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Although fractions have been numbers in good standing for thousands of years,
there are still many places where they are not welcome. Occasionally they may seek
to annex forbidden ground to their territory, but the results are so absurd that we
take the ill-mannered intrusion in good humor and worry about it not at all. That is
why we smile to hear that the average American family has 2.3 children, or that car
ridership has increased to 1.7 passengers per vehicle on certain roads. (Not many of
us would care to have the 7/10 of a person as part of our carpool.)

Of course, these fractions are merely statistical artifacts. We know what they
measure and what they mean, so they don’t bother us. It is easy, however, to think
of examples where fractions (which we can construe generously to include ir-
rationals) simply do not belong at all: What would you think of someone who said
he was learning how to solve 7 equations in 7 unknowns? How about someone who
claims to study objects of dimension log4/log3?

Unless you already knew, or guessed what was coming, you probably laughed
equally at both absurd ideas. Nevertheless, we are about to take a serious look at
the latter notion, for it is here that fractional numbers now appear to have made
their greatest territorial gains since algebra accepted them as exponents. The
one-dimensional line, two-dimensional surface, and three-dimensional solid have
some strange new neighbors. Mathematics has been invaded by creatures from the
fractional dimensions.

1. Snowflakes and Flowsnakes

But in the process of measurement it turns out, generally speaking,
that the chosen unit is not contained in the measured magnitude an
integral number of times, so that a simple calculation of the number
of units is not sufficient. It becomes necessary to divide up the unit of
measurement in order to express the magnitude more accurately by
parts of the unit; that is, no longer by whole numbers but by
fractions. It was in this way that fractions actually arose, as is shown
by an analysis of historical and other data. [Aleksandrov, Vol. 1,
p- 24]

Since most of us are accustomed to thinking of dimension as given by the number
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of independent directions or degrees of freedom, it is first necessary to find a
characterization of dimension that will permit generalization. Fortunately, this turns
out to be a simple consideration of the effects of dimension on the measure of
similar geometric shapes.

Consider a line segment of unit length. If we triple its length—that is, expand it
by a scaling factor of 3—we get a line segment of length three. This line segment, of
course, contains three congruent components (that is, three copies of the original
unit length). For reasons that will become clear very soon, we note that 3 = 3'.

Consider a unit square. If we expand the square by a scaling factor of 3—that is,
we triple its sides—we get a square (Figure 1) whose area is 9 times as great.
Equivalently, this means that the expanded square consists of nine congruent
components (that is, nine copies of the original square). Observe that 9 = 32,

Finally, consider a unit cube. If we expand it by a scaling factor of 3, we get a
cube consisting of 27 congruent components. (Look at Figure 1 again or get out
your Rubik’s cube.) In this case, 27 = 3°.

Dimension 1: Line segment 3=3!
Dimension 2: Square 9=32
Dimension 3: Cube 27 =33

Observe that in each of the three cases illustrated in Figure 1, we have a
dimension d, a scaling factor s, and a number of components N, which satisfy the
equation N = s¢. Other examples of this rule are shown in Figure 2, where a square
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expanded by the scaling factor 2.5 has been dissected into 6.25 components:
4(1) + 4(0.5) + 0.25 = 6.25.

]

4=2

6.25 = (2.5)*

2 =02)

Figure 2.

For the present, we have been careful to confine our attentions to objects which
are self-similar; that is, the expanded objects could be dissected into congruent
components similar to the original object. (This is even true of the expanded square
in Figure 2, whose larger components may be further broken up into copies of the
small square in the upper right-hand corner.) Circles and cones are simple examples
of objects which are not self-similar. Nevertheless, the relation which links measure
(area, volume, etc.,) to dimension and scale continues to hold: tripling the radius of
a circle increases its area by a factor of 9 = 3% even though there is no way to cut
the expanded circle into nine circles congruent to the original. Similarly, tripling the
radius and height of a cone increases its volume by a factor of 27 = 3. All the
familiar geometric shapes seem to fall into this pattern.

