
Fractals, Graphs, and Fields

Franklin Mendivil

1. INTRODUCTION. One of the most amazing facets of mathematics is the expe-
rience of starting with a problem in one area of mathematics and then following the
trail through several other areas to the solution (or several versions of the solution). We
illustrate this with a problem that starts out as a problem in rendering the attractor of
an Iterated Function System (IFS), which leads to a solution that involves finding an
Eulerian cycle in a certain graph and then to finding generators for the multiplicative
group of a finite field.

We start with an introduction to IFS fractals and the problem of generating an image
of the attractor of an IFS. For a more complete introduction to the theory of Iterated
Function Systems, we refer to reference [1].

2. ITERATED FUNCTION SYSTEMS. The basic idea behind Iterated Function

System fractals is that we wish to formalize the concept of self-similarity. That is,
given an image like Figure 1, we wish to formalize our notion that the set is made up
of three smaller copies of itself.

Figure 1. The Sierpinski gasket.

As a motivating example, consider the three maps from the unit square to itself
defined by

zwero(x, y) =(x + 1 y wo(x Y) =- 2,2 ' wl (X, () =
2 ~~~~~2'

'
2'

((x y+) W (X, y)
=

, =

Clearly each of these maps contracts in all directions by a factor of two. Thus, the
image of Figure 1 under wo is the smaller copy in the lower left corner. Similarly,
the image under wl is the smaller copy in the lower right corner and under w2 is the

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 503

smaller copy in the upper left comer. Thus, this collection of maps gives us some way
to codify the fact that Figure 1 is made up of three smaller copies of itself. The set in
Figure 1 is called the Sierpinski gasket.

Formally, an Iterated Function System is a collection W = {wi : X -+ X, i =
0, 1, ..., N - 1 of a finite number N of contractive self-maps of a complete met-
ric space (X, d). For the purposes of generating fractal images we usually take X to
be the unit square in R2; that is,

X = [0, 1]2 = {(U, v) : 0 < u, v < 1}

and d is the usual Euclidean distance. However, the theory applies equally well to any
complete metric space.

Now a function w : X -- X (returning to the general setting) is a contraction with
contraction factor s(0 < s < 1) provided two things are true: (1) d(w(x), w(y)) <
sd(x, y) for all x and y in X and (2) s is the smallest number for which (1) holds. For
an IFS {wi }, we will let si be the contraction factor of wi and define s = maxi si to be
the contraction factor for the IFS.

Appealing to our example of the Sierpiniski gasket for motivation, we use the IFS
W = {wi } to define a set-map W on X that "combines" the action of all the individual
maps wi; namely, we define

W(B)= Uwi(B)
i

for each subset B of X. In order to investigate what happens when we iterate the
mapping W, it is necessary to restrict the sets B. Let

7t(X) = {K C X: K is nonempty and compact}.

We endow 'H(X) with the Hausdorff metric h defined by

h(A, B) = max sup inf d(a, b), sup inf d(a, b) .
aeA beB beB aEA

To get a feeling for the meaning of h(A, B), notice that if h(A, B) < 6, then every
point of A is within E of some point of B and conversely. It is possible to prove that
(XH(X), h) is a complete metric space (see [1]).

Let W) = {wi be an IFS with contraction factor s. Then clearly W(B) belongs
to 7-(X) whenever B does, so W : H(X) -- 7-A(X). Furthermore, the map W is a
contraction with contraction factor s (see [1]). Thus, by the Contraction Mapping The-
orem, W has a unique fixed point A in KH(X); i.e., A satisfies the condition that

A = W(A) = wi,(A).
i

We call the fixed point the attractor of the IFS. For our motivating example, the
Sierpiniski gasket is the attractor of the three-map IFS given earlier.

How do we generate an image of A? Well, since W is contractive, we can start
with any initial member Ao of N(X) and form the sequence of sets given recursively
by An+1 = W(An): this sequence converges to the attractor A. This is the so-called
deterministic method of rendering an attractor and is illustrated in Figure 2, where we
start with an initial image that is the attractor of another IFS.

4? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 504

O {}

<& 0 0 **

.. S S X?X

-. | ? * 3

4* *. i ELL i *: : . .: . . E L . E. .
"::-?I. I:: . i ::. :.-. L L

Figure 2. Deterministic iteration for the Sierpinski gasket.

Another method of rendering an image of the attractor of the N-map IFS W = {wi}
is the chaos game algorithm, which has the following steps:

1. Choose some point x0 of X.

2. Choose a map wi uniformly at random from the maps in the IFS W (that
is, choose randomly from the set {w, W2,..., WN}, with each choice equally
likely).

3. Let xn+l = wi(x,) and plot the point x,+l.
4. Return to step 2 and repeat the process, with x,n+ replacing x,; iterate this pro-

cedure until "sufficiently" many points are generated.

Usually we let the algorithm run for some number of iterations before we start
plotting points. It is a remarkable fact that an image of the set A "coalesces" from the
set of plotted points as the iteration progresses. To see why this might be so, we reflect
on what happens as we iterate this process.

Going back to our example IFS for the Sierpiniski gasket, suppose that we start with
the two points xo = (0, 0) and yo = (1, 1), and that we choose map wo in the first
iteration of the chaos game. Then we have xl = wo(xo) = (0, 0) and yl = wo(yo) =

(1/2, 1/2), so the distance between x0 and yo has decreased by a factor of two. We see
that, with each additional map that we apply to both x, and y, distance is decreased by
a factor of two. After a certain number of iterations, the two points x, and y, will be so
close that we won't be able to distinguish them, at least not at the finite resolution of a
computer screen. For example, if the screen has resolution 1024 x 1024, then after at

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 505

most eleven iterations, the two points that started out at opposite corers of the screen
will have been contracted down to within one pixel, with the consequence that both
will be plotted as a single pixel.

What does this have to do with the chaos game? Well, suppose that in the determin-
istic iteration of the set function W we start with the set Ao = {x}, which represents a

single pixel on the computer screen. Then

A1 = {wo(x), W1(X), W2(X)}

A2 = {wo(wo(X)), wo(w1(x)), wo(w2(x)), wl(wo(X)),

Wl(W1(X)), Wl(W2(X)), W2(WO(X)), W2(W1(X)), W2(W2(X))},

and so forth. We find that

An = {wil o wi2 o... o win(X) : ij E {0, 1, 2}}.

Thus, the chaos game is finding one such sequence of compositions, whereas the
deterministic iteration generates all possible sequences. Now, by what we mentioned
earlier in regard to the Sierpiniski gasket on our 1024 x 1024 resolution screen, we
cannot distinguish between the two points

Wil O Wi2
... 0 Win(X), Wil O Wi2 O

...
Win (Y)

once n reaches eleven, no matter what the points x and y are. (Notice that the two

sequences of maps that we applied to x and y are the same; this is important.) As a

result, in our exhaustive generation of such possible sequences, all we need to do is

generate those of length at most eleven, since parts obtained from longer words in the

alphabet W are visually indistinguishable.
Upon further reflection, we see that this gives a convenient way of labeling the

points of the set A (at least on our limited resolution computer monitor) by using finite

sequences of maps chosen from the IFS W. To each such sequence of compositions of

maps, there corresponds one point of the attractor A. However, it is possible that two
such sequences of compositions of maps lead to the same point.

So where does this leave us? We see that in order to render an image of the

Sierpiniski gasket we need generate only the set of all possible sequences of length
eleven from the set {0, 1, 2}, apply the appropriate compositions to ANY starting
point, and plot the result. There are exactly 311 = 177,147 such sequences, meaning
that there should be this many points on the approximate Sierpinski gasket on our
1024 x 1024 resolution computer screen (the screen has 1,048,576 pixels, a number

considerably larger than 177,147).
Now we have the facts necessary to give us an inkling of why the chaos game works.

