any
real number such that X, ; p; <3 < 3, c¢ p;- For the set {(x;, f;=10p):1 < i
< 6}, this translates to

> fi<s< X f- (17)
x < g x; < £
Therefore, £ € [x5, x4] and it remains only to take r = 10/2 =5 in (VI) in order to
conclude (as in Example 3) that |u — £| < o (i.e., |E(X) — p*| < s(X)).
Remark: The preceding result holds in general. If “10” is replaced by “N,” then
(17) becomes 3, _; f; < N/2 < 3, ¢ fi- Thus, § € [xy 5, X (v 2+ 1] When N is even,
and § = xy, )/, Wwhen N is odd. In either case, we have |E(X) — £ < s(X).
We can summarize our discovery as follows:

Let {(x;, p):1< i< n} be a distribution of ordered values {x, < x, < --- < Xx,},
where { p;: 1 < i < n} is a set of rational numbers, in reduced form, that has an LCD

of N. Then:
VIN/4]

%—<s(X)<—T—-R ay
and
|E(X) = p*| < s(X). (I1y
If po=max, ,, { p; > 1/n} exists, then each yy € {x,, ..., X,: p; = po} satisfies
|10 — E(X)| <is(X) and | ] < 2= 5(X), iy

Two important questions arise naturally: What, if anything, can be said for finite
distributions {(x;, p;):1 < i < n} whose p; are not all rational? And, what about
distributions which are infinite? The following examples begin to hint at the
direction in which we are heading.

Example 6. The two-point distribution {(x;, p;):i=1,2} = {(0,1— (2 /2)),
(1,\/5/2)} has R = 1, and p, = 1 corresponds to p, =\/§-/2. Here E(X) =\/§/2 and
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s(X)= (\/f — 1)/2 . By definition, p* = 1. Thus, (I}’ and (III)’ hold, but the first

inequality in (I)' fails. If p, and p, are interchanged, (II)’ and (III) still hold and (I)
fails again. (It may be instructive to verify that (I)’ holds, for a two-point distribu-
tion, if and only if p, = p, = 1.
Example 7. The distribution {(x;, p):i=1,2,...}={({2"":i=1,2,...)} has
o = 1 corresponding to p, =1, and the median is any value u* €[1,2]. Further-
more, E(X)=2 and s(X)=y2 . (For our purposes it suffices to note that sA(X)

,_1(12/2’ —4>37_,(i?/2")— 4 > 1.) Thus, although (I) is meaningless
(smce X (S) is unbounded), both (II)’ and (III)’ remain true. '

Example 8. As is well known, the familiar normal distribution (corresponding to a
random variable with density function f(x) =(1/ 27 ) e */2) has E(X)=p*=0

= po (with py=1/ V27) and s(X)= 1. Thus, (Iy and (IIIy are satisfied for this
continuous distribution.

By now the conjecture that (II)’ and (III)’ are true for every probability
distribution should have surfaced. This is almost the case; elementary proofs that
shed light on these intriguing conjectures will be given in the next issue of TYCMJ.

6. Conclusion . .. or Beginning? Recent Classroom Capsules ([6], [1]) stimu-
lated the research that lead to this article and the generalizations that will follow.
Two related notes ([2], [8]), just discovered by the authors, appear to have been lost
in the literature. In this vein, the authors thank Stephen Book for bringing [3]-[5]
and [9] to our attention. Unfortunately, these articles were written for “specialists,”
and so they are not readily accessible to a wide audience.

It is our ‘hope that the article will be welcomed by TYCMJ readers as an
invitation and a challenge—an invitation to discover (or rediscover!) other useful
relationships among the important statistical measures and a challenge to present
these discoveries in a manner that can be appreciated by one’s colleagues. A good
example is the recent proof [7] that:

For any set of real numbers [x, <x,<---<x,}, the set of standard scores
{z;=(x;— w)/0:1< i< n} satisfies 2n < 3_,|z]| < n.

(Note, therefore, that z, = —1 = —z, for any two values {x,,x, > x,}.)
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