As demonstrated in Figure 2, neither N nor s need necessarily be an integer for
the equation N = s¢ to be valid. This is not particularly surprising because the idea
of geometric similarity is easy to accept for nonintegral scaling factors. Dimension,
however, is another matter; we expect d to be an integer. Let us see if it is possible
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to produce a geometrical object whose expansion by a factor s can be dissected into
N components such that d = log N /logs is not an integer. (It doesn’t matter what
base one chooses for the logarithms. A few examples worked on a calculator should
be convincing of that, and the relation log,x = log,x/log,b can be used to prove
it.)

Perhaps unexpectedly, our first example of this new idea of fractional dimension
turns out to be a senior citizen. In 1904, the Swedish mathematician Helge von
Koch produced an interesting geometric construction which is called the ‘“snow-
flake.” The Koch snowflake (Figure 3) begins with an equilateral triangle of unit
side; the first step in its construction replaces each side by a broken line of length
4 /3. This step in the construction is equivalent to adjoining equilateral triangle of
side 1/3 to each side of the original triangle. Each subsequent stage of the
construction proceeds similarly, as illustrated, and the snowflake consists of the
region obtained by taking the construction to the limit.

*

Figure 3.

The boundary of the snowflake is called the “snowflake curve,” and its length is
easily seen to be infinite: At each stage of the construction, the perimeter of the
region is increased by a factor of 4/3. In the limit, the factor (4/3)" increases
without bound. However, the area of the region enclosed by the curve is finite. In
fact, some careful counting and the formula for the sum of a geometric series show

101



that the area of the snowflake is

£+£(1 4+42+4_3+...)=_2_5_f3_

Tt T3ty ety

which is 8/5 the area of the original triangle.

Although this demonstrates that the snowflake is a peculiar object, it certainly
doesn’t compel us to believe that the boundary is anything other than what it
appears to be: a surprisingly long (and rather crinkly) one-dimensional curve.
Furthermore, while the snowflake curve is very pretty, it is not self-similar. To apply
our formula, d = log N /logs, for the “self-similarity dimension,” it is necessary to
take a slightly closer look at a portion of the snowflake curve that is self-similar.

Figure 4 shows the construction for the snowflake curve confined to a line
segment (which we could consider to be one side of the triangle in Figure 3). At
each stage, we replace line segments with broken lines which are 4/3 as long. We
see that the limit curve consists of N =4 components, each of which is a scaled-
down version of this limit curve by the scaling factor s =3. In other words,
one-fourth of this limit curve can be scaled up by a factor of three to produce the
entire curve again! Therefore, by our formula, this curve has self-similarity dimen-
sion

d=18% 1261,
log3
Stage 1
Stage 2
Stage 5
Figure 4.
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The snowflake curve is thus our first example of a fractal, a term coined by
Benoit B. Mandelbrot to describe objects of anomalous dimension. Mandelbrot
may best be thought of as the true father of fractals, although he has gone to great
lengths to draw together such early examples as the snowflake curve and to credit
their discoverers as pioneers in the field. As a unified subject, however, fractal
geometry simply would not exist had Mandelbrot not provided the framework,
terminology, and techniques for its investigation. Later we shall see that Man-
delbrot’s definition of “fractal dimension” is not the same as the “self-similarity
dimension” which we are using; they are usually equal, however, and the latter is
easier to compute.

With but a single example in our fractal collection, it is too early to make claims
concerning the use or nature of fractals—or to discuss Mandelbrot’s view of the
fractal nature of nature. Indeed, at this point it could just as easily be argued that
the snowflake curve is a geometric curiosity and little more. It was so regarded until
Mandelbrot advanced the unifying idea of “fractal” and many other examples
began to appear. Let us look at an example whose construction is more compli-
cated, but whose fractal dimension is easily computed: the flowsnake of R. William
Gosper. [Gardner, 1976.]

In Figure 5(a), we have the initial step in the construction of the flowsnake
curve: chord AC of the regular hexagon 4 BCDEF is replaced by a broken line with
seven segments, each of which is a chord of a similar hexagon. Inspection of the
figure (note, for instance, that AAGM is congruent to A BHM) shows that the
seven small hexagons together have exactly the same area as ABCDEF; the scaling
factor must therefore be y7 . We can now repeat the process, replacing each of these
seven chords by broken lines consisting of seven chords of smaller hexagons—as,
for example, chord 4 H being broken into the seven chords shown in Figure 5(b).

G
Figure 5(b). Figure 5(a).