When we generate the random sequence of maps to compose, with probability one we
will eventually generate every substring of length eleven as a part of the sequence.
Suppose, for instance, that part of a randomly generated string is

...0012122110021 1 0110102010221210100...

and we have gotten as far as the I mark. Then the fact that the first three (displayed)
maps are wo, w0, and wl makes no difference, since regardless of what point we start
with, after eleven iterations we have lost any means of discovering where we started.
Thus, only the most recent eleven iterations can have any influence on which pixel is

? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 506

plotted. Since we generate all possible substrings of length eleven from {0, 1, 2}, we
will eventually plot every point on the attractor.

This leads us to wonder if it is possible to do this more efficiently. Surely the chaos
game algorithm will plot the same point multiple times. If there were some way of
ensuring that we generate each point (or each sequence) only once, then this could
save some effort, not to mention computation time.

3. DE BRUIJN SEQUENCES. We finished the previous section expressing the de-
sire to find a single sequence from {0, 1, 2} that contains each sequence from {0, 1, 2}
of a given length 1 as a subsequence exactly once. Such sequences do indeed exist; for
example, for length 1 = 2 we have the sequence

0011221020

from which we get all the subsequences

00,01, 11, 12,22,21, 10,02,20

by taking a "window" of length two and sliding it along the original sequence. If we
wrap around on our sequence (say, by labeling evenly spaced points on a circle), we
can shorten the "universal" sequence for I = 2 to

001122102.

Such wrap-around sequences are called de Bruijn sequences (see [3], [4], and [6]).
Formally, a de Bruijn sequence corresponding to positive integers I and N is a circular
sequence of length N' such that every string of length 1 on an alphabet {al, a2, ... , aN
occurs exactly once as a contiguous substring. The questions are: Do such sequences
exist for an arbitrary "window" length and an arbitrary number of symbols? If such
sequences exist, how do we construct them?. The remarkable fact is that we can find a
simple algorithm to construct such sequences, thereby answering both questions at the
same time! In this section we construct de Bruijn sequences using a tiny bit of graph
theory, and in the next section we show how we can also exploit some of the theory of
finite fields to construct de Bruijn sequences.

We illustrate the general algorithm by seeing how it works for the particular ex-
ample we have been discussing. Consider the directed graph with three vertices la-
beled 0, 1, and 2. Draw directed edges in both directions from each vertex to each
other vertex, including a single directed edge from a vertex to itself (see Figure 3).
Label each edge by the name of the vertex that it leads to. This graph is an example of
a de Bruijn graph (the definition of the de Bruijn graph for the general situation will
be given shortly).

We wish to find an Eulerian cycle in this graph, by which we mean a path that
traces out each edge exactly once and finishes where it starts. It is easy to see that in
a directed graph such a cycle exists if and only if the number of edges leading out of
each vertex (its out-degree) is the same as the number of edges leading into that vertex
(its in-degree). This is clearly the case with our graph.

The Eulerian cycle that generates the sequence in our illustrative example is ob-
tained by starting at vertex 0, then making the following sequence of moves (where
we list the name of the edge that we traverse):

011221020.

Notice that this is our de Bruijn sequence.

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 507

1

Figure 3. Directed graph for a de Bruijn sequence.

Suppose that we have the symbol set {0, 1, ..., N - 1 and we wish to find a single
sequence with the feature that, as we slide a "window" of length I along this sequence
we will obtain all possible sequences of length 1, each exactly once, constructible from
our symbol set. Clearly our long sequence must have length at least N' elements (since
we need at least that many different positions of the sliding window). It is an amazing
fact that it is possible to find (many) sequences of exactly this length that will work.

The graph theoretic construction will work in this more general context as well. As
our vertex set, we use the set of all words (sequences) of length I - from the alphabet
{0, 1, ..., N - 1). We construct the edges of our directed graph by connecting vertex
ala2... al_2al_l to vertex a2a3 ... a-llb with a directed edge labeled b, for each choice
of b. Again, the in-degree is equal to the out-degree for each vertex, so Eulerian cycles
exist in this directed graph. Each such cycle corresponds to a de Bruijn sequence.

