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1. INTRODUCTION. Two of the most ubiquitous objects in mathematics are the
sequence of prime numbers and the binomial coefficients (and thus Pascal’s triangle).
A connection between the two is given by a well-known characterization of the prime
numbers:

Consider the entries in the kth row of Pascal’s triangle, without the initial and
final entries. They are all divisible by k if and only if k is a prime.

It is the purpose of this article to present a triangular array of numbers similar to
Pascal’s triangle and to prove a corresponding criterion for the twin prime pairs. A
further goal is to place all this in the context of some classical orthogonal polynomials
and to relate it to some recent work of John D’ Angelo.

To begin, and for the sake of completeness, we present a short proof of the Pascal
triangle criterion. First suppose that k = p is prime. Then we see that in

p p! ,
()= a=i=r-v

the numerator is divisible by p, while the denominator is not. On the other hand,
suppose that k is not prime. Choose a prime divisor p of k and write k = mp®, where
p 1 m. Then we see that

(k):mz?”(mp“—l)---~~(mp”—p+1)
p

6]

is not divisible by p“, and therefore not by k.

Other related primality criteria are known. A particularly intriguing one can be
found in [14] and [10].

In constructing a twin-prime analogue of the Pascal triangle criterion we shall em-
ulate the two parts of the foregoing proof. What makes the second part work is the
choice of a prime divisor p of the composite number k. In analogy, if the integers
2k — 1 and 2k + 1 are not a twin-prime pair, we can find a prime p properly divid-
ing one of these two integers. We now need to find an expression depending on k and
analogous to (1) that is not divisible by p. This is achieved by the following lemma:

Lemma 1. Let p be an odd prime properly dividing either 2k — 1 or 2k + 1. Then p
does not divide the binomial coefficient

<k+(p—3)/2>
p—2 '
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We prove this with an argument similar to the previous one. If p | 2k — 1, we can
write 2k — 1 = p(2m + 1) withm > 1. Thenk + (p —3)/2 = p — 1 + mp, and the
binomial coefficient becomes

(p—1+mp)(p—2+mp)----- (24 mp)
(r—-2!

In case p | 2k + 1, the same procedure yields

(p—2+mp)(p—3+mp)----- (I +mp)
(p—2)! '

In either event the numerator is clearly relatively prime to p.
Now, in order to have the desired criterion, we employ the binomial coefficient

k+s
2s+1)°
With s = (p — 3)/2 this is the expression in Lemma 1. To make the other direction

work, we still need to modify this binomial coefficient. In fact, our main object of
study will be the expressions

. (2)

alk.s) = (k—{—s ) 2k —1DQ2k+1)

2s + 1 25 +3
where k > 1 and 0 < s < k — 1. The numerator of the additional factor is there to cre-

ate divisibility, whereas the denominator is there to inhibit divisibility. These numbers
a(k, s) form a triangular array, where k corresponds to the row number:

1
10 3
35 28 5
84 126 54 7 3)
165 396 297 88 9

286 1001 1144 572 130 11
455 2184 3510 2600 975 180 13

We first observe that all the entries shown are integers. This is not clear from the
definition (2), in the same way that it is not obvious that the Catalan numbers

1 2n
n+1\n

are integers. However, in the next section we establish the following fact:

Theorem 1. All the entries in the triangle (3) are integers (i.e., a(k, s) belongs to N
wheneverk > 1 and 0 <s <k —1).

Now consider, for example, row six in the triangle. We observe that all entries but
one (the second from the right) are divisible by 2k — 1 = 11, and similarly, all but one
(the right-most entry) are divisible by 2k + 1 = 13. On the other hand, this property
does not hold for row five (the factor 11 has the divisibility property, but 9 does not).
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This is explained by the following theorem, which is our main result:

Theorem 2. The entries in the kth row of the number triangle (3) are divisible by
2k — 1 with exactly one exception and are divisible by 2k + 1 with exactly one excep-
tion if and only if (2k — 1, 2k + 1) is a pair of twin primes.

Thus the number triangle (3) characterizes the twin primes in a way similar to that in
which Pascal’s triangle characterizes the primes. It should be noted that Matiyasevich
[16] derived criteria for primality and for twin primes that also involved binomial
coefficients. However, these criteria are of quite a different nature.

