
A Tail of Two Palindromes
Edward B. Burger

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness, it was the epoc of belief, it was the epoc of incredulity, it was the season of
light, it was the season of darkness, it was the spring of hope, it was the winter of despair,
we had everything before us, we had nothing before us, we were all going direct to heaven,
we were all going direct the other way—in short, the period was so far like the present
period. . . . —Charles Dickens

1. A TALE OF TWO CONJUGATES
[
. . . , Vanna, wanna ‘V’?; “I prefer pi.”

]
.

Upon a preliminary perusal, this parable may appear to be about pairs of palindromes,
periods, and pitiful alliteration. In actuality, however, it is the story of a real quadra-
tric irrational number α and its long-lost younger sibling, its algebraic conjugate
α̃ (α > α̃). How in the dickens are all these notions connected? We begin at the
beginning. . . .

Although the conjugates α and α̃ are not identical twins, unlike the two zeros of
(x − 3)2, they do share a common family history: they each were born of the same
irreducible parent polynomial having rational coefficients,

Pα(x) = P̃α(x) = (x − α)(x − α̃) = x2 − Trace(α)x + Norm(α),

where Trace(α) = α + α̃ and Norm(α) = α α̃. Perhaps not surprisingly, some conju-
gate pairs exhibit similar personalities. But how similar can they be? And how can we
detect those similarities simply by looking at α? As we will discover as our tale un-
folds, the answer—foreshadowed in the title—is encoded in what can be described as
the number theoretic analogue of the DNA-sequence for α. However, before delving
into α’s genes, we first motivate our main results by weaving a lattice of algebra.

The setting for our story is an ordinary real quadratic field Q(
√

d ) for some square-
free positive integer d. No matter whether one views Q(

√
d ) as a familiar field or a

foreign one, all we require here is the basic observation that

Q(
√

d ) = Q + Q
√

d = {
r + s

√
d : r, s ∈ Q

}
.

Given α in Q(
√

d ), we define the lattice generated by α, denoted Z + Zα, by

Z + Zα = {m + nα : m, n ∈ Z}.

Those readers who are algebraically inclined will recognize Z + Zα as a Z-module in
Q(

√
d ), namely, the Z-module generated by 1 and α. In order to set the scene, we note

that it is a relatively easy matter to determine when two lattices are identical. In fact,
the story line behind the short proof is so straightforward that we suppress it here.

Proposition 1. For irrational numbers α and β in Q(
√

d ), the lattices Z + Zα and
Z + Zβ are identical if and only if either α + β or α − β is an integer.
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If we now think geometrically, then we can consider two lattices in Q(
√

d ) to
be “similar” if one is a “scalar multiple” of the other. More precisely, we say that
the lattices Z + Zα and Z + Zβ in Q(

√
d ) are similar, expressed symbolically by

Z + Zα ≈ Z + Zβ, if there exists γ in Q(
√

d ) such that Z + Zα = γ (Z + Zβ). While
the notion of similar modules is fundamental in classical algebraic number theory,
prompted by Proposition 1 we focus here on the natural question begging to be asked:
When are two lattices similar? The answer comes into focus through the following
not-widely-known mathematical vignette:

Proposition 2. For α and β in Q(
√

d ), the lattices Z + Zα and Z + Zβ are similar
if and only if there exist integers A, B, C, and D satisfying AD − BC = ±1 such that

α = A + Bβ

C + Dβ
. (1)

A sketchy “Cliff Notes” version of the proof. If we assume that the two lattices are
similar, then there exists γ in Q(

√
d ) for which

Z + Zα = γ (Z + Zβ). (2)

Thus we can find integers A, B, C , and D such that α = γ (A + Bβ) and 1 =
γ (C + Dβ). After the profound insight that α = α/1, we discover that

α = A + Bβ

C + Dβ
.

Similarly, by again appealing to (2) we see that there exist integers A′, B ′, C ′, and D′
that produce the identities γβ = A′ + B ′α and γ = C ′ + D′α, whence

β = γβ

γ
= A′ + B ′α

C ′ + D′α
.

