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INTRODUCTION 

After careful analysis of information regarding the origins of the four-color 
conjecture, Kenneth 0. May [1] concludes that: 

"It was not the culmination of a series of individual efforts that flashed across 
the mind of Francis Guthrie while coloring a map of England ... his brother 
communicated the conjecture, but not the attempted proof to De Morgan 
in October, 1852." 
His information also reveals that De Morgan gave it some thought and com- 

municated it to his students and to other mathematicians, giving credit to Guthrie. 
In 1878 the first printed reference to the conjecture, by Cayley, appeared in the 
Proceedings of the London Mathematical Society. He wrote asking whether the 
conjecture had been proved. This launched its colorful career involving 4 number 
of equivalent variations, conjectures, and false proofs, which to this day, leave the 
question of sufficiency wide open in spite of the fact that it is known to hold for a map 
of no more than 39 countries. 

Our purpose here is to present a short, condensed version (with definitions) of 
most equivalent forms of the conjecture. In each case references are given to the 
original or related paper. For the sake of brevity, proofs are omitted. The reader will 
find a rich source of information regarding the problem in Ore's famous book [1], 
"The Four-Color Problem". 

A number of conjectures given here are not in any of the books published so far. 
Others are found in some but not in others. Even though this array of conjectures 
may not be complete, it is hoped that the condensed presentation and its order 
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would give the interested reader a feeling of the depth and variety in which the 
problem has been examined by a large number of people. 

We have intentionally avoided extending the concepts to important areas of graph 
theory which do not have direct bearing on the conjectures given here. Otherwise, 
there would be no end to this paper. 

CHAPTER 1: THEME 

1. Basic definitions and statement of the conjecture. 

1.1 DEFINITION: A graph is a triple (V, E, 4D) where V is a finite nonempty set 
called the set of vertices, E a (possibly empty) finite set called the set of edges, with 
E n V = 0, and (D: E -? V & V is a function called the incidence mapping. Here 
V & V is the unordered product of V with itself; i.e., if (u & v) E V & V then 
(u & v) = (v & u). If @D(e) = (v & w), then we say that v and w are incident with e. 
Two vertices connected by an edge (incident with the same edge) are said to be 
adjacent. They are called the end points of the edge. Two edges with a vertex in 
common are also called adjacent. 

A graph is simple if it has no loops or parallel edges. (An edge is a loop if both of 
its end points coincide; two edges are parallel if they have the same end points.) 

1.2 DEFINITION: A sequence of n edges e1, -, en in a graph G is called an edge 
progression of length n if there exists an appropriate sequence of n + 1 (not necessarily 
distinct) vertices v0, v1, , v,, such that eL is incident with vi-1 and vi, i = 1, ..., n. 
The edge progression is closed (open) if v0 = v,, (v0 # vJ). If ei 0 ej for all i and j, 
i 0 j, the edge progression is called a chain progression. The set of edges is said to 
form a chain. The chain is a circuit if v0 = vn. If the vertices are also distinct, we have 
a simple chain progression, the edges form a simple chain. In this case, if only v0 = vn 
and all other vertices are distinct, the edges are said to form a simple circuit. The 
length of (number of edges in) a longest simple circuit is called the circumference of G. 
Frequently one abbreviates a "simple circuit" by a "circuit". 

1.3 DEFINITION: The degree (or valence) of a vertex is the number of edges 
incident with that vertex. 

1.4 DEFINITION: A graph is: planar if it can be embedded (drawn) in a plane 
(or on a 2-sphere) such that no two edges meet except at a vertex; connected if each 
pair of vertices can be joined by a chain; complete if each vertex is connected by an 
edge to every other vertex; k-partite if its vertices can be partitioned into k disjoint 
sets so that no two vertices within the same set are adjacent; and complete k-partite 
if every pair of vertices in different sets are adjacent. A connected component of a 
graph is a maximal connected subgraph. 

Note that a graph is bipartite if and only if every circuit has even length. (Bi- 
partite means 2-partite.) 
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1.5 DEFINITION: A map, or planar map, M consists of a planar graph G together 
with a particular drawing, or embedding, of G in the plane. We call G the underlying 
graph of M and write G= U(M). The map M divides the plane into connected 
components which we call the regions, or faces, or countries, of the map. Two regions 
are adjacent if their boundaries have at least one common edge, not merely a common 
vertex. We refer to the edges in the boundary of a region as its sides. 

Note that a graph may be embedded in the plane to produce several different 
maps. For example, the graph which consists of a square and two triangles all meeting 
at one vertex may be embedded in the plane in several ways-one has both triangles 
on the inside of the square, another has one triangle inside and one triangle outside 
the square. In the second map there is no four-sided region, while in the first map 
the region exterior to the square has four sides. 

1.6 DEFINITION: A k-coloring of a map (sometimes called a proper k-coloring) is 
an assignment of k colors to the countries of the map in such a way that no two 
adjacent countries receive the same color. A map is k-colorable if it has a k-coloring. 

1.7 CONJECTURE CO: Each planar map is 4-colorable. 

K. May points out that the four-color conjecture belongs uniquely to Francis 
Guthrie and could fairly be called "Guthrie's Conjecture". That four colors are 
necessary can be seen from the two figures below, the first of which has four regions, 
each of which is adjacent to the remaining three. However, this type of condition 
need not hold in order that four colors be necessary as illustrated by the second 
figure. 

FIG. 1 FIG. 2 

2. Historical highlights. Because of the many valuable contributions of many 
people to the four-color problem, we are reluctant to appear to give special mention 
to some contributors but not to others. Nevertheless, we thought it would be useful 
to give a brief summary of some of the historical events relating to the conjecture 
and some of its variations. Occasionally it is difficult to pinpoint the exact date of 
anl idea. The best one can do is give the year of its appearance in print. The names 
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of G. A. Dirac and W. T. Tutte may well be added here for their many contributions 
to ideas occurring in the context of the four-color problem. 

1852. F. Guthrie [May1] communicated the four-color conjecture to De Morgan. 
1878. A. Cayley [1] published an inquiry as to whether the conJecture had been 

proven. 
1879. A. B. Kempe [1] published a "proof" of the conjecture. W. E. Story [1] 

used Kempe's work to show that the conjecture for arbitrary planar maps can be 
reduced to cubic maps. 

1880. P. G. Tait [1] reduced the conjecture to the colorability of the edges of 
cubic maps. 

1890. P. J. Heawood [1] pointed out the error in Kempe's proof and salvaged 
enough to prove the sufficiency of 5 colors for planar maps. 

1891. J. Petersen [1, p. 219] proved that either the vertices of a planar cubic map 
can be toured by a Hamiltonian circuit or by a collection of mutually exclusive 
subcircuits. 

1912. 0. Veblen [1] transformed the conjecture into equivalent assertions in 
projective geometry and the solution of simultaneous equations. G. D. Birkhoff [1] 
introduced a version of chromatic polynomials. 

1922. P. Franklin [1] showed that a map with 25 or fewer regions is 4-colorable. 
1925. A. Errera [1], referring to Franklin's result that a map requiring five 

colors must have at least 26 regions, proved that such a map must include at 
least 13 pentagons. 

1926. C. N. Reynolds [1] showed that a map with 27 or fewer regions is 4- 
colorable. 

1931. H. Whitney [1] used the notion of the dual graph and proved that the dual 
graph to a loopless cubic map always has a Hamiltonian circuit. He also proved the 
equivalence of the four-color conjecture and the fact that if a planar graph is 
Hamiltonian, it is 4-colorable. 

1932. H. Whitney [4] studied chromatic polynomials. 
1936. D. K6nig [1] published the first book on graph theory with notions later 

used to formulate conjectures equivalent to the four-color problem. 
1937. C. E. Winn [1], considering Franklin's paper which was to be published 

in 1938, in which Franklin proved that a map which requires five colors must have 
at least 32 regions, showed that it must contain at least 2 regions bounded by 
more than six edges (see Ball and Coxeter [1, p. 230]). 

1938. P. Franklin [2] extended the number to 31 regions (thus if a map were to 
require 5 colors, it must have at least 32 regions). He also showed that such a map 
must include at least 15 pentagons. 

1940. C. E. Winn [4] extended the number of regions in a 4-colorable map to 35. 
1941. R. L. Brooks [1] proved an important theorem giving a bound on the 

chromatic number of a graph. 
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1943. H. Hadwiger [1] gave his well-known conjecture of which the four-color 
problem is a special case. 

1952. Dynkin and Uspenskii [1] first published a small book of elementary 
exercises on the coloring problem. 

1959. G. Ringel [1] published the first major book on the coloring of maps and 
graphs. 

1967. 0. Ore [1] published the now classic book on the subject containing a 
number of new ideas. 

1969. 0. Ore and G. J. Stemple [1] increased the number of regions to 39. 
Several other books now include chapters on the theory of graphs and on coloring 

problems. The leading texts fully given to the subject are the books by C. Berge [1], 
F. Harary [2], B. Roy [1], and by W. T. Tutte [11]. No library is complete without 
them. One may also refer to Busacker and Saaty [1], Franklin [3], and Liu [1]. 

CHAPTER II: VARIATIONS ON THE THEME 

1. Duality and coloring. Given a map M there is another graph D(M) which 
we can derive from it. Replace each region by a vertex, or capital, and join two 
capitals by as many parallel edges as there are edges common to the boundaries of 
both corresponding regions. Thus an edge which lies on the boundary of only one 
region in M produces a loop in D(M). 

1.1 DEFINITION: The graph described above is called the dual graph D(M) of 
the map M. 

Note that the dual graph is the underlying graph of a (dual) map. 

1.2 DEFINITION: A k-coloring (or proper k-coloring) of a graph is an assignment 
of k colors to the vertices of the graph in such a way that no two adjacent vertices 
receive the same color. A graph is k-colorable if it has a k-coloring. 

Thus, a map is k-colorable if and only if its dual graph D(M) is k-colorable. 

1.3 PROPOSITION: Let M be any map. We may subdivide the edges of U(M)-i.e., 
introduce vertices of degree 2-to obtain a new map M' for which U(M') is simple. 
Hence, to 4-color M, it suffices to 4-color M'. 

Thus, in coloring a map M we may always assume that U(M) is simple. Note, 
however, that by making U(M) simple we may force D(M) to be non-simple. For 
example, if U(M) consists of a loop, D(M) is a simple edge. Subdividing U(M) 
introduces parallel edges in D(M). 

If G is a graph, we write S(G) for the simple graph obtained from G by deleting 
loops and replacing parallel edges by a single edge. Obviously, we have the following 
result: 

1.4 LEMMA. G is k-colorable if and only if S(G) is k-colorable. 
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1.5 CONJECTURE C1: Every planar graph is 4-colorable. 