It is simple to implement a computer algorithm for finding an Eulerian cycle in a
de Bruijn graph. First, define an integer array vertex []. This array is indexed by all
the possible vertices in the de Bruijn graph. Since there are Nl-' such vertices, the
array vertex [] contains this many memory locations. In order to index the array,
we interpret vertex aa2 ... an-1 as a base N number (so vertex [000... 01 is the
first memory location in the array). We initialize the array so that each entry has value
N - 1. Then we choose one vertex (say the vertex 000... 0) as the starting point of
the cycle, and whenever we are in a vertex j, we leave this vertex along the edge
vertex [j] and decrease the value vertex [j] by one. That is, the array vertex [j]
keeps track of which outgoing edges are still unused whenever we come to vertex j.
We just use the outgoing edges in the order N - 1, N - 2, N - 3, ..., 1, 0 to make
the bookkeeping simple.

If the algorithm returns to a vertex with no remaining outgoing edges, check to see if
it has generated the entire sequence (whose length is known). If not, find some vertex
whose outgoing edges have not been exhausted and, by the same process, generate
a new sequence to be "inserted" into the original sequence at the appropriate point.
Continue this procedure until all edges have been accounted for. In the end, we will
have generated the entire de Bruijn sequence and can simply print it out.

As an example, in the de Bruijn graph of Figure 3, if we start at vertex 0 we take
the outgoing edge 2 to come to vertex 2. Then the procedure would take the sequence

508 ?) THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110

of edges 21201100 to produce the de Bruijn sequence

221201100.

In this simple example, the algorithm never needed to "insert" a new sequence into the
original sequence.

Suppose that we do this for the symbol set {0, 1, 2} for length / = 11 and obtain our
"mother" string of length 311 = 177,147. In order to render an image of the Sierpiniski
gasket we use this sequence instead of the randomly generated sequence of Os,1 s, and
2s. In this way, we are guaranteed to plot each point of the attractor exactly once,
modulo the resolution of our 1024 x 1024 screen.

Notice that we can think of the chaos game as a random walk on the appropriate
de Bruijn graph. In order for the chaos game to generate all points of the attractor (to
some specified resolution), we need to wait until this random walk has traversed every
edge in the graph.

A problem with this method is that we need to store the entire sequence in order to
use it. Both the algorithm that generates the sequence and the modified "chaos game"
require the entire sequence, so both algorithms require huge amounts of computer
memory. It would be very nice if there were a way to generate the sequence as it is
needed, rather than all at once.

4. CONSTRUCTION VIA FINITE FIELDS. We begin once more with an ex-
ample to illustrate the main idea. Suppose again that we wish to find a de Bruijn
sequence for the symbol set {0, 1, 2} and a window of length 1 = 2. Consider the poly-
nomial q(x) = x2 + x + 2 as a polynomial over Z3 (the integers modulo 3). Starting
with the polynomial h(x) = x we recursively define a sequence of polynomials ho(x),
hi(x), h2(x), ..., (over Z3) as follows: ho(x) = h(x) and hn+l(x) is obtained from
hn(x) by multiplying the latter by x and reducing modulo q(x) whenever necessary
(that is, by exploiting the relation q(x) - 0 or x2 = 2x + 1 to eliminate powers of
x higher than the first power). Doing this, we generate the sequence of polynomials
(over Z3)

x,2x 12x 2xx + 1,2x +2,,2x,x +,x + 1,

at which point the iteration repeats itself (for example,

x(2x + 1) = 2x2 + x = 2(2x + 1) + x = 5x + 2 = 2x + 2

in Z3[x]/(q(x))). Now choose a degree, take the coefficient of the term of this degree
in each of these polynomials (say the coefficient of x in each), and write them down in
sequence:

12202110.

Notice that we almost have a de Bruijn sequence corresponding to the given data. The
only sequence of length two we are missing is 00. If we start out our sequence with a
leading zero, we get the de Bruijn sequence

012202110.

If we had chosen to write down the constant coefficients (with the leading 0) we would
obtain the de Bruijn sequence

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 509

001220211.