The first four stages of the construction are displayed in Figure 6. At each stage, we
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replace each line segment from the previous stage by N = 7 segments scaled down
by a factor s = V7 . Therefore, the self-similarity dimension of the flowsnake is

log7
logy7

d= =2.

Figure 6.

It can be shown that the flowsnake is two-dimensional in another sense: It is an
example of a Peano curve—a curve which passes through every point of a planar
region.

Is the flowsnake a fractal? While it is a curious object (a limit curve which fills a
planar region), its self-similarity dimension is a whole number. Therefore, by our
use of the term, the flowsnake is not a fractal. We will later see, however, that
Mandelbrot’s formal definition of the term allows certain anomalous objects of
integral dimension to be called “fractals,” and we will use Gosper’s flowsnake to
construct an example of one. (This would seem to be a counterattack by the
dispossessed whole numbers.)

We have yet to produce another object of nonintegral self-similarity dimension.
As one such candidate, consider the boundary of the flowsnake—the curve which
bounds the planar region filled by the flowsnake curve. This type of boundary, in
the customary state of affairs, would be one-dimensional. Now look again at Figure
5. In constructing the flowsnake curve we were also constructing the flowsnake
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boundary: each side of the initial hexagon A BCDEF is replaced by N = 3 segments
scaled down by a factor of s =17. (For example, AB is replaced by the path
AGHB.) This is the basic iterative step; it is further illustrated in Figure 6, where the
intermediate stages of the boundary are shown as being formed by the outer edges
of the same hexagons being used to generate the intermediate stages of the
flowsnake curve. According to our definition, the flowsnake boundary has a
self-similarity dimension of

log3

d= ~1.1292.

log7

It is possible to demonstrate—in. a surprisingly straightforward way—that this
fractional dimension really does make sense. Whereas the fractal dimension of the
snowflake curve may have seemed to follow from a mechanical application of our
formula for dimension, the fractal dimension of the flowsnake boundary has a
compelling geometric demonstration.

As Figure 7 illustrates, the planar region filled by the flowsnake can be decom-
posed into N = 7 congruent subregions. Therefore, each of these subregions must be

Figure 7.
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scaled up by a factor of 7 in order to be as large as the whole region. Accordingly,
we would further expect that the perimeter of the entire flowsnake region (that is,
the length of the flowsnake boundary) to be V7 times as great as that of one of its
subregions. (This would follow if the boundary were the usual one-dimensional
curve.) Inspection of the figure, however, quickly establishes that the perimeter of
the whole is actually 3 times as great! (Half the perimeter of each of the six outer
subregions combines to form the whole of the flowsnake boundary.)

Our curious result can be paraphrased in this way: scaling up the linear
dimensions by a factor of 7 ~2.646 increases the boundary by a factor of 3.
Therefore, the flowsnake boundary must have a self-similarity dimension d such
that 3 = (7)?, and this yields our previous result d ~ 1.1292.

Alternatively, had we considered the perimeters first, the observation that the
boundary of the whole flowsnake region was 3 times that of one of its subregions
would have led us to believe that the area was greater by a factor of 9, as opposed
to the true factor of 7. (Despite all the unlikely occurrences to this point, it is still
true that 9 is not equal to 7.)

The flowsnake boundary is therefore a case where nothing but a fractional
dimension can possibly make any sense. Now look back at the earlier example of
the Koch snowflake and see whether the dimension of its boundary still seems as
strange as it first did.

2. Mandelbrot’s Definition of Fractal

Up to this point, we have been taking the naive definition of fractal as something
with a fractional self-similarity dimension. Mandelbrot’s formal definition is consid-
erably more subtle, and actually permits some fractals to have integral dimension.
We state the definition and then discuss the terms involved:

Definition [Mandelbrot 1982, p. 15]: A fractal is a set whose Hausdorff-
Besicovitch dimension strictly exceeds its topological dimension.

Topological dimension is what most of us regard as the “usual” dimension. For
our purposes, it suffices to consider topological dimension in terms of the usual
examples: zero-dimensional points, one-dimensional lines or curves, two-dimen-
sional surfaces, and three-dimensional solids. Topological dimension is always ex-
pressed as a whole number.