REMARK: Some misunderstanding can result from not making the distinction 
between Conjectures CO and C1. Sometimes authors speak of graphs in both cases 
and refer to coloring regions or vertices as the case may be. Perhaps it is best when 
using Conjecture CO to refer to a map and when using Conjecture C1 to refer to a 
graph, the first suggesting a coloring of regions and the second a coloring of vertices. 
Thus, in the sequel when speaking of equivalent conjectures, whenever we speak of 
graphs, the equivalence is to Conjecture C1. The equivalence of Conjecture C1 and 
Conjecture CO follows from the definition of a dual graph. Characterization of planar 
graphs in terms of an abstract duality was established by H. Whitney [1]. In 
particular he showed that if M is planar, so is D(M). 

As a consequence of the easier half of the theorem of Kuratowski [1], proving 
that the complete graph on five vertices is nonplanar, one can conclude that there 
are no planar maps in which five countries are pairwise adjacent. 

Heawood's proof that any planar map can be 5-colored is inductive and sur- 
prisingly simple, and it exemplifies the many ingenious approaches which have been 
taken in pursuit of the four-color problem. However, rather than prove the suffi- 
ciency of five colors, we prefer to use the method of Heawood's proof to show that 
a planar map containing a region with no more than four sides must be 4-colorable, 
provided that we first assume it is irreducible - i.e., minimally non-4-colorable. 
Thus, we shall see that every region in an irreducible map has 5 or more sides. 

Note that in particular any map with at most 12 regions has some region with 
no more than four sides. To see this, suppose that the map has n vertices, m edges, 
and r regions. Then Euler's formula (satisfied by planar maps) gives 

(1) n-m + r = 2. 

Assuming without loss of generality that M has no vertices of degree one or two, 
we always have 3n < 2m and if we assume that every region of a 4-colorable map 
is bounded by at least five edges, then 5r < 2m. Substitution in (1) gives m ? 30. 
Substituting 3n < 2m alone in (1) gives m < 3r - 6 which for r < 12 gives 
m < 30. Hence, a map of less than 12 regions has at least one region bounded by 
less than five edges. 

To color the vertices of the dual graph D(M) of such a map M with four colors, 
let v be the vertex adjacent to (1) four other vertices, v1, V2, V3, V4, or (2) three other 
vertices (the proof of this case is trivial). 

By minimality of M, we may assume that on suppressing v and its four incident 
edges, the vertices of the resulting graph have been colored with four colors, which we 
denote by c1, C2, C3, C4. Let this assignment result in giving vi the color ci, i = 1, *., 4. 
See Fig. 3. 

Now if there is a chain from v1 to V3 whose vertices are alternately colored with 
c1 and C3 starting at v1 and ending at V3, then there cannot be a chain whose vertices 
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FIG. 3 

are alternately colored with c2 and c4 starting at v2 and ending at v4. Otherwise the 
two chains must cross (see diagram) at a vertex whose color would conflict in the 
two chains. Thus, the second chain of alternating colors may have the colors of its 
vertices reversed. In that case, v2 could be assigned the color c4, and the remaining 
color c2 would then be assigned to v. 

If the first chain starting at v1 does not terminate at V3, then the color of its vertices 
may be reversed, assigning C3 to v1, leaving c1 to be assigned to v. This completes 
the argument. 

In every planar map there is at least one region bounded by five or fewer edges. 
Otherwise we have 3n < 2m, 6r < 2m, and substitution in Euler's formula gives 
2m/3 - m + 2m/6 > 2, a contradiction. 

A slight adaptation of the foregoing approach, again applied inductively to a 
vertex of the dual graph which has five or less neighbors, can be used to prove the 
following theorem (Heawood [1]). 

1.6 THEOREM. Any planar graph is 5-colorable. 

Of course, the problem is to show that any planar graph is 4-colorable. 

Sketch of Heawood's Argument (Fig. 4). Heawood's counterexample [1] is directed 
at Kempe's chain coloring reversals. He is not concerned with whether one can by 
a judicious choice recolor some of the vertices. The above example with 25 vertices 
is known to be 4-colorable by existing theory. 

Using the inductive argument on the number of vertices n, assume that every 
planar graph on (n - 1) vertices is 4-colorable. Consider a graph on n vertices and 
remove a vertex v (which has five neighbors) and its connecting edges and 4-color 
the resulting graph on n - 1 vertices. Suppose the coloring is as shown. Reinstate v 
and attempt to color the resulting graph. 

There is a b-g chain from 2 to 4. There is also a b-y chain from 2 to 5. 
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FIG. 4-Heawood's counterexample to Kempe's proof 

Reversal of colors on either chain will not free a color for v. This leaves r in two 
places. Now there is no r-g chain from 1 to 4. Therefore, one can reverse r to g 
in the r-g chain starting at 1. But the other r at 3 must also be turned to g or to yto 
obtain a spare color for v. This is not possible because 4 which has color g is adjacent 
to 3 which will become colored with g. On the other hand, if we reverse colors on the 
r-y chain starting at 3, the two vertices of the outer triangle which are connected 
by an edge would both be assigned r by the r-g and r-y reversals, starting at 1 
and at 3 respectively, contradicting proper coloring. Thus, one cannot replace r 
by g at both 1 and 3 nor by g at 1 and by y at 3. Note that at 1, r cannot be turned 
to y because it is adjacent to a y at 5. lHeawood [1] wrote "Unfortunately, it is con- 
ceivable that though either transposition would remove an r both may not remove 
both r's." (lt is clear that reversal of colors on the y-r chain starting at 5 followed 
by a reversal on the r-g chain starting at 1 frees the color y for v, but this does not 
justify Kempe's argument.) See also Saaty [1]. 
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2. Cubic Maps. 

2.1 DEFINITION: A graph is cubic (normal, regular, regular of degree three, 
trivalent) if all of its vertices are of degree 3. A map is cubic (normal, regular, trivalent) 
if U(M) is cubic. 

2.2 DEFINITION: A graph is bridgeless (or doubly edge-connected) if there is no 
edge whose removal disconnects the vertices (i.e., after any edge is removed, it is still 
possible to connect any two vertices by a chain). An edge e is called a bridge (or 
isthmus) if the set of vertices can be partitioned into two sets T and U such that e is 
the only edge with one end point in T and the other end point in U. 

Obviously, a graph is bridgeless if and only if it has no bridges. A map M 
is bridgeless if U(M) is bridgeless. 

REMARK: In a cubic graph, a loop is counted twice. A cubic graph with a loop 
must have a bridge. 

In coloring maps, we can really assume that the maps are bridgeless as the fol- 
lowing argument will show. 

2.3 LEMMA. Let e be an edge of a graph G. Then e is a bridge if and only ijfe lies 
on no circuit. 

2.4 LEMMA: Let e be an edge of a map M (i.e., e is an edge of U(M)). Then e is a 
bridge if and only if e lies on the boundary of exactly one region. 

2.5 THEOREM. Let Mbe any map. Then there exists a map M' such that (i) M' is 
bridgeless, (ii) M' can be k-colored if and only if M can be k-colored. 

Proofs: Lemmas 2.3 and 2.4 are trivial. We obtain M' by simply shrinking each 
bridge to a point. By Lemma 2.4, M' satisfies the conclusions of the theorem. 

2.6 CONJECTURE C2: Every bridgeless cubic planar map is 4-colorable. 

As we indicated in Section 2 of Chapter 1, reduction of the four-color problem 
to cubic maps is due to Story. A proof of the equivalence of Conjectures C0 and C2 
is given in Harary's book [2, p. 132]. To go from any map to a cubic map, each 
vertex is blown into a polygon with as many vertices as there are edges incident 
with the vertex. Out of each of these vertices of the polygon emanates one of the 
edges. Thus, each vertex is of degree three, and the resulting map is cubic. After 
coloring the cubic map, the added polygons are contracted back to the vertex to 
obtain a coloring for the original map. 

2.7 DEFINITION: A region is called odd (even) if it is bounded by an odd (even) 
number of edges. A circuit is called odd (even) if its length is odd (even). 

REMARK: In Problem E 1756, this MONTHLY, 72 (1965) p. 76, it is shown that 

in a 4-colored cubic map, the number of odd regions colored by any two colors is 
even. 
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2.8 DEFINITION: A map, all of whose vertices have even degree, is said to be 
triangle-colored when its regions can be colored in two colors such that all regions 
colored with one of the colors are triangles. 

2.9 CONJECTURE C3: The vertices of a planar triangle-colored map without 
multiple edges and all of whose vertices have degree four can be 3-colored. 

This conjecture is equivalent to Conjecture C5 (Ore [1, p. 126]). 

2. 10 DEFINITION: We call a map M triangular if its dual D(M) is a cubic graph. 
We shall discuss triangular maps later. 

3. Edge Coloring. 

3.1 DEFINITION: A (proper) coloring of the edges of a cubic map (called a Tait- 
coloring or edge-coloring) is a 3-coloring of the edges such that all three edges incident 
with the same vertex have different colors. 

3.2 CONJECTURE C4: The edges of a bridgeless cubic planar map are 3-colorable. 

The equivalence of Conjectures C2 and C4 is due to P. Tait [1]. Proofs are found 
in Ball and Coxeter [1, p. 226], Ore [1, p. 121], and Liu [1, p. 253] (in dual form-see 
Conjecture C5). A cubic map with a bridge has no Tait coloring. According to a 
previous remark, if the map has a loop, it has no Tait coloring. 

3.3 CONJECTURE C5: The edges of a triangular map can be colored with three 
colors so that the edges bounding every triangle are colored distinctly. 

Let us actually see how to construct Tait-colorings from region-colorings and 
region-colorings from Tait-colorings. 

Suppose that we are given a bridgeless cubic map M whose regions have been 
4-colored using colors 0, 1, 2,3. We may then Tait-color the edges according to the 
following scheme: 

Color edge: if edge lies on boundaries of regions colored: 

a 0 and 1, or 2 and 3 

ft 0 and 2, or I and 3 

y land 2, of 0 and 3 

It is easy to check that this scheme actually works. 
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Conversely, suppose we are given a Tait-coloring of the edges of M using the 
colors c, fi, y. Those edges labelled a and ,B form disjoint simple circuits (of even 
length) which we call a-f circuits. 