How does this work? To explain it, we briefly review the basics of the theory of
finite fields (the book [2] has a nice discussion of the necessary background). Recall
that for any prime p the ring of integers modulo p, signified by Zp, is a field (since it
has no zero divisors). Let

q(x) = x - al_lx1l - a1_2xl-2- alx - ao

be a polynomial of degree 1 in Zp[x] that is irreducible over Zp, and consider the

quotient ring

Zp[x]/(q(x))

(that is, the quotient ring of Zp [x] modulo the ideal generated by the polynomial q (x)).
We know, since q(x) is irreducible, that Zp[x]/(q(x)) is a field with exactly pl ele-
ments; it is called the Galois field of order p' and often denoted by GF(pl). Addition
in this field amounts to addition in Zp [x]. It is only in multiplying that we need reduce
modulo q(x). We do this by appealing to the relation

x1 = al_lxl1 + a_2x1-2 + * * * + alx + ao.

Clearly we can view GF(pl) as a vector space of dimension 1 over /p (since Zp[x]
is clearly a vector space over Zp and this field is a quotient vector space thereof).
Furthermore, the field GF(pl) is the unique field with pl elements and contains all
roots of q(x) as a polynomial in Zp[x].

Because GF(pl) is a field, its set of nonzero elements, the set GF(pl)*, forms an
Abelian group under multiplication-in fact, a cyclic group. Suppose that we choose
our polynomial q(x) in such a way that one of its roots a in GF(pl) is a generator
of this cyclic group: GF(pl)* = {a, a2,..., a' -1} (such a root is called a primitive
root).

This is what we did in our example, where p = 3, 1 = 2, and q(x) = x2 + x + 2.
Since all elements of GF(32) can be viewed as polynomials of degree at most 1, we
choose the polynomial so that a = x is a primitive root (notice that our notation does
not distinguish between x in Zp[x] and x + (q(x)) in Zp[x]/(q(x))). We see that the

powers of x do indeed generate GF(32)*, for there are eight elements in GF(32)* and
we generated eight different polynomials by repeatedly multiplying by x.

What did we do when we chose one of the coefficients to write down? Well, GF(32)
is a vector space over Z3, so taking either coefficient can be thought of as computing
the value of a linear functional 5 : GF(32) -- Z3. Thus we enumerated all the ele-
ments of GF(32)* and applied the linear functional q to each to obtain our desired

sequence. Notice that, if we had selected the linear functional that simply adds the two
coefficients, we would have arrived at

010122021,

from which we obtain a de Bruijn sequence by inserting a 0 at the appropriate place.
It seems that all we are doing is generating all the elements of GF(pl) in a particular

order. How do we know that we will get a de Bruijn sequence? To answer this question,
suppose that

q(x) = x1 - al_lxl-1 - a1_2x-2 a - -a ao

(0) THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 510

is irreducible over 7p and that a = x is a primitive root of q(x) in GF(pl) =

Zp[x]/(q(x)). Let 0 : GF(pl) -> Z7p be any nonzero linear functional (linear when
we view GF(pl) as a vector space over Zp). Writing GF(pl)* = {a, a 2,..., p1 }
and applying q to its elements in this prescribed order, we generate the sequence

0(a), 0(a02), 0(3) ...,(p-1).

Assume that there is a repeat in the window of length 1 at some point. Then there
exist i and j satisfying 1 < i < j < pl - 1 such that

0(0ai) = 0(oj),

0 (i+l) = (aj+l),

0(ai+-1) =0(j+-1)

However, this is the same thing as saying that the 1 vectors aj+k - ai+k for k = 0,
..., 1 - 1 are in the kernel of the linear functional 0. Since GF(pl) is 1-dimensional,
these vectors must be linearly dependent; i.e., there are constants ak in Zp, not all 0,
for which

1-1

ak (a j+k _ ai+k) = 0

k=O

or, equivalently,

1-1

ai(l -a j-i) akk O.
k=O

Now a' 7: 0 and the only way to have 1 = aj-i is to take i = j, so it must be the
case that E akak = 0. However, this cannot happen, since then g(a) = 0 for a poly-
nomial g(x) of degree I - 1, contradicting the assumption that a is algebraic of degree
1 over Zp. Thus, no repeated windows are possible.