The Hausdorff-Besicovitch dimension is substantially more complicated; it is
based on the idea of “measure” or “extent” of a set of points. (These are blanket
terms for the concepts of “length,” “area,” and “volume,” each of which is a
measure associated with objects of a particular dimension.) The set whose dimen-
sion is to be calculated is covered in various ways by sets of known measure, and
limit processes are used to compute the set’s measure. This measure depends in a
critical way on the dimension 4 assumed in the computation, there being at most
one choice of d for which the measure will be neither 0 nor infinity. (See the
accompanying sidebar, “A Closer Look at Hausdorff-Besicovitch Dimension.”)
The complexity of this process makes it unsuitable for our purpose and impractical
as a computational tool.

Although the Hausdorff-Besicovitch dimension is not a simple matter to com-
pute, the self-similarity dimension is much easier to calculate and fortunately turn
out, for our purposes, to be equal to the Hausdorff—Besicovitch dimension. (This is
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not necessarily the case for all sets, but we will not encounter any of the counter-
examples in our discussion of fractals.) Formally, a fractal is an object whose
topological dimension is less than its Hausdorff-Besicovitch dimension. Less for-
mally, we have been saying that a fractal is an object with nonintegral self-similarity
dimension. However, Edward Szpilrajn showed that topological dimension cannot
be greater than the Hausdorff—Besicovitch dimension [Hurwicz and Wallman]; thus
(because topological dimension is always integral), if the Hausdorff-Besicovitch
dimension is nonintegral, then it must exceed the topological dimension. Hence a
fractal in our informal sense is also one by Mandelbrot’s formal definition. The
reverse is not true, because in the next section we will see a fractal whose
self-similarity dimension is integral, but which satisfies the requirements of Man-
delbrot’s definition.

Having gone to the trouble of presenting the formal definition of fractals, we
should also point out that Mandelbrot himself considers the idea of “fractal” to be
broader than that which can be contained in any formal definition. In his own
words [Mandelbrot 1982, p. 36]: “I continue to believe that one would do better
without a definition.”

3. You, Me, and Other Fractals

“You know we built planets, do you?” he asked solemnly.

“Well, yes,” said Arthur, “I’d sort of gathered . ..”

“Fascinating trade,” said the old man, and a wistful look came

into his eyes, “doing the coastlines was always my favorite.

Used to have endless fun doing the little bits in fjords ... ”
[Adams, p. 152]

The attentive reader will have already noticed that the snowflake and Gosper
flowsnake are based on essentially the same type of iterative construction. This
“Koch construction” serves to generate several new fractal curves whose self-
similarity dimensions lie between 1 and 2. As before, we begin with the unit interval
and replace it with a broken line whose segments are of equal length. Suppose that
each segment is of length 1/4. Then the scaling factor is always s = 4, while the
number N varies with the construction. Four feasible choices of N are illustrated in
Figure 8. (Compare Figure 4.) The effect of applying the construction for d = 1.5 to

[=]
[=]

d=1log5/logd~1.16
d =log7/log4~1.40

[=)
[=)
—

d=1log6/log4~ 129 d=log8/logd =15

Figure 8. 107



the sides of a unit square is shown in Figure 9; Mandelbrot calls this a “quadric
Koch island.” [Mandelbrot 1982, p. 50.]

® %
&

Figure 9.

For an example with 2 < d < 3, consider a unit cube and the 27 subcubes you
get by scaling down by a factor of 3. Remove 7 cubes: the central subcube of each
of the six faces and the subcube in the very center. (See Figure 10 or get your
Rubik’s cube out again ... . Yes, I know it doesn’t really have a center cube.) We
are left with N = 20 cubes and a scaling factor of s = 3. At each stage, we similarly
dissect the scaled-down cubes so that, in the limit, we obtain what is called the
Menger sponge. Figure 11 shows the fourth stage of its construction. The Menger
sponge has self-similarity dimension

d= log 20

W ~ 2.7268.
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Figure 11.

The volume of the sponge is O (as can be shown by summing the volume of the

material removed at each stage), but its surface area is infinite. The faces of the

8 and s = 3, the dimension

sponge are called Sierpinski carpets; since we have N

of a carpet is log8/log3 ~ 1.8928.
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While the Menger sponge and the other examples of fractals are intriguing, they
appear to have little to do with what we call the “real world.” In a sense, we have
been misled by the artificial regularity of the Koch construction and over-reliance
on self-similarity.