A little linear algebra reveals that

(
A′ B ′
C ′ D′

)−1

=
(

A B
C D

)
,

and since all the entries in these two matrices are integers, we conclude that the deter-
minant AD − BC must be 1 or −1.

Conversely, we now suppose that (1) holds with integers A, B, C , and D satisfying
AD − BC = ±1. If we select γ = (C + Dβ)−1, then everyday algebra allows us to
verify easily that

m + nα = γ
(
(n A + mC) + (nB + m D)β

) ∈ γ (Z + Zβ)

holds for any m + nα in Z + Zα and that

γ (m + nβ) = ∓(m B − n A) ∓ (−m D + nC)α ∈ Z + Zα

is also true for each m + nβ in Z + Zβ. Thus we see that Z + Zα = γ (Z + Zβ) and
conclude that the lattices Z + Zα and Z + Zβ are similar, which brings our sketchy
overview to a close.
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Many readers will recognize the fundamental relationship in (1), for it takes on sup-
porting roles throughout nearly all branches of mathematics. In fact, two real numbers
α and β are said to be equivalent, denoted α ∼ β, if there exist integers A, B, C , and
D satisfying

α = A + Bβ

C + Dβ
(AD − BC = ±1); (3)

that is, using some highbrow language, if α is a linear fractional transformation or a
Mellon transformation or a Möbius transformation of β.

Returning now to our main quadratic characters α and α̃, we see by Proposition 1
that Z + Zα = Z + Z(α + k) for any integer k. Therefore, without loss of generality,
we may assume for the purpose of our story that the quadratic irrational α is greater
than 1. Since α − α̃ is irrational, Proposition 1 also reveals that the lattices Z + Zα

and Z + Zα̃ are identical if and only if Trace(α) is an integer—an easy circumstance
to check. On the other hand, from Proposition 2 we learn that Z + Zα and Z + Zα̃ are
similar if and only if α and α̃ are equivalent—a far more cryptic condition to verify
quickly.

One illuminating and three obscuring examples in Q(
√

5 ). If α1 = 1
2 + √

5, then
we immediately see that Trace(α1) = 1 and instantly conclude that

Z + Z
(

1
2 + √

5
)

= Z + Z
(

1
2 − √

5
)

.

However our story would have a dramatically different ending if our main character
were α2 = 1

3 + √
5 or α3 = 1

4 + √
5 or α4 = 1

5 + √
5. Clearly we see that Trace(α2) =

2
3 , Trace(α3) = 1

2 , and Trace(α4) = 2
5 are not integers, from which we infer that Z +

Zα2 �= Z + Zα̃2, Z + Zα3 �= Z + Zα̃3, and Z + Zα4 �= Z + Zα̃4. However perhaps
some of those pairs of “conjugate lattices” might at least be similar.

As we discover in the next chapter of our tale, Z + Zα2 �≈ Z + Zα̃2, whereas
Z + Zα3 ≈ Z + Zα̃3 and Z + Zα4 ≈ Z + Zα̃4; or stated differently, 1

3 + √
5 is not

equivalent to 1
3 − √

5, whereas both 1
4 + √

5 and 1
5 + √

5 are equivalent to their con-
jugate younger siblings 1

4 − √
5 and 1

5 − √
5, respectively. Specifically we have the

following highly nonobvious identities:

1

4
+ √

5 = 445 − 179( 1
4 − √

5 )

179 − 72( 1
4 − √

5 )
,

where (445)(−72) − (−179)(179) = 1, and

1

5
+ √

5 = 1810 − 743( 1
5 − √

5 )

743 − 305( 1
5 − √

5 )
,

where (1810)(−305) − (−743)(743) = −1. Moreover, in these two cases, the indi-
cated coefficients are the most petite ones that satisfy the conditions of (3); that is, all
four of the coefficients in each case have the smallest possible absolute values. How
would someone find those somewhat hefty integers or, as in the case of 1

3 + √
5, con-

clusively show that no such integers of any girth exist? We will soon see that if we
look at α in the right way, we do not have to find those integers—when they exist, they
will find us.