Now every region R of M is contained in the interiors of either an odd or an 
even number of oc-fl circuits. Let us pre-color R with 1' if R is contained in an 
odd number of c-fl circuits and O' if R is contained in an even number of c-fl 
circuits. Similarly, we have ac-y circuits and every region R of M is contained in 
either an even or odd number of ac-y circuits. In the former case, we pre-color R 
with O" and in the latter case with 2". Now color the regions of M according to the 
following scheme: 

Color region: if region has already been pre-colored: 

0 O' and o0 

1 1' and 0" 

2 0' and 2" 

3 1' and2" 

Thus, each region is pre-colored twice and two regions are colored the same if 
and only if both of their pre-colorings are the same. 

This yields a proper coloring of the regions. For if two regions R1 and R2 have 
a common edge e, then e may be colored either a, fi, or y. If e is colored fl, then e 
lies on exactly one cc-fl circuit C which contains either R1 or R2, but not both, 
in its interior. Hence, R1 and R2 are pre-colored with 1' and 0' or 0' and 1', res- 
pectively. Thus, they cannot be colored the same. The same argument holds when 
e is colored y. If e is colored oc, then e lies on both an cc-fl and an cc-y circuit so the 
argument above shows that both pre-colorings of R1 and R2 are different, and we 
may again conclude that R1 and R2 are colored differently. 

3.4. DEFINITION: The line or interchange graph L(G) of a given graph G (without 
multiple edges) is obtained by associating a vertex with each edge of the graph and 
connecting two vertices by an edge if and only if the corresponding edges of the 
given graph are adjacent. 

3.5 CONJECTURE C6: The vertices of the line graph of a bridgeless cubic planar 
map can be colored with 3 colors. 

The equivalence of Conjectures C4 and C6 is trivial. 



1972] VARIATIONS ON GUTHRIE S FOUR-COLOR CONJECTURE 13 

For more information on line graphs, see Ore [1, p. 124]. Ore quotes the following 
two results of Sedlacek [1]: 

3.6 THEOREM. A planar graph G has a planar line graph L(G) if and only if no 
vertex in G has degree exceeding 4, and when a vertex has degree 4, then its removal 
must disconnect the graph. 

3.7 THEOREM. Y G is nonplanar, then L(G) is nonplanar. 

4. Hamiltonian circuits. 

4.1 DEFINITION: A graph is said to be Hamiltonian if it has a simple circuit 
called a Hamiltonian circuit which passes through each vertex exactly once. 

It is clear that if Mis a cubic map and U(M) has a Hamiltonian circuit C, then the 
edges of the map M can be 3-colored. (Recall that in the cubic graph U(M), there 
must be an even number of vertices because 3n = 2m where m is the number of edges. 
Thus two colors are alternately assigned to the edges of C, and the third color is 
assigned to the remaining edges.) This implies that M is 4-colorable. 

4.2 CONJECTURE C7: Every Hamiltonian planar graph is 4-colorable. 

Proof of the equivalence of Conjectures C1 and C7 is due to Whitney [1]. It is 
clear that if a planar graph is 4-colorable, then also every Hamiltonian planar graph 
is 4-colorable. The proof of the converse is not obvious. It depends on the result 
of Whitney [1] that every maximal planar graph (see 6.4) has a Hamiltonian circuit. 

4.3 CONJECTURE C8: It is possible to 4-color the vertices of a planar graph con- 
sisting of a regular polygon of n sides with non-crossing diagonals dividing the interior 
of the polygon into triangles and with non-crossing edges dividing the exterior of the 
polygon into triangles. 

Whitney [1] proves the equivalence of Conjecture C8 and Conjecture C0. Con- 
jecture C8 is essentially Conjecture C7. For a discussion of the following conjecture, 
see Ball and Coxeter [1, p. 226], Petersen's 1891 paper, page 219, and Ore [1, p. 121]. 

4.4 Conjecture Cg: In a bridgeless cubic map it is possible either to tour all the 
vertices by a Hamiltonian circuit or to make a group of mutually exclusive subcircuits 
(subtours) of the vertices in several even-length simple circuits. 

The equivalence of this conjecture with Conjecture C4 is essentially due to Tait 
who preceded Petersen and is easy to establish. We give a sketch here. We assume 
that the edges have been 3-colored. We start at any vertex and follow a chain 
whose edges alternate with two colors. Such a chain must return to its starting point 
to form a simple circuit. The reason is that since the degree of each vertex is 3, and 
the three edges meeting at any vertex have all three colors, returning to an inter- 
mediate vertex would mean that the tour would have used the third color contrary 
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to assumption. Because of connectedness, the tour must return to the starting 
vertex and hence it must have even length. If all the vertices are included in this 
tour, we have a Hamiltonian circuit of even length. Otherwise, the process is 
repeated on the remaining vertices to form another simple circuit (subtour) disjoint 
from the first and so on. 

If, on the other hand, we have the disjoint subtours of even length, we color 
their edges alternately with two colors and assign the third color to edges not on 
any subtour. In this manner we can 3-color the edges. 

4.5 DEFINITION: Let G be a graph and G' a subgraph. We call G' a section 
graph of G if two vertices are adjacent in G' whenever they are adjacent in G. 

Thus, a section graph of G is determined by its set of vertices. Let G be a graph 
which has been 4-colored (say red, blue, yellow, and green). 

4.6 DEFINITION: A Kempe chain in G is a connected component of a section graph 
determined by all of the vertices in two of the colors. 

4.7 DEFINITION: Let M be a map which has been 4-colored. Then a collection 
of regions in M forms a Kempe chain in M if its dual is a Kempe chain in (DM). 

4.8 DEFINITION: A family of disjoint simple closed curves of even length in- 
cluding every vertex in M is called a Tait cycle. 

Suppose we have a red-blue Kempe chain K in a cubic map M. Let R1 be a 
region of K. If R2 is a region not in K and R1 and R2 are adjacent, then R2 must be 
colored either yellow or green. Thus every edge on the boundary of K separates a red 
or blue face from a yellow or green face, and hence, by our construction scheme, 
we can Tait-color the edges of M using only two colors for the boundary edges of K. 
This implies that the boundary of K consists of a family of even-length simple closed 
curves. Moreover, since every vertex in M is on the boundary of three differently 
colored faces, every vertex belongs to one, and only one, of the simple closed curves 
in the boundary of a Kempe chain. Thus a 4-colored cubic map has a Tait cycle. 
Note that in fact the coloring has three Tait cycles, one for each separation of the 
four colors into pairs. 

One can reformulate Conjecture Cg in terms of Tait cycles. We use this nomen- 
clature later on in the paper. 

4.9 DEFINITION: A graph is said to be p-connected if each pair of vertices v and 
w is connected by at least p chains which have no vertices in common other than v 
and w. 

A graph G is p-connected if and only if G is not disconnected or made trivial by 
the removal of p - 1 or fewer vertices. 

There are special types of graphs which are known to be Hamiltonian; e. g., 
complete graphs with n ? 3 vertices. As another example, Tutte [3] has proved that 
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a 4-connected planar graph with at least two edges has a Hamiltonian circuit. 
Whitney [1] has shown that if M is a cubic map then D(M) has a Hamiltonian 
circuit. 

That not every planar graph is Hamiltonian is illustrated in Fig. 5 which shows 
a graph with 20 vertices and 12 pentagonal faces. It is easy to show that this graph 
is 4-colorable. 

Tutte's counterexample 
FIG. 5 FIG. 6 

Dirac [3] has shown that each graph on n vertices, the degree of each vertex of 
which is at least n/2, has a Hamiltonian circuit. L. Posa [1] proved that a graph on 
n ? 3 vertices has a Hamiltonian circuit if for each integer i with 1 ? i < n/2, 
the number of vertices of degree not exceeding i is less than i. See the book by 
B. Roy [1] for additional results. 

Tait [3] once conjectured that every 3-connected planar graph is Hamiltonian but 
Tutte [3] gave a counterexample (Fig. 6) with 46 vertices. Had Tait's conjecture been 
true, the truth of Conjecture CO would have followed. For as we shall see in the 
last chapter, to prove Conjecture CO, it suffices to show that every cubic map M 
with U(M) 3-connected can be 4-colored. But Tait's conjecture would imply that 
every such map had a Hamiltonian circuit and hence was 4-colorable. 

Tait himself did not supply an adequate proof as to how the four-color conjecture 
would be true if his conjecture were true. He thought his conjecture was true from 
all the evidence he had. Chuard [1] went on to "complete" the story in 1932. Doubts 
as to the validity of Chuard's claim were expressed by Pannwitz [1]. 

In any event, Tutte's example has made the entire debate academic as a means 
of settling the four-color conjecture. 

5. Flow ratio. 

5.1 DEFINITION: A graph is called directed or oriented if each edge is assigned 
a direction (indicated by an arrow) from one of its end vertices toward the other. 
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5.2 DEFINITION: The flow ratio of a simple circuit is the ratio m1/m2, where 
m1 and m2 are the numbers of edges of the circuit directed clockwise and counter- 
clockwise around the circuit with m1 M i2. If m1 < M2 then the roles of m1 and m2 
are interchanged (the flow ratio may be + oo). 

5.3 CONJECTURE C10: The edges of a planar graph can be oriented in such a way 
that the flow ratio of each cycle is at most 3. 

A proof of the equivalence of Conjectures C1 and C10 is due to Minty [1]. 
Actually Minty proves the equivalence of k-colorability to the fact that the flow ratio 
of each circuit does not exceed k - 1. 

5.4 CONJECTURE Cl1: The edges of a planar graph can be so directed that for 
any circuit C with m(C) edges and any direction associated with the circuit (clockwise 
or counter-clockwise), the number of edges of C oriented opposite to the given direction 
and denoted by ml(C) satisfies 

mA(C)>_ m(C). 

This is obviously equivalent to the previous result (see Ore [1, p. 104]). 

6. Partition of vertices; chromatic number. When the vertices of a planar graph 
are 4-colored, they are divided into four disjoint sets such that the vertices in each set 
are assigned the same color and no two vertices of the same color are joined by an 
edge. Clearly a graph can be 4-colored if and only if it is 4-partite. Each pair of 
these four sets, together with their interconnecting edges, forms a bipartite graph. 

6.1 DEFINITION: A planar graph is said to have bipartite dichotomy if there is 
a disjoint decomposition of its vertices into two sets such that each set defines 
a bipartite graph. 

We sometimes call a bridge a separating edge. 

6.2 CONJECTURE C12: The dual of a planar map without separating edges has a 
bipartite dichotomy. 

6.3 CONJECTURE C13: Any planar graph without loops has a bipartite dichotomy. 

See Ore [1, page 105] for the equivalence of these conjectures to Conjecture C1. 

6.4 DEFINITION: A graph G is called maximal planar if it is planar and has no 
loops and no multiple edges and it is not possible to add a new edge to G without 
violating one of these restrictions. 