Mandelbrot’s classic example of the fractal nature of coastlines (d ~ 1.2) is based
on a less rigid notion of “statistical” self-similarity. This is akin to the observation
that, given a suitable shift of scale, the coastline of Rhode Island “looks like” the
coastline of California.

Mandelbrot has set himself the task of demonstrating that fractal geometry is an
essential part of the structure of nature. Fractal geometry now provides a unified
approach to problems involving systematic irregularity and similarity under changes
of scale. In physics, fractals have been used to model Brownian motion and points
of turbulence in fluid flow. In meteorology, fractals can be used to model clouds.
Fractals have been applied to the distribution of matter in the universe; it seems
that the universe itself may be a fractal!

In physiology, there is one example that hits particularly close to home: tissue
cells and blood vessels. The latter provide the former with needed fuel (oxygen), so
it is necessary that our system of blood vessels approaches closely to each tissue cell.
Moreover, the vascular system carries nutrients to the cells and carries off waste
products. Thus, each cell must be near an artery to receive sustenance and near a
vein to discharge waste. Gosper’s flowsnake can be used to construct a model of a
planar analog of the body’s vasculature.

Figure 12 shows the fourth stage of the construction of the flowsnake as a
boundary between a white region and a black one. A “drainage system” or
“watershed” is then modeled by drawing “rivers” along the midlines of the black
and white “fingers” of the figure. The “rivers” are then differentiated into “arteries”
(black) and “veins” (gray). Figure 13 illustrates a model in which the width of the
vessels diminishes at a rate.proportional to their length. The spaces between the
vessels represent tissue.

A satisfactory model actually requires that the vessels narrow at a more rapid
rate. It is possible to choose a rate such that, in the limit, the blood vessels will
occupy only a small fraction of the planar region. The rest is then tissue. As
Mandelbrot points out [Mandelbrot 1977, p. 78], it is a fractal:

In the present planar reduction veins and arteries both have interior points, and small
circles can be drawn entirely within them. On the other hand, the vessels occupy only a
small percent of the overall area. The tissue is very different; it contains no piece, however
small, that is not crisscrossed by both artery and vein. Such a tissue is a bona fide fractal
curve: topological dimension of 1 and fractal dimension of 2.

Here, then, is the promised fractal of integral self-similarity dimension—a planar
analog of our circulatory system. We should not be surprised now to learn that our
body tissue can be regarded as a fractal surface. Body tissue is topologically
two-dimensional because it is the interface between the three-dimensional arterial
and venous systems. Its fractal dimension is three, however, because tissue actually
occupies the bulk of the volume occupied by our bodies. In other words, you and I
are also examples of fractals.
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Figure 12.

Figure 13.
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A Closer Look at Hausdorff-Besicovitch Dimension

“By fluke, I had studied Hausdorff dimension—partly because a friend of mine,
Henry McKean, Jr., had written his thesis on the Hausdorff dimension of certain
random sets, when we both lived in Princeton. It was a very rarely used notion at
that time, but I discovered that it had an application to reality.” These remarks by
Mandelbrot indicate how obscure the Hausdorff approach to dimension was before
it became one of the foundation stones of fractal geometry. Part of the reason for
this obscurity probably lies in the fact that the path to Hausdorff dimension is quite
roundabout—one cannot go directly to it. Rather, it is first necessary to discuss the
concept of “measure.”

Coverings of the same region E for different
choices of the maximum value of r (r, < r)).

Figure 14.

To make the general approach clearer, consider the specific case of a two-
dimensional region E (Figure 14). One possible way to measure this region’s area is
to cover E with disks whose radii do not exceed a given r > 0 and then sum up their
areas. Since E can be covered in many ways, many different sums of these
disk-areas may result. For our given r, the greatest lower bound of all such possible
sums—denote this by glb(r)—gives an approximation of E’s area. Note that when
ro < r, every covering of E by disks of radii not exceeding 7, is also a covering by
disks of radii not exceeding r. Therefore, there are fewer ry-determined coverings of
E than there are r-determined coverings, and so glb(ry) > glb(r). This shows that
glb(r) increases with decreasing values of r. The limit of glb(r) as r tends to zero is
called the “Hausdorff measure” of E.