Notice that this argument also works if there is some "wrap around" in the subse-
quence. That is, it makes no difference to the argument if j + 1 - 1 > pl - 1 (since
the powers of a also "wrap around").

The reason we need to insert a zero into the sequence

0(a), 0(a2), q(aO3), ...- , (p"p-1)

in order to produce a de Bruijn sequence is that we will not generate 0 in GF(pl) by
this process. To remedy the situation, all we need to do is to find some place where
there are I - 1 zeros and insert an extra zero. By choosing 0 to be the coefficient of
xl-1, we can simply prefix the zero, since in this instance the sequence starts with I - 1
zeros.

What we are doing is using the multiplicative structure of GF(pl) to generate the
pl - 1 different elements of GF(pl)* in a specific order and then using the linear
functional 0 to translate this information into a symbol from Zp.

Fast algorithm to compute de Bruijn sequences. It is easy to describe a fast algo-
rithm to compute a de Bruijn sequence for a prime number of symbols (see chapter 2

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 511

of [4] for more details). For the irreducible polynomial q(x) in the foregoing discus-
sion, we use the recursion satisfying the initial conditions Yl-l = 1 and Yi = 0 for
i = 0, 1,..., 1 - 2 with the recursion rule

Yn+l = a-i Yn+l-1 + al-2Yn+l-2 + + alYn+l + aoYn

for n = 0, 1, 2,.... We again need to insert a zero in the appropriate place. However,
because of the initial conditions, we know that we can simply place the extra zero at
the beginning.

Composite n. Now clearly this method of using finite fields is very nice, as it allows
us to generate the de Bruijn sequence on the fly (if we know the polynomial q(x)).
However, what if we wish to generate a de Bruijn sequence with a window length of 1
for the set {0, 1, ..., n - 1}, where n is not a prime? What then? The problem is that
in general Zn is not a field and there is no associated field GF(nl).

Case 1. n = pk for a prime p and k > 1.

In this situation we exploit the fact that GF(pk) is a subfield of GF(pkl), making
GF(pkl) a vector space over GF(pk). What we do is to use a linear functional 0 :

GF(pkl) -> GF(pk). Our set of "symbols" will be from GF(pk), which we can then

interpret as the set {0, 1, 2, ..., pk}.
An example will help to make this clear. Suppose that n = 4 and I = 2. In general,

finding a primitive polynomial of degree 1 over Zp is difficult. In our case, since both
1 and p are small, we simply used MAPLE to factor the polynomial z24 - z over Z2
and picked q(z) = z4 + z + 1 as one of the factors of degree 4. Since q(z) does not
divide zm - z for any m smaller than 16, we know that it must be primitive (for this
and other results related to finding irreducible or primitive polynomials, see [4]). We
find that the polynomial q(x) = x4 + x + 1 is irreducible over Z2 with a = x being
a primitive root in Z2[x]/(q(x)). We proceed as we did before, computing the powers
of a in order to generate GF(24)*.

Now we need to come up with a linear functional ?>: GF(24) - GF(22). To do this,
notice that GF(22) is the subset {0, a5, a10, a15 = 1} of GF(24), where a5 + 1 = a1?.
We know that all these elements of GF(24) are in GF(22) because they are all roots
of the polynomial z2 + z + 1, which generates GF(22) over Z2. If we can represent a

given / in GF(24) in some basis over GF(22), then we can simply take a component of
this representation as our linear functional 0 (as we did earlier by taking the coefficient
of xl-1).

Given an element P of GF(24), how do we find its representation? The obvious
basis of GF(24) over GF(22) is the set {a, 1}. Next we observe that

1 =0 a+l 1,

x = 1 *a+0 1,

x2 = 1 a + a5 1,

x3 =al a + a5 1,

so an arbitrary element , = a + bx + cx2 + dx3 of GF(24) (using our representation
of GF(24) = Z2[x]/(q(x))) can be expressed as P = A ? a + B ? 1, with

2? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 512

A _ 0 1 1 0 a b
B 1 0 a5 a5 c

d

all arithmetic being carried out in GF(24). Thus we can take our linear functional 0 to
be represented by the row-vector

(1 1 a10)

Putting all this together, the sequence of powers of a = x is:

x,X2, x3 x+ 1 X2+X,X3 +X2, x3+ + 1,X2 + 1,

X3 + X, x2 + X+ 1, x3 + X2 + X, X3 +X2 + + 1, 3 +X2 + 1, 3 + , 1.