REMARK. The following statements are equivalent: 
(i) G is maximal planar; 
(ii) For every map M with G = U(M), M is triangular; 
(iii) There exists a triangular map M with G = U(M). 
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it is known that every uniquely 4-colorable planar graph is maximal planar 
(Harary [2, page 140]). 

6.5 CONJECTURE C14: Every maximalplanar map has a bipartite dichotomy. 

The equivalence of Conjectures C1 and C14 is proved in Ore [1, page 122]. 

6.6 DEFINITION: The chromatic number x(G) of a graph G is the minimum number 
of disjoint subsets into which its vertices can be partitioned such that no two vertices 
in the same subset are adjacent. 

6.7 CONJECTURE C15: The dual graph G of a planar map satisfies x(G) < 4. 

REMARK. Ershov and Kozhukhin [1] have shown that a connected graph G 
with n vertices and m edges satisfies thefollowing bounds onits chromaticnumber 
(using [x] and {x} to denote the integral and fractional parts of x, respectively): 

___n___n _{(n 2- 2m)/n} _ [3+1/9+8(m-n) 
[(n2 -2m)/n] (11 + [(n2- 2m)/n] < X(G) L 2] ] 

If the vertices of a graph G are numbered i1, *= , n according to the decreasing 
order of their degree di, and if k is the last number of a vertex which satisfies 

k < dk + 1, then x(G) < k. 

It follows from this that x(G) is at most equal to the highest degree of any vertex 
plus unity. Welsh and Powell [1] give an algorithm for coloring the vertices of a 
graph with a number of colors equal to the bound k. 

6.8 DEFINITION: A graph G is called critical, or vertex-critical, (Dirac [2]) if 
after the removal of any vertex v and its connecting edges we have 

X(G- v) < X(G). 

G is k-critical if x(G) = k (in which case, for every v, X(G - v) = k - 1). A graph is 
edge-critical if similar relations hold on removing an edge. 

It is known (Ore [1, p. 164]) that the removal of a complete subgraph cannot 
separate a critical graph. Dirac [3] has shown that if a graph G is k-critical with 
k > 3, then either G has a Hamiltonian circuit or the circumference of G is 2k - 2. 
He has also proved that every k-chromatic graph contains a critical k-chromatic 
subgraph. 

6.9 DEFINITION: The chromatic index q(G) of a graph G is the smallest number of 
colors necessary to color its edges so that no two adjacent edges have the same 
color. 

Thus q(G) = X[L(G)] when G is simple. 

6.10 DEFINITION: A p-graph is a graph with multiple edges between its vertices 
such that no two vertices are jointly incident with more than p edges. 
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Vizing [1] and Shannon [1] have shown that if dm is the maximum degree of any 
vertex in a graph, then we have: 

dm < q(G) < Min (p,+ + dm. 

It follows that if G has no multiple edges, q(G) is either dm or d. + 1. 

6.11 CONJECTURE C16: Let G be a planar bridgeless cubic graph. Then q(G) = 3. 

This conjecture is just a restatement of Conjecture C4. 

7. Partitions of edges; factorable graphs. 

7.1 DEFINITION: A graph (or map) is k-factorable if its edges can be partitioned 
into edge disjoint subsets in such a way that in each subset any vertex meets exactly 
k edges of that subset. See Konig [1, pp. 155-195]. 

7.2 CONJECTURE C17: Every cubic bridgeless planar map is 1-factorable. 

This conjecture, first formulated by Tait in 1884, is obviously equivalent to 
Conjecture C4. See also Harary [2, p. 135]. 

7.3 CONJECTURE C18: The dual of every connected planar map is the sum of three 

edge-disjoint subgraphs such that each vertex has either an even number of edges incident 
with it from each of the three subgraphs or it has an odd number from each of them. 

The equivalence of Conjectures C1 and C18 is given in Ore [1, p. 103]. Alterna- 
tively, one can give a direct proof that Conjectures C18 and C4 are equivalent. 

8. Vertex characters. 

8.1 CONJECTURE C19: It is possible to associate a coefficient k(v) equal to + 1 
or -1 with each vertex in a bridgeless cubic map in such a way that ?k(v) = 0 (mod 3), 
where the summation is taken over the vertices occurring in the boundary of any region. 

Heawood [2] proved the equivalence of this conjecture with Conjecture C4. 

A reformulation of this conjecture would be to take the above congruences and 
require a solution, for all of them taken together, none of whose members is con- 
gruent to zero modulo 3. Thus, if A is the (0, 1) region-vertex incidence matrix, 
the above is equivalent to the existence of a vector X such that AX = 0 (mod 3), 
where none of the components of X is zero. 

To see how this conjecture implies Conjecture C4, label the edges of the map 
a, b, or c, such that the three edges incident with each vertex are labelled differently 
and the ordering of the edges a -+ b -+ c is a clockwise rotation if k(v) = + I and 

counter-clockwise if k(v) = - 1. This labelling is consistent if and only if the vertex 

character assignment is proper; i.e., for each region Sk(v) = 0 (mod 3). 
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Using a computer code, Yamabe and Pope developed an assignment method 
for cubic maps of up to 36 vertices and illustrated their method by an example in 
their brief paper [1]. 

8.2 CONJECTURE C20: It is always possible repeatedly to cut off corners (replace 
a vertex by a triangle) from a convex polyhedron so that eventually a polyhedron is 
obtained whose faces have a number of edges which is divisible by 3. 

This conjecture due to Hadwiger [2] is a modification of the previous conjecture 
of Heawood. Cutting off corners yields vertices of degree 3, and hence the truth of 
the last conjecture implies Heawood's conjecture (Conjecture C1 ). The proof in 
the reverse direction is more elaborate. 

Conjecture C20 may have been suggested by a result of Heawood [2] in which he 
proved that if the regions of a map could each be subdivided (by the simple operation 
of adding a new edge to connect some pairs of Ladjacent edges thereby forming 
triangles) into new regions such that all the regions are bordered by edges whose 
number is congruent to zero mod 3, then the map is 4-colorable. 

Heawood first shows constructively that such a map is 4-colorable. Then he 
shows that any 4-coloring of the constructed map is also a 4-coloring of the initial 
map by removing the edges. 

9. Modular equations and Galois fields. Let GF(k) denote the Galois field of 
order k. Thus, k is a prime power and GF(k) is the unique (finite) field with k elements. 
Obviously, one may view a k-coloring of the vertices (or edges or regions) of a graph 
(or map) as an assignment of an element of GF(k) to every vertex (or edge or region) 
of the graph (or map). 

We shall consider in this section the cases k = 2, 3, 4. When k = 4, note that 
two elements in GF(k) are equal if and only if their sum is zero. Thus, if we assign to 
every edge e in a bridgeless map which has been 4-colored, the sum of the colors of 
the two regions adjacent to e, this sum will never be zero. We may give this a matrix 
formulation as follows: List the edgese1, , em and regions r1, ..*, rn of a bridgeless 
map M. Let B be the matrix defined by putting Bij = I if ei is in the boundary of r 
and putting Bij = 0 otherwise. Thus, each row of B contains two unit elements. 
B is sometimes called the edge-region incidence matrix of M, or simply an incidence 
matrix. 

Suppose M is 4-colored. Then define a column vector Z = (z1, zn), where zj 
is the color of the jth region, and each zj belongs to GF(4). The matrix product 
BZ is a column vector P = (p1, ..., p,,), and each p i is the sum of two distinct elements 
in GF(4) since ei is on the boundary of two distinctly colored regions. Hence, each 

pi is non-zero. 
Now we can state the following conjecture due to 0. Veblen [1]: 

9.1 CONJECTURE C21: Let B be any edge-region incidence matrix. Then there is a 
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column vector Z = (z1, *Z, Zn) with entries zj in GF(4) such that the matrix product 
BZ has no zero entries. 

The discussion above shows that Conjecture C21 is equivalent to Conjecture C0 
since the existence of the column vectorZ provides us with a 4-coloring of the map. 

We can also form an edge-vertex incidence matrix for a graph G and make a 
conjecture as before. Obviously, this procedure is equivalent to the above by duality. 

We may now restate Conjecture C19 using the Galois field GF(3). We can also 
define a region-vertex incidence matrix for a map M and then make the following 
conjecture: 

9.2 CONJECTURE C22: Let B be the region-vertex incidence matrix of a map M. 
Then there is a column vector Z = (z1, ***, Zn) with each zj in GF(3) such that BZ is 
identically zero but no zj is equal to zero. 

In an interesting generalization of these ideas, Tutte [6] has developed a frame- 
work for merging the two questions of 4-colorability and Tait-colorability of a planar 
map. Some of the work is motivated by a conjecture due to Tutte that any bridgeless 
cubic map with no Tait-coloring can be reduced to a Petersen graph (illustrated 
later) by deleting some edges and contracting others to single vertices. (The converse 
of this conjecture is known to be false-see Watkins [1]). It leads to the classification 
of 2-blocks where the term k-block refers to a set of points of a projective geometry 
PG(q, 2) over the Galois field GF(2) whose dimension is > k. A k-block is tangential 
if it cannot be converted to a similar k-block by a particular process of projection. 
It is not known if any tangential 2-blocks (sets of points in PG(q, 2) that meet every 
(q - 2) space) other than the following three exist: 

- The Fano block (the plane which has exactly 7 points), 
- The Desargues block (a 3-dimensional 2-block consisting of 10 points lying 

in three's on 10 lines in a Desargues configuration), and 
- The Petersen block (this is the only 5-dimensional 2-block) which is an 

embedding closely related to the Petersen graph, and its existence is associated with 
the non-existence of a Tait coloring of the Petersen graph. In a private communica- 
tion, W. T. Tutte has informed me that Mr. Biswa T. Datta of Ohio State University 
proved in his Ph.D. thesis that there are no 6-dimensional tangential 2-blocks. 

That many excellent mathematicians have constructed erroneous proofs of the 
four color conjecture is perhaps a measure of the difficulty and subtlety of the problem. 
For example, in a recent paper, J. M. Thomas [1] attempts to prove the four color 
conjecture. His argument is based on Veblen's modular equation approach. However, 
we can point out the fault with his paper in simpler terms. Essentially, his line of 
argument is the slitting operation which he describes as follows: 

Let side s bond faces K, L which are unequal and do not join. Slit side s 
lengthwise so that its two pieces border a channel making K, L into a single 
face in map M' with n - 1 faces. Let K', L' be the sums of the unknowns 
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at the vertices of K, L with those it, v at s omitted. A root of map system X 
in which u, v are numbered +, - becomes a root of the system X' + (K' + 1) 
+ (L' - 1), where X' is the map system for M'. Conversely, such a special 
root of X' augmented by the values + 1, - 1 for u, v becomes a root of 
the map system X. 
The difficulty occurs in the inductive step when he claims that he can extend a 

root for the slit back into a root for the original map. This means that the two regions 
along the slit would have to be differently colored in the slit map. If this were true, 
the four color conjecture would follow trivially. Unfortunately, this part of the 
paper appears to be as difficult as any of the other formulations. 