To prove Theorem 2 we use Lemma 1 and the fact that, by Theorem 1, the numbers
a(k, s) are all integers. The last two terms in the kth row of (3) are

atk,k —2) = 2k —2)(2k + 1), atk,k —1) =2k — 1.

If 2k — 1,2k + 1) is a twin prime pair, it is clear that a(k, k — 1) is not divisible by
2k 4 1 and that a(k, k — 2) is not divisible by 2k — 1. All other a(k, s) are divisible
by both since 2s 4+ 3 < 2k — 1.

On the other hand, if 2k — 1 is not a prime, it has a proper odd prime factor of the
form 2s + 3 with 0 < s <k — 3 (in fact, s < (k — 3)/2), and this factor is relatively
prime to 2k + 1. As already indicated after Lemma 1, we set p = 2s + 3, so that

k+s\  (k+2°
25+1) \p=2)

By Lemma 1, p does not divide this binomial coefficient; hence

-3
a <k, p_)
2
is not divisible by 2k — 1.

Similarly, if 2k 4 1 is not prime, it, too, has a proper odd prime factor of the form
2s +3 with 0 < s < k — 3 (in this instance, s < (k — 3)/2). This factor is relatively
prime to 2k — 1. We write p = 2s + 3 and proceed as earlier to reach the same con-
clusion. This completes the proof.

2. A GENERATING FUNCTION. Counting arguments are often used to prove that
a combinatorial expression is in fact an integer. Probably the best known argument of
this type consists in showing that (Z) counts the number of ways to choose a k-element
subset from an n-element set. Similarly, the Catalan numbers

1 2n
n+1\n
can be shown to be integers through any of their numerous combinatorial interpreta-
tions (see, for example, [11, p. 358ff.]). A good introduction to this kind of combi-
natorial reasoning is given in the recent book [3]. Demonstrating that a(k, s) counts
something would obviously prove Theorem 1.

Here we use another important and more general method, namely, generating func-

tions. Basically we consider the entries in a row of our number triangles as coefficients
of polynomials and then study these polynomial sequences. We illustrate this with the
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Pascal triangle. Using a geometric series, we have

1

— =) P =1+ 4+x) 0+ A+ 2x +xDP+ -
1 — (14 x)t ;

We can thus rephrase the Pascal triangle criterion as follows:

When k > 2 the coefficients of P.(x) are divisible by k with exactly two excep-
tions if and only if k is prime.

As an aside we mention that P, (x) = (1 + x)* hints at another equivalent formu-
lation of the original Pascal triangle primality criterion: the integer p is prime if and
only if the polynomial congruence

x+1DP=x"4+1 (mod p)

holds. This congruence is important in algebra and number theory (see, for example,
[12, p. 68]). It has recently gained additional prominence in connection with the AKS
primality test, a remarkable new algorithm for testing primality of an integer “in poly-
nomial time” (see [2] or [4]).

In analogy with the polynomials P, (x), we define polynomials Q,(x) with the en-
tries of the kth row of the triangle (3) as coefficients:

e L S (ks Qk—DRk+D |
Qi) .—;aac,s)x —g(ZSH) oy @)

Thus Q1 (x) = 1, Q>(x) = 10+ 3x, Q3(x) = 35+ 28x + 5x%, Q4(x) = 84 + 126x +
54x% + 7x3, etc.

We now find the generating function for the Q,(x) that is the analogue of the gen-
erating function for the P (x).

Lemma 2. The polynomial sequence Q(x) satisfies

1+ (6 +x)t + 1> _00 .
TG er = o S s

The shape of the generating function (i.e., of the left-hand side of (5)) indicates
a connection with certain orthogonal polynomials. This could be used to prove
Lemma 2, and we shall return to this connection later. However, here we present
a more straightforward and standard proof.

Multiplying both sides of (5) by the denominator of the left-hand side, namely,

1 — (44 2x)1 + (6 +4x + xHt* — (4 4 2x)1> + 14,

we see that it defines a sequence of polynomials Q, (x) satisfying the following equa-
tions:

O1(x) =1,
Q2(x) —(4+2x)01(x) =6 +x,
03(x) = (44 2x)0r(x) + (6 +4x +x%) 01 (x) = 1,
Q4(x) = (4+20) Q3(x) + (6 + 4x +x%) 05 (x) — (4 +2x) 01 (x) =0,
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and, in general,

Qrra(x) — (44 2x) Qp13(x) + (6 + 4x + x7) Q2 (x)
— (44 2x) Ok (x) + Qi (x) = 0. (6)

Moreover, these equations recursively define a unique sequence of polynomials. Hence
we simply need to show that the expression on the right of (4) satisfies these equations.
Replace each occurrence of O with that expression and collect equal powers of x. This
yields a straightforward (though tedious) verification and can be done either “by hand”
or with the help of a computer algebra system.