This little lattice conjugate conundrum inspires the following question, which in
this paper we pose, answer, and place in context: Given a real quadratic irrational
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number α, how can we simply look at it and immediately determine whether α is
equivalent to its conjugate?

2. A TALE OF TWO THEOREMS
[
. . . , Never odd or even?; i ! ]

. For any real
irrational number α we write α = a0 + α0, where a0 = [α] signifies the integer part
of α (a0 is the largest integer that does not exceed α), while α0 = {α} plays the minor
role known as the fractional part of α. Since α is irrational, we have 1/α0 > 1, so after
a dramatic double flip we see that

α = a0 + 1

1/α0
= a0 + 1

a1 + α1
,

where a1 = [1/α0] and α1 = {1/α0}. Again, since α is irrational, we can repeat this
dizzying act forever and thereby discover that

α = a0 + 1

a1 + 1

a2 + 1
. . .

, (4)

where all the an are integers and an > 0 when n > 0. The expression in (4) is
known as the continued fraction expansion of α, which we abbreviate by writing
α = [a0, a1, a2, . . .]. It is this continued fraction expansion that can be thought of as
the number theoretic DNA of a real number.

By a word W of length L , we mean a finite string of L positive integers, W =
(w1, w2, . . . , wL). Reminiscent of our carefree days frolicking with repeating decimal
expansions, here we write

[
a0, a1, . . . , aM , W

]
to indicate that a continued fraction

expansion becomes periodic after aM . That is, we have1

[
a0, a1, . . . , aM , W

]
=

[
a0, a1, . . . , aM , (w1, w2, . . . , wL)

]
= [

a0, a1, . . . , aM , w1, w2, . . . , wL, w1, w2, . . . , wL, . . .
]
.

As an illustration, we remark that any computer we chose to interrogate would quickly
confess that

1
2 + √

5 =
[
2, (1, 2, 1, 3)

]
,

1
3 + √

5 =
[
2, (1, 1, 3, 9, 1, 3)

]
,

1
4 + √

5 =
[
2, (2, 17, 2, 3, 1, 70, 1, 3)

]
,

and would even admit that

1
5 + √

5

=
[
2, (2, 3, 2, 2, 3, 2, 4, 27, 1, 2, 1, 1, 1, 3, 1, 5, 9, 1, 110, 1, 9, 5, 1, 3, 1, 1, 1, 2, 1, 27, 4)

]
.

1We remark—and any continued fraction connoisseur would agree—that the parentheses surrounding the
period are superfluous and nonstandard. We include them here for clarity, and we place this comment here
since every literary work is required to contain at least one footnote.
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As we will soon discover, just by glancing at the foregoing continued fractions we
can report without missing a beat that

Z + Z
(

1
2 + √

5
)

= Z + Z
(

1
2 − √

5
)

and

Z + Z
(

1
3 + √

5
)

�≈ Z + Z
(

1
3 − √

5
)

,

while Z + Z( 1
4 + √

5 ) and Z + Z( 1
5 + √

5 ) are not the same as but are similar to
their conjugate lattices Z + Z( 1

4 − √
5 ) and Z + Z( 1

5 − √
5 ), respectively. What is

the secret? The surprising answer is that we should employ some drawkcab thinking.
We say that a word W = (w1, w2, . . . , wL) is a palindrome if it reads the same

foward and backward; that is, if (w1, w2, . . . , wL) = (wL, wL−1, . . . , w1). Anticipat-
ing the denouement of our narrative, we recall a well-known result that provides a
necessary and sufficient condition for a real quadratic irrational α (greater than 1) to
have Trace(α) = 0: for any rational number r greater than 1 for which α = √

r is
irrational, it is the case that

√
r =

[
a, (W, 2a)

]
(5)

for some positive integer a and palindrome W ; conversely, for any positive integer
a and palindrome W there exists a rational number r greater than 1 such that (5)
holds. If α = √

r with r > 1, then we make the trivial observation that α − α̃ =√
r − (−√

r ) = 2
√

r > 2. We now reveal our first result, which generalizes the pre-
vious classic characterization.