10. Hadwiger's Conjecture. 

10.1 DEFINITION: An edge contraction of a graph G is obtained by removing 
two adjacent vertices u and v and adding a new vertex w, adjacent to those vertices 
to which u or v was adjacent. A graph G is contractible to a graph H if H can be 
obtained from G by a sequence of edge contractions. We shall also call Ha contrac- 
tion of G. Note that G is contractible to H if and only if there is a connected homo- 
morphism (see Ore [2, p. 85]) from G onto H. 

10.2 HADWIGER'S CONJECTURE: Every connectedk-chromaticgraph is contractible 
to a complete graph on k vertices. 

10.3 CONJECTURE C23: Hadwiger's conjecture is true for k = 5. 

The equivalence of this conjecture and Conjecture C1 is due to K. Wagner [4]; 
a simpler proof of the equivalence has been given by R. Halin [2]. The truth of this 
conjecture for k < 5 was established by G. A. Dirac [2]. 

An equivalent statement of the above conjecture using the notion of conformal 
graphs, (Ore [1, p. 26]) is due to Halin [1]. 

One may use the notion of contraction to formulate a criterion for planarity 
which is dual to the well-known result of Kuratowski. The following theorem was 
discovered independently by Harary and Tutte [1] and by Wagner [3]. It was also 
probably known to Ringel, since he realized that any contraction of a planar graph is 
planar. Let K5 denote the complete graph on 5 vertices and K3,3 the complete 
bipartite graph on two sets each with three vertices. 

10.4 THEOREM. A graph is planar if and only if it has no subgraph contractible 
to K5 or K3,3. 

11. Amalgamation. 

11.1 DEFINITION: A graph G is a conjunction of two disjoint graphs G1 and G2 
if it is obtained by taking an edge e1 = {aI, b1} in G1 and an edge e2 = {a2, b2} in G2, 
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identifying (or coalescing) a1 with a2, deleting the edges el and e2, and introducing 
a new edge e3 = {b1, b2}. 

11.2 DEFINITION: Suppose that we are given two sets A1 and A2 of vertices 
of a simple graph G such that no edge is incident with vertices of both sets. Let 4A 

be a 1-1 correspondence between the elements of the two sets. A u-coalition of G is 
the graph obtained from G by identifying corresponding vertices in Al and A2. 
Vertices which are connected by two edges as a result of the identification are con- 
nected by a single edge in the i-coalition by eliminating one of the edges. 

11.3 REMARK: Conjunctions and It-coalitions do not decrease chromatic numbers. 

11.4 DEFINITION: Let G be a conjunction of G1 and G2 as in 11.1. Consider a 
1-1 correspondence it between sets A1 and A2 where a, E A1, a2 E A2, it(a1) = a2, 
and it(b,) # b2. The graph obtained by applying this it-coalition to G is called a 
merger. 

11.5 REMARK: A conjunction is a merger in which A1 = {a1} and A2 = {a2}. 

11.6 DEFINITION: A graph G is called an amalgamation of the disjoint graphs 

GI, * , Gp if it is derived by repeated mergers of the G j. A k-amalgamation is an 
amalgamation of graphs G j i = 1, *--,p, each of which is a complete graph on k 
vertices. 

11.7 CONJECTURE C24: No 5-amalgamation is planar. 

The equivalence to Conjecture C1 is given in Ore [1, p. 180] utilizing ideas from 
Hajos [1]. 

12. Other algebraic and number-theoretic approaches. The first two approaches 
give statements equivalent to the four color problem but for specific maps. They are 
useful in applying computer methods, to test whether a given map of a reasonable 
size (within the bounds of computer capability and of time) is 4-colorable or not. 
The third and fourth approaches are number-theoretic. 

Diophantine Inequalities. Let the regions of a planar map be labelled r = 1, 2, 
* n. Let the variable t, be integer-valued 0 < t, < 3. Thus, tr assigns one of the 

four colors, labelled 0, 1, 2, 3 to the region whose number is r. If two regions r and s 

have a boundary in common, then tr - ts: 0. Such a relation is written down for 

every pair of adjacent regions. The relation for one pair may be reduced to two 

inequalities as follows: 

either tr -ts? 1 or ts- tr > 1. 

This pair of inequalities may now be written as 

tr-ts > I -14rs and ts -tr _ -3 + 43rs X 
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where brs = 0 or 1. We obtain a system of such inequalities by allowing r and s to 
vary from 1 to n. The problem then is to determine whether it is possible to choose 
the integers 0 < tr < 3, r = 1, ***, n, and the binary variables brsv r, s = 1, *. n, 
such that the system of inequalities has a solution. If not, then our assumption that 
tr take on only four values is untenable. 

We have now proved that the following conjecture is equivalent to Conjecture C0: 

12.1 CONJECTURE C25: For every planar map the corresponding system of dio- 
phantine inequalities formulated here has a solution. 

According to G. Dantzig, this formulation was informally communicated to him 
by Ralph Gomory of Integer Programming fame. 

Optimization. Another formulation is due to Dantzig himself [1, p. 549]. Referring 
back to Conjecture Cg, consider each subtour of a cubic map, and starting at any 
vertex, assign a direction to an edge. Then assign the opposite direction to the edge 
of the circuit adjacent to it and continue around the (even-length) circuit in this 
manner so that for each vertex the two edges incident with it (now called arcs) are 
directed away from it or directed towards it. 

Label the vertices 1, 2, 3, ..., n. For any pair of adjacent vertices i and j, we 
write xij = 1 if there is an arc directed from i to j. Otherwise we write xij = 0. 
Thus we always have 

O?x <ij < 1. 

We also write 

Exij=2i where i = 1 or 0, 

expressing the fact that there must be two arcs on some subtour leading away from 
vertex i if 3i = 0 and none if 3i = 1. The problem now is to find 3i and xij which 
satisfy these three conditions. The three conditions constitute a bounded Trans- 
portation Problem, and so one may attempt to apply the techniques of integer 
programming to this formulation. 

Arrangements. Consider the sum a1 + a2 + a3 + + a". If we add brackets 
to this sum as one usually does to evaluate a sum, one never adds the brackets in 
such a way that the numbers are added more than two at a time. The result is called 
an arranged sum. For example, a1 + a2 + a3 + a4 can be written as an arranged 
sum 

(1) ((a1 + a2) + (a3 + a4)) 

or 

(2) (((a1 + a2) + a3) + a4), etc. 
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We can define a partial sum to be the sum within any pair of brackets; e.g., 
in (2) the partial sums are 

(a, + a2), (a, + a2 + a3), (a, + a2 + a3 + a4). 

In (1) the partial sums are 

(a, + a2), (a3 + a4), (a1 + a2 + a3 + a4). 

12.2 CONJECTURE C26: If a sum of n numbers is expressed in any two ways as an 
arranged sum, then one can choose integer values for the a i's in such a way that no 
partial sum of either arranged sum is divisible by 4. 

For example: for (1) and (2) a1 = 1, a2 = 1, a3 = 1, a4 = 2. The equivalence 
of conjectures CO and C26 is due to H. Whitney [7]. 

Sequences. 

12.3 DEFINITION: A cartesian sequence is a finite sequence c(O), c(l), - of four 
colors such that 

(i) c(r) # c(r + 1), r = 0,1,2, 
i.e., the same color never appears in two consecutive positions. 

(ii) c(2r) # c(2r + 2), r = 0, 1, 2, ..., is also cartesian. 

12.4 CONJECTURE C27: Given any integer n and an arbitrary increasing sequence 
of integers 0 < io < i1 < ... < i_ < n, m < n, there exists a cartesian sequence c(s), 
s = 0, 1, 2, * , n, such that the subsequence d(s) = c(i5) is also cartesian, s = 0,1, * , m. 

The equivalence of Conjectures CO and C27 is discussed by B. and R. Descartes 
in [1]. 

13. Chromatic polynomials. 

13.1 DEFINITION: Let Pr(A) be the number of ways to color an r-country map 
in at most A colors. Then Pr(A) is called the chromatic polynomial of the map. It is 
clear that a chromatic polynomial may correspond to many maps with r countries 
and that a classification of r-country maps is essential in order to give Pr(A) more 
precise meaning; i.e., the number of ways to color two r-country maps can be different. 

13.2 CONJECTURE C28: For any r-country planar map, A = 4 is not a root of 

P,(l) = 0. 

Conjectures CO and C28 are clearly equivalent. Chromatic polynomials are due to 
G. D. Birkhoff [1] and to H. Whitney [4]. A chromatic polynomial is a counting 
method of testing the 4-colorability of a map. 

In 1946 Birkhoff and Lewis [1] considered cubic maps (for these Pr(O) = Pr(1) 
- Pr(2) = 0) and gave the following conjecture; 
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13.3 CONJECTURE C29. 

(A- 3) r<< P-r+1)(A) -2< (A - 2)2 for A > 4. 

They were only able to show this for 0 < r < 8. The double inequality has the 
following meaning: If fi() and g(Q) are polynomials, thenf(Q) < g(A) if and only if 
the coefficients of f(A) are non-negative and not greater than the corresponding 
coefficients of g(A). Such a relation with an additional condition such as A. > 4 means 
that the relation holds with A replaced by A -- 4. Note that Conjecture C29 implies 
Conjecture C28. Thus, Conjecture C29 is a strong form of Conjecture CO. 

Rota [1] has proved that the coefficients of every chromatic polynomial alternate 
in sign. Read [2] conjectured that in their absolute values, these coefficients strictly 
increase and then strictly decrease. 

We now give some interesting results due to W. T. Tutte [8] and [10] on chromatic 
polynomials. Let M be a triangular map with k vertices. Then the chromatic poly- 
nomial of M, P(M, A), with respect to vertex-coloring satisfies the relation 

jP(M,1+z)I < T5 -k 

where T = (1 + 15)12 = 1.618, the "golden ratio" which is one of the solutions of 
the quadratic equation 

2 
x = x + 1. 

Tutte gives this result as a theoretical explanation of the empirical observation that 
P(M, A) appears to have a zero near A = 1 + T. Note that there are no A-colorings 
for the case where an edge forms a loop. For any loopless triangular map T, Tutte [10] 
shows that P(T, T + 2) > 0. Since T + 2 = 3.618, this result tells something of the 
behavior of P(T, A) near i = 4. It is known that P(T, A) is not positive throughout 
the interval T + 2 < A < 4. 