Applying 0 to this sequence we get the sequence (in GF(22))

1, 1 , a10, 1, 0, a5 a5 1 a 0, /10 a10 Oa5, a10, 0.

Finally, we can use any mapping GF(22) -* {0, 1, 2, 3} and judiciously insert a 0 to
retrieve the de Bruijn sequence

1131022120332300

(here we attached the extra 0 at the end).
We mention in passing that in [4] there is a discussion of the representation of all

linear functionals : GF(pkl) - GF(pk) using a "trace"

Tr() = B + q + q2 + q-1,

where q = pk

Case 2. n is not a power of a prime.

What happens if n is not a prime power? Suppose, for instance, that n = 6 = 2 3
and 1 = 2. We take a de Bruijn sequence for n = 2 and 1 = 2, say

0110,

and a de Bruijn sequence for n = 3 and 1 = 2, say

001220211,

then repeat the first one nine times and the second four times to get

011001100110011001100110011001100110
001220211001220211001220211001220211.

Taking in order one symbol from the top line and the one below it from the bottom,
and using the identifications

00 --> 0, 01 --> 1, 02 -> 2, 10 1-> 3, 11 - -> 4, 12 -* 5,

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 513

we obtain

034223511331253214301550244004520541.

Thus by "mixing" two de Bruijn sequences for 2 and 3 we get one for 6.
In the general case suppose that the prime factorization of n is

m1 m2 mk n = PI 'P2 "'Pk

with pi < P2 < P3 < '.. < Pk and that we wish to obtain a sequence with a window
of length 1. By the Chinese Remainder Theorem, Zn p Zml x Z m2 X ... X Z mk.

Let 0 be an isomorphism from the indicated product group to Zn. Our construction

using GF(pml) as a vector space over GF(pk) yields k de Bruijn sequences {Iv } for

= 1,..., k and j = 1,..., pm , with vj in Zmi. We obtain the desired de Bruijn
sequence (in Zn) by applying 0 to the combination of these sequences. Specifically,
for r = 1, ..., n1 the rth term of the sequence is

Wr =
?(V , . . . mk

?

vr mod pm
i1

r mod Pk

We claim that this sequence has the desired property. Clearly each term of the se-
quence belongs to Zn. Suppose that there were a repeated block of length 1. Then for
some a and b with a < b we would have

Wa = Wb,

Wa+1 = Wb+l,

Wa+l1- = Wb+l-1.

Since ? is an isomorphism, this would imply that

V = Vm i mi a mod pi b mod pi

V1 mi = V i mi
a+l mod pmi b+l mod pi

a+l-1 mod pmi b+l-l mod pi

for i = 1, 2, ..., k. This cannot happen for all i simultaneously by the de Bruijn prop-
erty of the individual sequences {vj I and the fact that the primes Pi are distinct. Again
this argument also works if there is some "wrap around" in the subsequences.

Basically we "mix" together de Bruijn sequences for relatively prime periods and
relatively prime symbol spaces by using the Chinese Remainder Theorem essentially
twice-once to get all the symbols in the symbol space and again to prove that the
sequence we obtain has no repeats.

5. BACK TO FRACTALS. How efficient is it to use the finite field method for con-
structing de Bruijn sequences in rendering a fractal? The main difficulty is in find-
ing the primitive polynomials (those irreducible polynomials whose roots generate
GF(pl)*) and, in the case n = pk, a representation for the linear functional q. If we
are willing to hard-code this information into our program, then the algorithm is very
efficient.

()? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 514

Oftentimes it is merely necessary to get a reasonable image of the attractor of an
IFS. In these cases, running the chaos game with a very low iteration count (or even a
short de Bruijn sequence) is sufficient. However, there are cases where it is essential
that we guarantee that every point of the attractor (at the specified resolution) is plotted
(for example, in situations where we wish to analyze the geometrical structure of the
attractor in some automatic way). Under such circumstances the de Bruijn sequence
approach is much more efficient than the chaos game since we know that the former
will generate all the relevant points. With the chaos game we could run a very high
iteration count, but we would still have only probabilistic bounds. For example, we

expect that it will take roughly 2.24 million iterations of the chaos game in order to
get all possible length eleven sequences from the set {0, 1, 2}.

Finally, we wish to mention that there is a wealth of literature on using de Bruijn
sequences in many application areas. If the reader is interested in exploring this topic,
a good way to start would be to go to google (or one's favorite search engine) and do
a keyword search. The book [4] has an extensive bibliography and contains a chapter
on linear recurrence sequences in GF(pl). The book [5] by the same authors is more
of a textbook and provides a very nice introduction to the theory of finite fields.

ACKNOWLEDGMENTS. The author appreciates discussions with Juaquin Anderson, who suggested the
idea of using de Bruijn sequences to drive a modified chaos game. The author would also like to thank Tom
Archibald for his helpful comments and criticisms and Neil Calkin for pointing out the references [4] and [5].
This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES

1. M. G. Barsley, Fractals Everywhere, Academic Press, New York, 1988.
2. R. A. Dean, Classical Abstract Algebra, Harper and Row, New York, 1990.
3. N. G. de Bruijn, A combinatorial problem, Indag. Math. 8 (1946) 461-467.
4. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20,

Addison-Wesley, Reading, MA, 1983.
5. , Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge,

1994.
6. S. W. Golomb Shift Register Sequences, Holden-Day, San Francisco, 1967.

FRANKLIN MENDIVIL is an assistant professor of mathematics at Acadia University in Nova Scotia. His
research is a mixture of fractal geometry and analysis, topology, image processing, and optimization. He con-
siders himself extremely lucky to be in a profession that allows him to explore many different topics.
Acadia University, Wolfville, Nova Scotia, B4P 2R6, CANADA
franklin.mendivil @acadiau.ca

FRACTALS, GRAPHS, AND FIELDS June-July 2003] 515

	Article Contents
	p. 503
	p. 504
	p. 505
	p. 506
	p. 507
	p. 508
	p. 509
	p. 510
	p. 511
	p. 512
	p. 513
	p. 514
	p. 515

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 110, No. 6 (Jun. - Jul., 2003), pp. 465-557
	Front Matter
	A Matter of Gravity [pp. 465-481]
	Simple Proofs of a Geometric Property of Four-Bar Linkages [pp. 482-494]
	Non-Euclidean III.36 [pp. 495-502]
	Fractals, Graphs, and Fields [pp. 503-515]
	Sums of Squares of Distances in m-Space [pp. 516-526]
	Notes
	Counting Even and Odd Partitions [pp. 527-532]
	The Isoperimetric Inequality and a Theorem of Hardy and Littlewood [pp. 532-536]
	And Still One More Proof of the Radon-Nikodym Theorem [pp. 536-538]
	A Linked Pair of Sequences Implies the Primes Are Infinite [pp. 539-540]
	Another Simple Proof of [pp. 540-541]

	Problems and Solutions
	Problems
	11019 [p. 542]
	11020 [p. 542]
	11021 [p. 542]
	11022 [p. 542]
	11023 [p. 542]
	11024 [p. 543]
	11025 [p. 543]
	11001 [p. 543]

	Solutions
	Divisibility Conditions Holding as Many Times as You Want: 10898 [pp. 543-544]
	Best Polynomial Approximations: 10903 [p. 544]
	A Higher Mean Value Theorem: 10935 [pp. 544-545]
	Convex n-Gons: 10936 [pp. 545-546]
	The Complex Geometric Mean: 10940 [pp. 546-547]
	Decay of a Markov Chain: 10941 [pp. 547-548]
	An Inequality for Triangles: 10950 [pp. 548-549]

	Reviews
	Review: untitled [pp. 550-553]
	Review: untitled [pp. 554-557]

	Back Matter