Theorem 1. Let α be a real quadratic irrational satisfying the conditions α > 1 and
α − α̃ > 2. Then Trace(α) is an integer if and only if the continued fraction expansion
of α has the form α = [

a, (W, b)
]
, where a and b are positive integers and the word W

is a palindrome. Moreover, in this situation, Trace(α) = 2a − b.

Thus by simply studying the structure of the continued fraction of α = 1
2 +√

5,
[
2, ((1, 2, 1), 3)

]
, we see that its trace is integral. Moreover, we confirm that

Trace(α) = 1 since Theorem 1 implies that Trace(α) = 4 − 3. We postpone the
proofs of Theorem 1 and the related result to follow until chapter 4, hopefully gener-
ating some mathematical suspense in the process.

We say that the real quadratic irrational α has a tail of two palindromes if its con-
tinued fraction expansion takes the form

α =
[
a0, a1, . . . , aM , (W1, W2)

]
,

where the words W1 and W2 are both palindromes. So each of the “continued fractions”
following our chapter titles has a tail of two palindromes. We also note that the periodic
word (W, b) in the continued fraction appearing in Theorem 1 as well as the periodic
word that follows the present chapter’s title are degenerate examples of tails of two
palindromes, since the one-letter words “b” and “i” are each trivial palindromes. We
now arrive at the result that answers the question we posed at the close of the previous
chapter.
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Theorem 2. A real quadratic irrational α is equivalent to its conjugate α̃ if and only
if α has a tail of two palindromes.

Thus, since the period ((2, 17, 2), (3, 1, 70, 1, 3)) of 1
4 + √

5, and the period(
(2, 3, 2, 2, 3, 2), (4, 27, 1, 2, 1, 1, 1, 3, 1, 5, 9, 1, 110, 1, 9, 5, 1, 3, 1, 1, 1, 2, 1, 27, 4)

)
of 1

5 + √
5 are both words composed of two palindromes, Theorem 2 implies that

1
4 + √

5 ∼ 1
4 − √

5 and 1
5 + √

5 ∼ 1
5 − √

5. However, since the period of 1
3 + √

5 is
((1, 1), (3, 9, 1, 3))—not a composition of two palindromes—we immediately con-
clude that 1

3 + √
5 �∼ 1

3 − √
5. We do note that if 9 were replaced by 1, then the pe-

riod would become (1, 1, 3) and the corresponding continued fraction would mutate
to α = [

2, (1, 1, 3)
]
. Invoking Theorem 1, we would conclude that the trace of α was

integral (indeed, it would be 1), hence that Z + Zα = Z + Zα̃. In fact, we would have

α =
[
2, (1, 1, 3)

]
= 1

2 + 1
2

√
17.

On the other hand, if the boldfaced 1 in the period of 1
3 + √

5 were replaced by 9, then
we would obtain the number β = [

2, ((1, 1), (3, 9, 9, 3))
]
. In this case we could con-

clude on the basis of Theorem 2 that, while Z + Zβ �= Z + Zβ̃, it is true that β ∼ β̃.
As a final aside for those who are curious, we report that this one-digit replacement
yields

β =
[
2, ((1, 1), (3, 9, 9, 3))

]
= 27

37 + 1
74

√
18530.

As an entertaining digression, we momentarily consider the special case in which
the period of α is a word whose entries come from a two-element set, for example,
α = [

3, 4, (1, 2, 1, 2, 2, 1)
]
. Theorem 2 immediately implies that, unless α ∼ α̃, the

period of such a quadratic irrational cannot be too modest in length. Specifically we
have:

Corollary 1. Suppose that α = [
a0, a1, . . . , aM , W

]
, where W is a word of length L

formed from a two-integer alphabet {a, b}. If α �∼ α̃, then L ≥ 6.

3. A TALE OF TWO THEORIES
[
. . . , A Toyota!; Race carrot or race car?

]
.