This method also gives an immediate proof by induction of Theorem 1, to wit, that
the coefficients of the Q(x) are integers. Indeed, we have seen that this is true for
k =1, 2, 3, and 4. The induction step is now provided by identity (6).

3. A ONE-PRIME VARIANT AND ORTHOGONAL POLYNOMIALS. While
studying resultants and discriminants of certain linear combinations of Chebyshev
polynomials (see [8]), the second author found that his colleague John D’ Angelo was
studying some of the same polynomials in connection with problems in the theory of
several complex variables. In the ensuing conversations, D’ Angelo pointed out to the
present authors the following result and its proof:

Theorem 3. The number triangle whose kth row consists of the numbers

O=<s=<k (7

bik. s) = <k+s>2k—|—1

2s J2s+1

characterizes the primes in the following sense: the entries in the kth row are divisible
by 2k + 1 with exactly one exception if and only if 2k + 1 is prime.

This theorem played a pivotal role in our making the transition from Pascal’s tri-
angle to the triangle (3). As before we place the numbers b(k, s) in a triangle beginning
with

9 30 27 9 1 ®)
1155 77 44 11 1
13 91 182 156 65 13 1

This triangle, in slightly modified form, can also be found in [S, p. 175]. There it
is shown how the triangle’s entries arise in the proof of the existence of a “proper
polynomial mapping” (for definitions, see [5, p. 151]) between the unit balls in C? and
in C>**,

Once again we define a sequence of polynomials J;(x) that have the entries in the
kth row as coefficients. (Note that here the rows are counted starting with k = 0.) Thus

k
k+s\2k+1
Jk(X)=Z( . )2s+1x.

s=0
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While it is not obvious that the coefficients of these polynomials are integers, this fact
can be verified by induction, just as in the proof of Theorem 1. For this purpose we
use the generating function

o0

1 +1 .
—Q+or+e ;J"(x)t ’ ©)

which can be derived in a way similar to (but easier than) the derivation in Lemma 2.
The entries in the triangle (8) also have a combinatorial interpretation [18].
The polynomials J;(x) are not new. They have an important extremal property re-
lating the degrees of certain polynomials to the number of their terms (see [7]).
Theorem 3 can be proved in the same way as Theorem 2—the proof is in fact
simpler. The analogue of Lemma 1 is the fact that an odd prime p that properly divides
2k + 1 cannot divide the binomial coefficient

<k+(p—1)/2)
p—1 '

To see this we write 2k + 1 = p(2m + 1) and observe that

(k+”71>_(mp+p—1)(mP+P—2) """ Gnp + 1)
p—1)7 (- 1! ‘

The remainder of the proof is similar to that of Theorem 2.

The polynomials J;(x) are also closely related to the Chebyshev polynomials
of the second kind U,(x), where the first few such are Uy(x) = 1, U;(x) = 2x,
and U,(x) = 4x? — 1. These polynomials occur, for instance, in the expansion of
sin[(k + 1)0]/sin @ in terms of powers of cos @, thus generalizing the double-angle
formula sin(260) = 2sin @ cos 6. They also belong to the class of classical orthogonal
polynomials and have numerous interesting properties and important applications in
approximation theory and numerical analysis (see, for instance, [17]). Their generating
function is remarkably simple:

1—2xt+12 Z Uit

By comparing this with (9) and using standard identities for the Chebyshev polynomi-
als (see [17] or [1, chap. 22]) one obtains

J4
Jk(x)=U2k< +x>’

2

These polynomials may also be thought of from the point of view of circulants. For
this we refer readers to [13].