This Hausdorff measure is not precisely equal to the region’s customary Euclid-
ean area because every covering by disks, no matter how fine, always contains a
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certain amount of overlap. This deviation from our usual notion of area will turn
out not to matter for our purposes.

In general, the Hausdorff measure of a region E in n-space could be calculated
by covering it with n-balls of radii no greater than » > 0, computing glb(r), and
taking the limit as r approaches zero. When n = 1, the balls are line segments; a line
segment whose “radius” is less than r has Euclidean measure (length) less than 2r.
When n =2, the balls are disks having Euclidean measure (area) bounded above by
7r?. For n =3, we have the customary 3-dimensional balls with Euclidean mea-
sure (volume) less than (4/3)7r®. The general expression for the ordinary n-dimen-
sional Euclidean measure of an n-ball is y(n)r", where y(n)=I[T(1/2)]*/
T'(1 + 1 n).t (Readers familiar with the gamma function, I'(x) = [{e~*x"~'dx, can
readily verify that y(1) =2, y(2) = =, and y(3) = 47 /3, as required.) Note that n
does not have to be an integer for this expression for Euclidean measure to be
meaningful.

This approach was extended by Hausdorff in 1919 to the calculation of d-
dimensional measures, where d > 0 was not an integer. To compute the d-
dimensional Hausdorff measure of a region E lying in n-space, we use the earlier
approach of covering with n-balls of radius r, but now we sum the d-dimensional
Euclidean measures, y(d)r¢, of these balls.

Consider, for example, a line segment or curve of length L which lies in some
n-dimensional space. For sufficiently small values of r, it will take approximately
L /2r n-balls of radius r to cover the curve. (Regardless of n, the diameters of the
n-balls are 2r.) Denote the sum of the W-dimensional measures of these balls by S,.
We have

S, ~ (L/2ryy(d)r® = (L/2)y(d)r* "

Note that 0 < glb(r) < S,, since glb(r) was defined as the greatest lower bound of
all sums which estimate the measure of the curve, and S, is only one such sum.

For d > 1, the approximating expression for S, decreases to 0 as r tends to 0.
Therefore, lim,_,,glb(r) = 0. For d = 1, we have S, ~ L. Although S, must actually
exceed L slightly (because of overlap and the fact that anything less than L would
not be a covering), it can be made arbitrarily close by choosing a sufficiently small r
and minimizing the overlap of the balls. Thus it follows that lim,_,glb(r) = L.
(Note that in this simple case, the curve’s Hausdorff measure agrees with its
Euclidean measure.) For d < 1, the sum S, tends to infinity as r decreases to zero.
But for small », we have glb(r) ~ S,. Thus, lim,_,,glb(r) = o0 for d < .

As the preceding example shows, Hausdorff d-dimensional measure is zero or
infinity when an unsuitable choice of d is made. Besicovitch pointed out that this
could be used to define a notion of dimension for certain sets. By computing the

f Editor’s Note: Readers may find useful here Marshall Fraser’s formula for the volume of a n-ball of
radius r:

,n.n/Zrn
r n even
| =/
Valr) = o+ 1) /2, (n=1)/2un 4
an—2...3 > "%

See “The Grazing Goat in n-Dimensions,” this volume, pp. 126—-134.
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Hausdorff measure for different values of d, one might try to define as “dimension”
the one value of d for which the Hausdorff measure is both positive and finite. If
the measure is 0, then the value of d is too large; if infinite, d is too small. This
definition is deficient in one significant respect, as can be shown by reconsidering
our example of the curve of length L. Had L been infinite, the Hausdorff measure
would also have been infinite—even for d = 1. “Hausdorff-Besicovitch dimension”
is actually defined as the value of d which is the “cut point” separating infinite
values of Hausdorff measure from zero values. The Hausdorff measure for the
chosen value of d may be positive and finite, as we initially hoped, but the value at
the cut point may also be zero or infinity.

Our use of Euclidean measure for the covering n-balls is more restrictive than
Hausdorff’s own approach. Hausdorff measure is a metric concept which uses balls
of radius r and a “gauge” function A(r). Our gauge function was y(n)r". We could
just as well have used r” alone, or some other suitable function. A more detailed
argument is provided on pp. 361-365 of Mande]brot 1982.
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