Here we briefly shine the spotlight on two important classical topics that are promi-
nent both in the literature and in the arguments to come: the continued fractions of real
quadratic irrationals and the continued fractions of equivalent numbers. In addition,
we expose the intimate relationship that exists between continued fractions and 2 × 2
matrices. There are many venues where the full story behind these ideas is played
out (see, for example, [1]). Our terse overview begins with a celebrated theorem of
Lagrange from 1770 [3].

Lagrange’s Theorem. A real number α is a quadratic irrational if and only if its
continued fraction expansion is eventually periodic.

We continue our rapid review by recalling that a real quadratic irrational α is re-
duced if α > 1 and −1 < α̃ < 0. It is a simple matter to show that for any given
irrational α in Q(

√
d ) with α − α̃ > 2 there exists an integer k such that α + k is

reduced. But how can we determine whether a quadratic is reduced by merely gazing
into its continued fraction expansion? Before dueling with pistols, Galois dueled with
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the less fatal proposition of continued fractions and answered this question. In fact his
first published result, dating from 1829, was the following [2]:

Galois’s Theorem. A real quadratic irrational α is reduced if and only if α is purely

periodic. Moreover, if α = [
W

]
with W = (w1, w2, . . . , wL), then −1/α̃ =

[←−
W

]
,

where
←−
W = (wL, wL−1, . . . , w1).

We highlight one last beautiful classic result. If we seek an example of equanimity
within the context of impressionistic painting, then we might point to the well-known
work of Georges Seurat. However if we seek an impressionistic view of equivalent
numbers within the context of continued fractions, then we might turn to an 1847
theorem of Joseph Serret [4].

Serret’s Theorem. Real numbers α and β are equivalent if and only if from some
point onward the tails of their continued fractions coincide.

So, for example, Serret’s theorem tells us that
[
3, 7, 5, 8, (2, 1)

] ∼ [
9, 6, (1, 2)

]
.

Now, in a surprising turn of events, we find 2 × 2 matrices suddenly appearing on
the scene and transforming the linear flow of our story. The star-crossed relationship
between continued fractions and 2 × 2 matrices is dramatically portrayed in the fol-
lowing lemma, which can be verified by induction.

Lemma 1. For nonzero real numbers c1, c2, . . . , cn, let rn and sn be defined by r0 = 1,
s0 = 0, and (

c1 1
1 0

) (
c2 1
1 0

)
· · ·

(
cn 1
1 0

)
=

(
rn rn−1

sn sn−1

)
(6)

for n ≥ 1. Then

rn

sn
= c1 + 1

c2 + 1

c3 + 1
. . . + 1

cn

.

We caution the casual reader that the continuedesque fraction appearing in Lemma 1
is an “illegitimate” continued fraction, for the cn might not be integers. Moreover,
given that irrational cn are allowed, the rn/sn terms might not be as rational as the
notation would suggest. With this somewhat scandalous revelation behind us, we close
the chapter with a bizarre twist: by taking the transpose of (6) we find that the word
(c1, c2, . . . , cn) is a palindrome if and only if sn = rn−1 (i.e., if and only if the matrix
on the right in (6) is symmetric).

4. A TALE OF TWO PROOFS
[
. . . , So many dynamos.; Ed is on no side.

]
. We

open this chapter by establishing Theorem 1.

Proof of Theorem 1. First we suppose that α = [
a, (W, b)

]
, where a and b are posi-

tive integers and the finite string of positive integers W is a palindrome. We claim that
Trace(α) is integral. If we write W = (w1, w2, . . . , wL−1, wL) = (w1, w2, . . . , w2, w1)
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and (
w1 1
1 0

) (
w2 1
1 0

)
· · ·

(
w2 1
1 0

)(
w1 1
1 0

)
=

(
r s
u t

)
,

then the previous chapter’s final twist reveals that s = u. The periodic continued frac-
tion of α allows us to declare formally that

α =
[

a, W, b,
1

α − a

]
,

where we refer to this expression as “formal” (rather than “illegitimate,” as in the
preceding chapter) because 1/(α − a) is not an integer. As a by-product of the two
previous observations and Lemma 1, we arrive at the following matrix product:(

a 1
1 0

)(
r s
s t

) (
b 1
1 0

) (
1

α−a 1
1 0

)
=

(
α •
1 •

)
.