Next, the polynomials Q;(x) of (4) and (5) are related to the Gegenbauer (or ultra-
spherical) polynomials, a class of polynomials that generalize the Chebyshev polyno-
mials Uy (x) in a natural way. They can be defined by the generating function

_ = (01)
(1 — 2xt +t2)°‘ - Z (ot
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For fixed nonzero real parameters « greater than 1/2 they also belong to the classical
orthogonal polynomials and have numerous remarkable properties and applications
(see [1, chap. 22]). By expanding the denominator of (5) according to the aforemen-
tioned formula with « = 2 we obtain

2+x 2+x 2+x
00 = (235 ) + e e (250 e ().

4. TRIANGULAR RECURRENCE RELATIONS. We began this paper by con-
sidering the Pascal triangle, which can be constructed from the important relation

(7)=(5)+0)
= + .
s s—1 s
The question then arises whether the number triangles (3) and (8) are associated with

similar “triangular” recurrence relations. Such relations do indeed exist: the numbers
a(k, s) defined in (2) satisfy

kl—w[kk122k23k]10
a(k + ,s)—(zk_l)@k)(—i-s)a(,s—)+( +2s +3alk,s)|, (10)

and the numbers b(k, s) that are encountered in (7) satisfy

bk 4+ 1.s) = 2k +s)(k+s+ 1) an
2k — DHQRk)2k + 1)(2k +2)

x [k + 2k +3 = 3s)b(k, s — 1) + 2(4k> + 4k — 3 — 65)b(k, 8)].

Along with the initial values a(1, 0) = b(0, 0) = 1 and the usual convention that all
terms “off the triangle” are zero, these relations could be used to construct the triangles
(3) and (8). Of course, these do look rather convoluted compared with the triangular
recurrence for the Pascal triangle.

Given the denominators on the right-hand sides of (10) and (11), it is by no means
clear that the numbers a(k, s) and b(k, s), if they were defined in this way, should all
be integers. However, we did already establish that this is the case. There has recently
been interest in other recurrences that produce integers for no obvious reasons (see,
for example, [9]).

Both relations (10) and (11) are easy to verify by substituting into them the expres-
sions (2) and (7), respectively, then simplifying and using standard identities for the
binomial coefficients. These relations were discovered by setting up the equation (in
the case of (11))

bk+1,s)=A-blk,s —1)+ B -b(k,s)

with undetermined coefficients A and B. After canceling the various factorials com-
mon to b(k + 1,s),b(k,s — 1), and b(k, s), we used a computer-algebra system to
find A and B with the aid of the extended Euclidean algorithm. Relation (10) was also
first obtained in this way.

While the relations (10) and (11) are very complicated, much simpler relations for
the a(k, s) can be obtained from (6) by equating coefficients in (4). Similarly, simple
relations for the b(k, s) can be obtained from (9) by the same method. We leave the
details to the interested reader. These formulas differ from (10) and (11) in that they
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involve more than just two adjacent rows in the corresponding triangles. Another re-
currence relation for the b(k, s), involving all the preceding rows in the triangle, can
be found on page 175 of [5].

In this connection it is interesting to note that triangular recurrence relations, and
more generally “recurrence double sequences,” have been studied in great generality
and from the points of view of number theory, combinatorics, and computer science.
For some recent results on this topic, see [15] and the references listed there.

5. OTHER PRIME PATTERNS. It is a natural question to ask whether there are
triangles analogous to (3) that characterize prime pairs with fixed differences larger
than two. Similarly, one could ask whether prime k-tuples with fixed configurations—
for instance, prime triples of the form (2k + 1, 2k + 3, 2k + 7)—can be characterized
in this way.

As far as the first question is concerned, it is not difficult to derive an analogue to
Lemma 1, but we were unable to find an analogue to (2) with the required properties.
For the second question, and with the properties of the generating function in mind
(that is, (9) for single primes and (5) for twin primes), one may wish to study number
triangles generated by analogues of (9) and (5) with higher powers in the denominator.
We did indeed study such triangles from a different perspective but did not detect any
characterizations of prime k-tuples, nor were we able to adapt our method to achieve
such characterizations. It therefore remains an interesting open problem whether there
is an analogue of triangle (3) for prime k-tuples other than the twin primes.
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Public Announcement

The Federal Government recommends that numbers greater than 2*° have their
primality tested. The odd ones need the PSW test, and all need an MR test at
regular intervals. Those with a history of pseudoprimality should also have the
AKS test. These tests are now quick and painless. Call your local number theorist
to schedule an appointment.

Submitted by Jane Ross and Felipe Voloch,
University of Texas at Austin
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