If the map consists of triangles except for one region which is an m-gon with 
2 < m < 5, then 

P(M, 1 + T) < ? 3 + in - k. 

Recently, Tutte [12] has shown that if M is a triangular map with n vertices, then 

P(M5 T + 2) = (T + 2)T 3-10P2(M5 z + 1). 

CHAPTER 3. REDUCIBILITY 

1. Irreducible graphs and maps. 

1.1 DEFINITION: We call a 5-chromatic planar map (graph) irreducible if any 
other planar map (graph) with fewer regions (vertices) has a chromatic number less 
than 5. 
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Thus an irreducible planar map or graph is minimal 5-chromatic. 
Suppose that an irreducible map or graph exists. We shall be able to show that 

it must have certain properties which we shall call forced-for example, an irreducible 
map is forced to have simply connected regions. On the other hand, we shall show 
that an irreducible map may be assumed without loss of generality, to have certain 
optional properties; i.e., if an irreducible map exists, then we may construct an 
irreducible map possessing the optional property. For example, if an irreducible 
map exists, then we may construct an irreducible cubic map from it. 

1.2 CONJECTURE C30: There are no irreducible graphs. 

Clearly, if Conjecture C1 is false, then 5-chromatic planar graphs exist and, 
hence, so does a 5-chromatic planar graph with a minimal number of vertices. 
Conversely if an irreducible graph exists, then it is a 5-chromatic planar graph 
so Conjecture C1 is false. 

We have two main reasons for studying irreducible maps (aside from trying to 
show that they don't exist). First of all, in order to show that every map is 4-colorable, 
it suffices to show that every irreducible map is 4-colorable and hence we may assume 
that the map we are trying to 4-color has any forced or optional property. Secondly, 
we study irreducible maps in hopes of raising the Birkhoff number whose definition 
follows: 

1.3 DEFINITION: We define the Birkhoff number N to be the minimum number 
of regions (vertices) in an irreducible map (graph). 

By the usual convention, N = so if there is no irreducible map. Any map with 
fewer than N regions is 4-colorable. 

Very little is known about the Birkhoff number. Franklin [1] proved that N > 26, 
and Reynolds [1] improved the result slightly, showing N _ 28. Franklin [2] improved 
on the improvement, obtaining N ? 32. Finally, Winn [4] proved that N ? 36. 
After a hiatus of nearly thirty years, Ore and Stemple [1] succeeded in raising the 
lower bound for N once again by proving the following theorem: 

1.4 THEOREM: N ? 40. 

Being irreducible is a (very!) strong requirement, and we shall be able to deduce 
many properties of irreducible graphs. Since loops and parallel edges do not affect 
colorability of a graph, we may always assume that an irreducible graph is simple. 
Suppose that G is a simple irreducible graph. We can embed G in a maximal 
planar graph G with the same number of vertices as G. G is 5-chromatic and hence 
irreducible. Thus, we have shown that if any irreducible planar graph exists, then 
there is an irreducible simple maximal planar graph. Whitney's result [1] guarantees 
that any simple maximal planar graph has a Hamiltonian circuit, and as we have 
seen, any map with a Hamiltonian circuit can be 4-colored. Thus,, we obtain the 
following paradoxical result (cf. Ore [1, p. 193]): 
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1.5 THEOREM. It is optional to assume that any map obtained by embedding an 
irreducible graph can be face-colored in 4 colors. 

Of course, this does not imply that we can vertex-color the graph using 4-colors. 
We shall see later that any triangular map except the tetrahedron is 3-colorable. 

By considering maps and dualizing, we can show that the above optional con- 
ditions for irreducible graphs yield the following optional conditions for irreducible 
maps: 

1.6 THEOREM. The following characteristics are optionalfor irreducible maps: 
(a) Bridgeless, 
(b) Two regions meet along at most one edge, 
(c) Cubic. 

On the other hand, certain characteristics are forced for irreducible maps. Any 
map divides the plane into open connected components, and the regions of the 
map are just the closures of these components. 

1.7 THEOREM. Let M be an irreducible map. Then any region in M is simply- 
connected. 

Proof: Suppose some region R is not simply-connected. Then the region divides 
the plane into an inside and an outside. The region R and the regions interior to it 
form a map M1; the region R and regions exterior to it form a map M2, and no 
internal region shares a common boundary edge with an external region. Now, since 
both M1 and M2 have fewer regions than M, we can color both M1 and M2 using 
4 colors. By rearranging the coloring of M1, we can insure that R receives the same 
color in each of the colorings of M1 and M2. This allows us to put the two colorings 
together to obtain a 4-coloring of M. 

The same argument would allow us to prove that the union of any two reg- 
ions in M is simply-connected. Thus, 1.6(b) is forced. In other words, an optional 
property may be forced. Actually, if Conjecture C0 is true, any property is forced. 

This theorem is equivalent to the fact that an irreducible planar graph has no 
point of articulation and thus is 2-connected (i.e., it is a block). In fact, any maximal 
planar, simple, irreducible graph G must be 3-connected. For if we embed G in 
the sphere, we obtain a triangulation so, by a theorem of Steinitz (see Steinitz and 
Rademacher [1], or Gruinbaum [2, p. 235]) G is 3-connected. (Steinitz's theorem 
states that the vertices and edges of a 3-dimensional convex polyhedron constitute 
a planar 3-connected graph and conversely.) 

Now we can use duality to prove the following theorem: 

1.8 THEOREM. Let M be an irreducible map satisfying the optional conditions 
1.6 (a), (b), (c). Then U(M) is 3-connected. 

Proof. Think of M as a map on the sphere. Then M is the dual of its own dual. 
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But the dual of M is a triangulation of the sphere and the dual of any triangulation is 
a convex polyhedron (see E. C. Zeeman [1]). Hence, Mis a convex polyhedron and so, 
by Steinitz' theorem, U(M) is 3-connected. 

1.9 COROLLARY. Let M be an irreducible map. Then it is optional that U(M) be 
3-connected. 

This result seems particularly interesting in view of Whitney's theorem [8] which 
says that a 3-connected planar graph embeds uniquely in the plane. Thus, Corollary 
1.9 says that Mis completely determined by U(M). But, by the dual of Theorem 1.5, 
U(M) can be vertex-colored in 4-colors! 

2. Critical graphs and irreducibility. 

2.1 DEFINITION: Let G be a graph. Then G is contraction-critical if any edge 
contraction reduces the chromatic number of G. 

Obviously, any irreducible graph G is vertex-critical and contraction-critical 
since removing a vertex or contracting an edge both lower the total number of 
vertices and hence either operation decreases the chromatic number. Thus, we may 
examine properties of vertex-critical or contraction-critical graphs to derive infor- 
mation about irreducible graphs. 

2.2 DEFINITION: A graph G is k-edge connected if removing fewer than k edges 
does not disconnect the graph. 

Ore ([1, p. 165]) proves the following theorem: 

2.3 THEOREM. Any 5-chromatic vertex-critical graph is 4-edge connected. 

Analogous information about contraction-critical graphs is due to Dirac: 

2.4 THEOREM. (Ore [1, p. 169]). Let G be a contraction-critical graph with x(G) > 5. 
Then G is 5-connected. 

Thus, every irreducible planar graph is 5-connected. 
We can use the last result to rederive Theorem 1.5. For suppose G is irreducible 

planar and hence 5-connected. Tutte's theorem [3] (we only need 4-connected) 
implies that G has a Hamiltonian circuit, and we complete the argument as before. 
Theorem 2.4 implies that the degree of every vertex in an irreducible planar graph 
is at least 5. Of course, our earlier modification of Heawood's argument also proves 
this fact. 

2.5 DEFINITION: Let G be a graph. We call a set T of vertices of G a minimal 
disconnecting set if G - T is disconnected or trivial, but no proper subset of T has 
this property. 

The preceding theorem shows that a minimal disconnecting set T must contain 
at least 5 vertices if x(G) ? 5. If T is a minimal disconnecting set in G, the section 
graph determined by T, G(T), is called the separating graph. What properties must 
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a separating graph have? The following theorem (Ore [1, p. 192]) provides a partial 
answer. 

2.6 THEOREM. Let G be a maximal planar graph with minimal disconnecting set T. 
Then G(T) is a simple circuit. 

2.7 THEOREM. Let G be a contraction-critical 5-chromatic planar graph. Then G 
cannot be separated by a simple circuit C of lengthfive except when one of the connected 
components of G - C is a single vertex which is adjacent (in G) to every vertex of C. 

Let us translate this result into a statement about maps. 

2.8. DEFINITION: A sequence R1, R2, **., Rp of regions in a map with Ri adjacent 
to Ri+1, 1 < i < p - 1, Rp adjacent to R1, and no other pairs Ri and Rj adjacent is 
lcalled a ring of length p, or p-ring. 

Obviously, a ring of length p in a map M corresponds to a simple circuit of length 
p in D(M) which separates the graph. The dual to the conclusion of the theorem holds 
if and only if either the inside or outside of the ring consists of a single region. Thus, 
we have shown that Theorem 2.7 implies the following result of Birkhoff [2]: 

2.9 THEOREM. If M is an irreducible map, then M may not contain a ring of five 
regions unless they surround a pentagon. 

3. Reducible configurations. Theorem 2.9 of the last section suggests a definition: 

3.1 DEFINITION: Let G be a graph. Then we call G a reducible configuration if G 
cannot occur as a subgraph of an irreducible graph. We define reducible configura- 
tions in maps using duality. 

Thus, the previously mentioned result says that a ring of five regions not sur- 
rounding a pentagon is a reducible configuration. 

We already have other types of reducible configurations; for example, any region 
with at most four sides. This allows us to derive a lower bound on the Birkhoff 
number. 

If M is a cubic map and ri denotes the number of regions bounded by i sides in 
the map, we have from Euler's formula 

2m= z2iri . 

Putting these equations together yields the following well-known lemma (see, for 
example, Franklin [3, p. 154]): 

3.2 LEMMA. Let M be a cubic map. Then 

L2(6 - i)ri = 12. 

If a map is irreducible, ri = 0 for i < 5 and hence the only positive term in the 
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sum is (6 - 5) r5 = r5, the number of pentagons. We conclude immediately that 
any irreducible cubic map must have at least 12 pentagons. 

If a map has exactly 12 pentagons, then it is a dodecahedron and can be 4- 
colored. Thus an irreducible map must have at least 13 regions. This proves that 
the Birkhoff number is at least 13. 

To improve on this lower bound for the Birkhoff number, one must obtain more 
reducible configurations. Even then, however, increasing the lower bound can be 
very difficult because of the many combinatorial possibilities to be considered at 
every step. 