After a brief dalliance involving matrix multiplication, our young irrational discovers
that

abr + (a + b)s + t + (ar + s)(α − a)

br + s + r(α − a)
= α

1
,

which following some stormy calculations blossoms into the blissful relationship

rα2 − (
(2a − b)r

)
α + (

(a − b)ar − bs − t
) = 0.

Therefore we see that Trace(α) = 2a − b is an integer, which brings the first episode
of our proof to a close.

Next we assume that t = Trace(α) = α + α̃ is an integer. We initially consider
the case in which α is reduced—that is, α is purely periodic, say α = [

V
]

with

V = (v1, v2, . . . , vL). Invoking Galois’s theorem, we can assert that −1/α̃ =
[←−

V
]
,

whence [
t,

←−
V

]
= t + 1

(−1/α̃)
= t − α̃ = α =

[−→
V

]
.

Thus we must have (t, vL , vL−1, . . . , v2) = (v1, v2, . . . , vL), which implies that the
continued fraction of α has the form α = [

t, (W, t)
]

with W = (v2, v3, . . . , v3, v2) a
palindrome. This observation, together with the realization that 2t − t = t = Trace(α),
establishes the result in the special case in which α is reduced.

If α is not reduced, then since α > 0 and α − α̃ > 2, we can find an integer k
such that α + k is reduced. Thus α + k = [

V
]

for some word V . Harking back to the
previous case, we now know that α + k = [

u, (W, u)
]

for some palindrome W , where
u = Trace(α + k) = Trace(α) + 2k = t + 2k. We conclude that

α =
[
t + k, (W, t + 2k)

]
and 2(t + k) − (t + 2k) = t = Trace(α), which ties up the loose ends of this short
proof.

We turn our attention next to Theorem 2.
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Proof of Theorem 2. We begin by assuming that α has a tail of two palindromes, that
is, its continued fraction expansion looks like

α =
[
a0, a1, . . . , aM , (W1, W2)

]
,

where W1 and W2 are palindromes. If we write αpp for the reduced quadratic irrational
defined by αpp = [

(W1, W2)
]
, then by Serret’s theorem we see that α ∼ αpp. Thus

αpp is a purely periodic (hence the “pp”) irrational equivalent to α. Applying Galois’s
theorem we find that

−1/α̃pp =
[ (←−

W2,
←−
W1

) ]
,

which in view of the palindromic nature of W1 and W2 implies that

−1/α̃pp =
[
W2, (W1, W2)

]
.

Exposed in this light, it becomes immediately clear that −1/α̃pp ∼ αpp ∼ α. Of course
by displaying −1/α̃pp in the ridiculously ornate guise

− 1

α̃pp
= −1 + 0 α̃pp

0 + 1 α̃pp

and recalling (3), we recognize that −1/α̃pp ∼ α̃pp. We infer that α ∼ α̃pp.
Suppose next that µ and ν are quadratic irrationals related by

µ = A + Bν

C + Dν

for integers A, B, C , and D. Then by conjugating both sides of this relation (in the
sense of “taking algebraic conjugates”), we find that

µ̃ =
˜(

A + Bν

C + Dν

)
= ˜(A + Bν)

˜(C + Dν)
= Ã + B̃ν

C̃ + D̃ν
= A + Bν̃

C + Dν̃
.

(The verification that conjugation is so compatible with ordinary arithmetical opera-
tions is a whole other tale that we will not recount here.) The upshot of this calcula-
tion: for quadratic irrationals µ and ν, µ ∼ ν if and only if µ̃ ∼ ν̃. In particular, since
we know that αpp ∼ α, we now see that α̃pp ∼ α̃. Hence, as α ∼ α̃pp, we realize that
α ∼ α̃pp ∼ α̃, which tells half the story.