Before listing other reducible configurations, we shall need some jargon. Our 
results will be in terms of vertices and degrees but of course can be dualized for 
regions and number of faces. 

3.3 DEFINITION: We call a vertex v of degree k a k-vertex and write d(v) = k. 
Any vertex of degree 6 or less is called minor; vertices of degree 7 or more are called 
major. Let vo be a fixed vertex. A neighbor is a vertex adjacent to vo. If a neighbor is 
a k-vertex, we call it a k-neighbor. Three vertices are in triad when they form the 
three corners of a triangle. Two neighbors of v0 are successive when they form a 
triad with v0. A vertex is reducible if it belongs to a reducible graph. A sequence 
v --, v, of neighbours of vo is called successive or consecutive if vi-1 and vi are 
successive for i = 1, - r. 

The following was one of the first reduction theorems: 

3.4 THEOREM (Birkhoff [2]). A 5-vertex is reducible when it has three consecutive 
5-neighbors. 

Franklin [1] proved an analogous theorem about 6-vertices. 

3.5 THEOREM. A 6-vertex is reducible if it has three consecutive 5-neighbors. 

These results yield a corollary (Franklin [1]): 

3.6 COROLLARY. A 5-vertex vO is reducible when it has three 5-neighbors and 
a 6-neighbor. 

Proof: By Theorem 3.4, v0 must have three consecutive neighbors V1, V2, V3, 

where v2 is a 6-vertex and v1 and V3 are 5-vertices or else v0 is reducible. But now v2 
has three consecutive 5-neighbors v1, v0, V3 so it is reducible by Theorem 3.5. 

Franklin [2] also proved the following result: 

3.7 THEOREM. A 5-vertex with two 5-neighbors and three 6-neighbors is reducible. 

Winn [1] proved still another reduction theorem: 

3.8 THEOREM. A 5-vertex is reducible if it has one 5-neighbor andfour 6-neighbors. 

Choinacki [1] and Winn [1] obtained another reduction result for 5-vertices. 
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3.9 THEOREM. A 5-vertex all of whose neighbors are 6-vertices is reducible. 

Putting together the preceding results, we obtain the following corollary due to 
Winn [1]: 

3.10 COROLLARY. A 5-vertex is reducible when all of its neighbors are minor 
vertices. 

Thus, in an irreducible graph every 5-vertex is adjacent to a major vertex. 
Bernhart ([1] and [2]) proved the following reduction theorem for a 6-vertex: 

3.11 THEOREM. A 6-vertex is reducible if it has three successive neighbors with 
degrees 5, 6, and 5, respectively. 

Winn [1] went on from there to obtain an analogue to Corollary 3.10 for 6- 
vertices. 

3.12 THEOREM. A 6-vertex is reducible when all of its neighbors are minor. 

Errera [1] obtained some general results about the number of consecutive 5- 
neighbors of an n-vertex in an irreducible graph. 

3.13 THEOREM. An n-vertex in an irreducible graph can have at most n - 3 con- 
secutive 5-neighbors,for n even and at most n - 2 for n odd. 

For n = 7, his result was improved by Winn [2]. 

3.14 THEOREM. A 7-vertex with more than four consecutive 5-neighbors is reducible. 

Thus, a 7-vertex with six or more 5-neighbors is reducible; that is, in an irreducible 
graph, there are at most five 5-vertices adjacent to any 7-vertex. 

Several new reducible configurations were discovered by Ore and Stemple [1]. 
For example, we have the following result: 

3.15 THEOREM. Let vo be a 5-vertex with neighbors vI, V2, V3, V4, V5. If the corre- 
sponding list of degrees is (6, 5, 5, 6, 7) and v4 and v5 are in triad with a 5-vertex 
w # vo, then the configuration is reducible. 

We have not attempted here to list all, or even nearly all, reducible configurations, 
but rather to give the flavor of the sorts of manipulations involved in obtaining them. 

For a listing of most reducible configurations, see the paper of Ore and Stemple 
[1]. One may also consult Ore [1, Chapter 12] and Franklin [3, p. 156]. 

CHAPTER 4. RESULTS 

1. Some sufficiency theorems. Any of the following conditions is sufficient to 
insure that a planar map be 4-colorable: 

1.1 CONDITION: Some region is bounded by at most 4 edges (see Chapter 2, 
Section 1). 
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1.2 CONDITION: Each region is bounded by at most five edges (Aarts and de 
Groot [1]). 

1.3 CONDITION: There are at most 21 vertices of degree 3 (Finck and Sachs [1]). 

1.4 CONDITION: There is at most one region of more than six sides and the map 
is irreducible (Winn [1]). 

1.5 CONDITION: The countries with more than four neighbors can be divided into 
two classes such that one class has at most one country and no two countries in the 
other class are neighbors (Dirac [8]). 

1.6 CONDITION: The number of edges in the boundary of each region is a multiple 
of 3, and the map is bridgeless cubic (Winn [1]). 

Very few constructions have been given which show how to color some general 
class of maps. The following scheme shows us how to 3-color the edges of a particular 
kind of map. 

Let M be a cubic bridgeless map. Suppose that the number of edges in the bound- 
ary of every region is a multiple of 3. Ringel [1, p. 19] has given a constructive scheme 
for 3-coloring the edges of M. 

Call the three colors 1, 2, and 3, and give them the usual cyclic ordering so that 
2 follows 1, 3 follows 2, and 1 follows 3. If e, f, and g are the three edges of M incident 
with some vertex, give them the cyclic ordering induced by the clockwise orientation 
of the plane; that is, f follows e if, moving clockwise from e, we first encounter f. 

1.7 COLORING SCHEME: Begin with some edge e of M and color it arbitrarily, 
say with 1. Now consider the four edges adjacent to e, two at each endpoint. In the 
cyclic orderings at each endpoint, these four edges either follow or precede e. Give 
them the corresponding color. (Thus, if f follows e, color f with 2.) Continue the 
process until all edges have been colored. 

This procedure is unambiguous-in other words, only one color is assigned to 
each edge. Hence, no two adjacent edges receive the same color. 

This provides us with a constructive proof of the sufficiency of Condition 1.6 
since, given a 3-coloring of the edges of a cubic bridgeless map, we can then construct 
a 4-coloring of the regions of the map. 

1.8 CONJECrURE C31: If a critical 5-chromatic graph contains a complete graph 
on three vertices, then the graph can be contracted to a complete graph on five vertices. 

The truth of this conjecture implies the truth of Conjecture C1 (Dirac [5]). 
Conjecture C1 implies Conjecture C23 of which this Conjecture is a special case. 

1.9 THEOREM. If k ( > 2) is the maximum degree of any vertex in a graph without 
loops and without complete subgraphs on k + 1 vertices, then the graph is k-colorable. 

This is the famous result of Brooks [1] which contains the dual of Condition 1.2 
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as a corollary. The following results indicate that k-chromatic graphs may be some- 
what pathological. 

1.10 THEOREM. For any k > 1 there exists a k-chromatic graph which has no 
circuit (region) of less than 6 edges (B. Descartes [1]). 

1.11 THEOREM. If d > k > 2, then there exist regular connected k-chromatic 
graphs of degree d and of an arbitrarily large number of vertices (Dirac [4]). 

For k > 4 Dirac constructs a k-chromatic graph which does not contain a 
complete k-graph as a subgraph and in which the degree of every vertex except one 
is k - 1. 

2. Coloring problems on surfaces other than the plane. In view of the fact that 
the four-color problem is unsolved, it is perhaps surprising that the analogous 
problems on other orientable surfaces have been solved completely! 

2.1 DEFINITION: A surface is said to have genus p if it is a homeomorph of a 
sphere with p handles. 

2.2 THEOREM. For any positive integer p, the chromatic number of a graph em- 
bedded in the (orientable) surface of genus p is at most Xp where 

[7 + 11 + 48p] %p = 

This is Heawood's Map-Coloring Theorem-see Busacker and Saaty [1, p. 94] 
for the proof. Note that if this theorem held for p = 0, we would have a proof of 
Conjecture C1. Unfortunately, the only known proof of Theorem 2.2 depends on 
having p > 0. 

Recently, Ringel and Youngs [2] have shown that ifp > 1, then there always exists 
a graph which can be embedded in the surface of genus p whose chromatic number 
is exactly equal to Xp (see also Youngs [1] and Berge [1, p. 218]). 

We might also mention here that Ringel [2] has given an interesting six-color 
problem on the sphere in which he asks for a coloring of both regions and vertices 
using 6 colors so that no 2 adjacent vertices or regions are colored the same and so 
that no vertex receives the same color as the regions on whose boundaries it lies. 

3. One, two, and three and more colorability. Clearly a graph is 1-colorable if 
and only if it consists of isolated vertices (i.e., it is totally disconnected). 

3.1 THEOREM. A map is properly colorable with two colors if and only if every 
vertex is of even degree. 

This follows from the fact that a graph is bipartite if and only if it has no circuits 
of odd length (Konig [1, p. 151]). 
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3.2 THEOREM. A cubic map is properly colorable with three colors if and only if 
each region is bounded by an even number of edges (Franklin [3, p. 198]). 

Dually, a maximal planar graph is 3-colorable (i.e., 3-partite) if and only if every 
vertex has even degree. Unfortunately, no general useful characterization of 3- 
partite graphs or 3-partite planar graphs is known at present. 

3.3 THEOREM. The edges of a cubic map can be properly colored with four colors 
(Golovina and Yaglom [1, p. 43]). 

This is also a corollary of the Shannon-Vizing bound on the chromatic index. 
Griinbaum [1] has shown that every planar map with less than 4 triangles is 

3-colorable. As a consequence of the theorem of Brooks, triangular maps (other 
than the tetrahedron) are 3-colorable. 

3.4 THEOREM. If a triangular map can be properly colored with two colors, then 
its vertices can be properly colored with three colors. 

See Dynkin and Uspenskii [1]. 

3.5 THEOREM. The edges of a cubic map can be colored with two colors a and ,B so 
that each vertex is incident with one edge colored with a and two edges colored with ,6. 

This theorem is due to Petersen [1]. It can be restated in the form: Every bridgeless 
cubic map is the sum of a 1-factor and a 2-factor. Petersen gave an example to show 
that a similar result with three 1-factors cannot be obtained. (See Fig. 7.) 

FIG. 7 

Marathe [1] has shown that Petersen's theorem is a corollary of the following 
result: 

3.6 THEOREM. Any triangular map with an even number of triangles can be 
colored with two colors a and fl so that each triangle is bounded by one edge colored a 
and two edges colored /X. 