Finally, we assume that α ∼ α̃. By Lagrange’s theorem we are able to write

α = [
a0, a1, . . . , aM , W

]
for some word W = (w1, w2, . . . , wL). If we set

αpp = [
W

] = [w1, w2, . . . , wL−1, wL , w1, w2, . . . , wL−1, wL, . . .],
then Galois’s theorem ensures that

−1/α̃pp =
[ ←−

W
]

= [wL, wL−1, . . . , w2, w1, wL, wL−1, . . . , w2, w1, . . .].
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Given our supposition that α ∼ α̃, we also deduce that

αpp ∼ α ∼ α̃ ∼ α̃pp ∼ −1/α̃pp.

Thus, by appealing to Serret’s theorem, we conclude that from some point onward the
continued fraction expansion of αpp agrees with that of −1/α̃pp. That is, there exists
some index K (1 ≤ K ≤ L) such that

w1 = wK

w2 = wK−1

w3 = wK−2
...

wK−1 = w2

wK = w1

wK+1 = wL

wK+2 = wL−1
...

wL−1 = wK+2

wL = wK+1.

From this string of identities we learn that W can be partitioned into the two subwords

(w1, w2, . . . , wK−1, wK )

and

(wK+1, wK+2, . . . , wL−1, wL),

each of which is a palindrome. It follows that α does indeed have a tail of two palin-
dromes, thus closing the book on our proof.

5. A TALE OF TWO CHALLENGES
[
. . . , Yo, banana boy!; Too hot to hoot?

]
.

If two quadratic irrationals α and β are equivalent, then Serret’s theorem informs us
that, after some initial run of terms, the continued fraction expansions of α and β

coincide. We now note that if α ∼ β, then the integers A, B, C , and D satisfying the
conditions of (3) spring organically from the initial runs of those dissagreeable terms
in the respective continued fraction expansions by cultivating the associated matrices
of the form (6). The details of this organic procedure provide a natural sequel to our
story that readers might be interested in pursuing on their own.

We end with the odd twist that the special tail of two palindromes (W, b) appearing
in Theorem 1, in which the second palindrome consists of a single letter, is actually
not all that special. In fact, we assert the following:

Theorem 3. If α has a tail of two palindromes and at least one of the two palindromic
words is of odd length, then there exists a palindrome W and an integer b such that
α ∼ [

(W, b)
]
.

The proof of this result is left as the concluding cliff-hanger to our tale.
As we turn the final page on our story, we detect a faint voice riding the gentle

breeze—the voice of a quadratic irrational from some far-off field who has tirelessly
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bent over backwards and forwards in the hopes of finding some close connection with
its long-lost conjugate. We hear that voice at last proclaim:

It is a far, far better thing that I do, than I have ever done;
it is a far, far better rest that I go to than I have ever known.

The End.

DEDICATION. This paper is dedicated to the memory of Johnny Carson, who lifted our lives and made us
laugh.
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4. J.-A. Serret, Sur le dévelopement en fraction continue de la racine carrée d’un nombre entier, J. Math.
Pures Appl. 12 (1847) 518–520.

EDWARD BURGER was the host of the 1980s radio show “Ed’s Place” on WCNI 91.1 FM at Connecticut
College. In the late 1980s he performed stand-up comedy at The Laff Stop located near the University of
Texas at Austin and was an independent contractor for Jay Leno. At Williams College, while not hosting
“The Off Hour” on WCFM 91.9 FM, Burger is professor of mathematics and chair of his department. He has
also authored a number of articles, books, and videos. Despite his antics, Burger has been honored on several
occasions by the MAA: he received the 2001 Deborah and Franklin Tepper Haimo Award for Distinguished
Teaching; he was named the 2001–2003 Polya Lecturer; and he was awarded the 2004 Chauvenet Prize.
Department of Mathematics, Williams College, Williamstown, Massachusetts 01267
eburger@williams.edu

April 2005] A TAIL OF TWO PALINDROMES 321