4. The sufficiency of six colors. We already know that 5 colors suffice to color 
any planar map, but we shall give a short direct proof here that 6 colors suffice since 
the argument demonstrates, once again, the ubiquity of Euler's formula in these 
coloring problems and since it gives us a method for reducing the number of regions 
in a cubic map. 
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Consider Euler's formula n - m + r = 2 and substitute n = 2m/3 (for a cubic 
map). This gives 6(r - 2) = 2m. Since 6r > 6(r - 2) = 2m we prove that 6 colors 
are sufficient to color any cubic map. This is clear when r < 6. If r > 6, then there 
must be (as we already know) at least one region bounded by 5 or less edges. Applying 
induction, we may assume that all maps are 6-colorable for r - 1 regions. If we 
remove a less than six sided region of the map and extend the edges of its neighbors 
in such a way that each vertex is of degree three and the entire removed region is 
covered by its five neighbors as in the diagram below, we can 6-color the map and 
then reinstate the removed region, coloring it with the sixth color not appearing in 
any of its five'neighbors. (See Fig. 8.) 

FIG. 8 

5. The uniqueness of colorings. The uniqueness of the colorability of a graph has 
also been investigated. A complete presentation is given in the book by Harary 
[2, p. 137]. Note that in a unique coloring, each vertex must be adjacent to vertices 
whose totality is colored with all the remaining colors (at least once). We have the 
following results for uniqueness of coloring with k colors: 

5.1 THEOREM. In the partition of the vertices into subsets induced by the coloring, 
the vertices of every pair of subsets with their connecting edges form a connected 
subgraph (Cartwright and Harary [1]). 

5.2 THEOREM. The graph is (k - 1)-connected. The corresponding subgraph for 
m subsets, 2 < m < k is (m - 1)-connected. 

5.3 THEOREM. For each k ? 3 there is a uniquely k-colorable graph with no sub- 
graph isomorphic to the complete graph on k vertices (Harary, Hedetniemi, and 
Robinson [1]). 

It is also known (Chartrand and Geller [1]) that no planar graph is uniquely 
5-colorable; every uniquely 4-colorable planar graph is maximal planar; and that 
a planar 3-colorable graph in which each vertex belongs to the last triangle of a 
linear sequence of triangles each sharing an edge with its immediate neighbors 
is uniquely 3-colorable. A uniquely 3-colorable planar graph on n ? 4 vertices 
contains at least two triangles. 

In general, the coloring of a map or a graph is not unique. There are a number 
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of papers studying the number of colored graphs. We give a sample of the known 
ones in addition to the discussion of chromatic polynomials already given. 

Let Fn(k) denote the total number of k-colored graphs on n labelled vertices and 
let Mn(k) denote the number of graphs on n vertices that are colored in at most k 
colors; also let fn(k) denote the number of connected k-colored graphs on n vertices. 
Read [1] gives: 

00 
2 

n t oo Xs k 

? 2-in2F (k) x ,2- = ( 2-`s2xSf 

?O X1 0S k 

z 2-n1 M(k)x = 2- 
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oo on oo xn 

1 + 2 2-2n2Fn(k) :T= ( fn(k) x. 
n1n! n=1 ln! 

Wright [1] has proved some asymptotic formulas for Fn(k), Mn(k), fn(k). Carlitz [1] 
has analyzed some arithmetic properties of these numbers. An interesting and 
rather simple one to quote is: 

Mn(k) _ k (mod 2") (n > 2) 

from which it follows that Mn(k) is odd if and only if k is odd. 

5.4 DEFINITION: A map is rooted when a vertex, an edge and a face that are 
mutually incident are specified as root-vertex, root-edge and root-face, respectively. 

Consider a bridgeless cubic rooted map with 2n vertices. Two colorings are not 
considered as distinct if they differ only by a permutation of the four colors. Suppose 
that the root-face is red, the other face incident with the root-edge is blue, the third 
face incident with the root-vertex green, and the fourth color, yellow. 

5.5 DEFINITION: The Tait cycle separating blue and green from red and yellow 
is called the basic Tait cycle of the coloring (it passes through the root-edge). 

5.6 DEFINITION: The rank of the coloring is equal to the number of components 
of the basic Tait cycle minus one. 

W. T. Tutte [7, 9] has shown that the average number of 4-colorings for such 
maps with 2 n-vertices is asymptotically equal to the following expressions: 

8(37rn)-+(32/27)n for rank 0, 

8(37rn)- (4/ir - I)nl(32/27)n for rank 1. 

One can also introduce the notion of semi -uniquely 4-colorable graphs. 

5.7 DEFINITION: Suppose x(G) = 4. Let v and w be vertices of G. Then we say 
that v and w are brothers if any 4-coloring of G assigns the same colors to v and w. 
We say that G is semi-uniquely 4-colorable if it has a pair of vertices which are brothers, 
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D. L. Greenwell [1] has proved that the following conjecture is equivalent to 
Conjecture C1: 

5.8 CONJECTURE C32: Let G be a semi-uniquely 4-colorable planar graph and let 
v and w be a pair of brothers in G. Then the graph G' obtained from G by joining v and 
w with an edge is not planar. 

6. Some recent developments. It would be totally beyond the scope of this paper 
to discuss the problem of coloring infinite planar graphs. We might mention here, 
however, some recent work of R. Halin [3] on coloring numbers which has applica- 
tions to finite graphs. The coloring number, col (G), of a (possibly infinite) graph G 
was first introduced by Erdbs and Hajnal [1] and is defined as the smallest cardinal k 
for which there exists a well-ordering of the vertices of G such that every vertex v 
of G is adjacent to less than k vertices preceding it in the ordering. Clearly, x(G) 
< col (G). Halin shows that if col (G) is sufficiently large, then G must contain 
subdivisions of any complete graph on fewer than col (G) vertices. 

We should also like to draw the reader's attention to some other recent papers. 
S. Hedetniemi [1] defines a disconnected-coloring (or D-coloring) of a graph 
G = (V, E) as a partition V = V1 u * u V,n of V such that, for every i, the section 
graph of G induced by the subset V; is disconnected. The D-chromatic number 
Xd(G) is the smallest number of subsets in any D-coloring of G. The D-chromatic 
number shares many properties with the chromatic number but differs in others. 
For example, Hedetniemi gives the following theorem: 

6.1 THEOREM. If G is planar, then Xd(G) 4. 

Other recent results have dealt with edge coloring. M. Rosenfeld [1] proved the 
following theorem: 

6.2 THEOREM. Let G be a cubic graph with n vertices. Then G is homomorphic to 
a Tait-colorable cubic graph G' with (6n + 5)/5 vertices. 

In a recent paper, M. R. Williams [1] suggests an improvement of a heuristic 
coloring procedure developed by Peck and Williams [1]. The latter procedure takes 
a graph and proceeds as follows to determine which vertices should be colored with 
the kth color (cf. Welsh and Powell [1]). 

(i) Find the uncolored vertex v of highest degree. 
(ii) Check to see if v is adjacent to any vertex already colored with the kth color. 
(iii) If not, then color v with color k. 
(iv) If yes, then remove v from consideration for color k and return to step (i). 
This heuristic procedure uses the vector d whose ith component is the degree 

of the ith vertex. Williams modifies the above procedure by replacing d with a vector 
di defined recursively by setting d = d' and d'+? = Ad?, where A is the adjacency 
or vertex-vertex matrix of G. The vectors dmconverge to the dominant eigenvector 
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of A as m -* oo. Williams observes that convergence generally occurs after m = tln 
iterations where n is the number of vertices in the graph. 

Williams used his modified heuristic to color one graph of over 700 vertices using 
28 colors. The graph was later found to contain a complete subgraph on 26 vertices 
so Williams' estimate was certainly not too high! 

Striking out into other new directions, J. W. T. Youngs [2] indicates how his joint 
work with Ringel (Ringel and Youngs [2]), in which they settled the Heawood 
Conjecture, can be used to provide "slick" proofs that various conjectures, e.g., 
Conjecture C4, are equivalent with the four color conjecture. Hopefully, these 
methods (current graphs, graphs with rotation, Kirchhoff's Law) will eventually 
provide us with some new information in this area although they have not yet done so. 

Finally, we should like to mention some recent work of ours with P. Kainen [1] 
in which we have considered the problem of relative colorings. Suppose we consider 
some planar graph G with a section subgraph, G', that has already been colored. A 
relative coloring of (G, G'), with respect to the given coloring of G', is a coloring of 
G which agrees with the given coloring on the vertices of G'. 

Note that if G' is 4-colored, we may need as many as 4 new colors to color G 
relative to the coloring of G'. Let us write X(G, G') for the maximum number of 
new colors needed in any relative coloring of (G, G'). We call this the relative chromatic 
number of (G, G'). 

We prove that the following conjecture is equivalent to the four color conjecture. 

6.3 CONJECTURE C33: For any pair (G, G') with G planar and G' a (possibly 
empty) subgraph of G, we have X(G, G') < 4. 

If we require G' to be connected, then we know of no examples where X(G, G') > 3. 
This leads us to make the following conjecture which implies Conjecture C1. 

6.4 CONJECTURE C34: For any pair (G, G') with G planar and G' a connected 
subgraph of G, we have X(G, G') < 3. 

We do not know whether this conjecture is implied by the four-color conjecture. 

Conclusion. To conclude, it may be of interest to give a quotation from a paper 
by a great living geometer, H. S. M. Coxeter [1]: 

If I may be so bold as to make a conjecture, I would guess that a map re- 
quiring five colors may be possible, but that the simplest such map has so 
many faces (maybe hundreds or thousands) that nobody, confronted with it, 
would have the patience to make all the necessary tests that would be required 
to exclude the possibility of coloring it with four colors. Many people believe, 
on the other hand, that the four-color theorem may be true; in fact, editors 
of journals often have the unhappy experience of receiving manuscripts in 
which it is "proved." Such manuscripts are either obviously incompetent or 
else so lengthy that the referee has a tedious job finding the flaw. The problem 
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has been considered by so many able mathematicians that anyone who can 
prove that a particular map really needs five, will become world-famous 
overnight. 
There is still great and lively interest in the problem: Shimamoto of the Brook- 

haven National Laboratory Computer Center, is presenting a paper on a proof 
of the four-color problem. One of the steps in the proof depends on a complicated 
computer program which is still being worked on at this time. 

My heartfelt thanks to my colleague and friend, Paul Kainen, for careful reading 
and suggestions which enriched the manuscript. I would also like to thank Michael 
Albertson and David Burman for help in obtaining information and Marilyn Dalick 
for her great patience in typing many versions of the manuscript over the past two 
years. 
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