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“Yes, please,” said Milo. “ Can you show me the biggest number there is?”
“I’d be delighted,” [the Mathemagician] replied, opening one of the closet doors. “We keep it right here.
It took four miners just to dig it out.”

Inside was the biggest
Milo had ever seen. It was fully twice as high as the Mathemagician.
—The Phantom Tollbooth
Norton Juster

1. Large Numbers. “Describe, on a 3 X 5 card, as large a positive integer as you can.”

Many mathematicians have at some time played the game above, either solitaire or in
competition. My solutions in the second, sixth, and twelfth grades, respectively, are shown in Figs.
1,2,3.
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The last needs a word of explanation. Since'googol is 10'® and googolplex is 108°%¢°! let us define
Nplex as 10". Actually, by twelfth grade I could write “One googolplexplexplex. .. with a googol
plexes” and even some more elaborate variants. These were at best WARP 2.2. The next level is
shown in Fig,. 4.

Let f,(x)=2x
and fpu(x)=£,%(1) WARP 3
fg(9)

FiG. 4.

Here f*) represents the x th iterate of f. Iterated doubling is exponentiation, f,(x) = 2*. Iterated
exponentiation is the tower function,
2

fi(x)=22" withx 2.

My WARP 2 solution is approximately f;(21), one for each plex and five to get to a googol. There
is no word for f,. f4(4) = f5(f3(f5(fs(1))) = f3(f3(4) = £3(65536) is already WARP 2.1.

Three ideas help us create large numbers. First, we concentrate on constructing rapidly growing
functions. The numbers will then be the value of the function f(x) for some reasonably small x.
Second, we use iteration to build a larger function from a given one. Third, we introduce
diagonalization. Having defined the functions f, above, we define a diagonal function, called f,,,

b
g fo(n) = £,(n).

This is called the Ackermann function. (There are several similar formulations.) The Acker-
mann function does occasionally appear in “real” mathematics. For example, van der Waerden
proved in 1927 that to all n there exists W(n) such that if the integers from 1 to W(n) are divided
into two classes, then there exists an arithmetic progression of length # in one of the classes. His
proof gave a W(n) roughly equal to f, (n). (It is possible that far smaller W(n), even of
exponential order, will suffice and this remains an open problem.)

Once f,,(n) is defined, there is no reason to stop. We define a new function, let’s call it f,_, ,, by
fos1(n) = £ (1). Having defined £, , ,, we may define f, , ,, f. ., 3,... . When faced with ellipses
we resort to diagonalization. We define a new function, called f,,, by f,,(n) = £, . .(n). (See Fig.
5.)

fow0(9) WARP 32

F1G. §.

We are defining here a hierarchy of functions in which each function has an immediate
successor and where limit functions are defined by diagonalization of an appropriate subsequence.
The usual representation for ordinal numbers provides a perfect framework in which to do this.
The ordinals & < w* have a simple representation. Each such a may be uniquely written

a=a,6"+ a0+ - +a,0" (w>s;>5,> - >5,>0)
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where the a; are positive integers. (We write aw® instead of the more customary w'a for
convenience of expression.) The limit ordinals are those a with s, > 0. For these we define a
specific “natural” sequence a(n) of ordinals approaching w“by

a(n) =aw"+ - +a,_ 0" +(a, - o + no™"".

For example, if « = 2w* + 3, then a(n) = 2w* + 20’ + nw’. We define the natural sequence
approaching w“ by

w“(n) = &".
Now we define f,(n) for each a < w® using transfinite induction by
(+) farr(n) = £7(1),
(++) fa(n)=f¢x(n)(n)’
where a is a limit ordinal and the initial value f,(n) = 2n. (See Fig. 6.)

fww(9) WARP 35

F1G. 6.

Let us emphasize that though we are using the language of infinite ordinals the functions f, are
recursive functions and the values f,(¢) are well-defined integers. The infinite ordinals are, in one
sense, merely finite sequences of positive integers being manipulated in particular ways. A
recursive program for computing £ (n) could take the following form.

FUNCTION F(a,N,T)
BEGIN
IFT>1,
SET X = F(a,N, T — 1)
RETURN F(a,X, 1)
IFT=1ANDa=1
RETURN 2+N
IF T = 1 AND LIMITORDINAL ()
RETURN F(a(N),N, 1)
IF T = 1 AND NOT LIMITORDINAL (a)
RETURN F(a — 1,1,N)
END
The representation of a, the predicate LIMITORDINAL (a), and the functions « — 1 and a(N)
need to be defined explicitly, though we do not do so here.
We continue the ordinals a half-WARP further. Set

i p— w — w
W =W, 0, =0 0 =0,

and set g, equal the limit of the w,. (We emphasize that w, is not the first uncountable ordinal. All
ordinals in this paper are countable.) Each ordinal a < w,,, is uniquely represented as

a=a|wﬁl+...+arwﬁr (‘*’s>ﬂl>ﬁz>"'>ﬂr>0)
with the a, positive integers. A “typical” ordinal is

2w+ 1

w+8 w
70! 4 180307
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Now for limits. We say nw” is the natural sequence approaching w?*!. If 8 itself is a limit ordinal,
then its limit sequence B(n) has already been defined and we call w?™ the natural sequence
approaching w”. For sums we keep all but the smallest term fixed and take a limit sequence
approaching that smallest term. Thus

2w+ 1

w+8 w w+8 n
Tw® + 13w3w +50 + w3w +40°+w

is the natural sequence for the ordinal above. Finally, ¢, has the natural sequence gy,(n) = w,.
Now the hierarchy f, defined by (+), (+ + ) may be extended to all @ < g, + w. We have a big
number. (See Fig. 7.)

fe +9 (9) WARP 4

Fi1G. 7.

This should win the game against any nonlogician!

2. The Connection. Let PA stand for Peano Arithmetic, that first order theory of numbers
which includes the basically finitistic methods of number theory. The surprising truth is that
WARRP 4 lies beyond the scope of PA. The sense in which we use this was shown by G. Kreisel [4]
in 1952.

A statement P(x,,...,x,) is called provably recursive if there is an algorithm for deciding if
P(xy,...,x,) is true and a proof, in PA, that the algorithm always terminates. Thus
P(x,y,z,t): x" + y' = z' is provably recursive (simply make the calculation) but

P(t): (Ex)(Ey)(Ez)x"+y'=z*

is not known to be provably recursive.

We say a function f dominates a function g if there exists n such that f(x) > g(x) for all
X > n.

Let P(x, y) be a provably recursive statement in PA and suppose (x)(Ey) P(x, y) is provable
in PA. Set fp(x) equal the least y such that P(x, y) is true. Then, Kreisel showed, the function f
is dominated by f, for some a < g,. As f, dominates all previous f, we draw the following
conclusion.

Let (x)(Ey)P(x, y) be a statement of PA which is true for the natural numbers and let
fp(x) be the least y for which P(x, y) is true. Suppose P(x, y) is provably recursive. If f,
dominates f, , then the statement (x)(Ey) P(x, y) is unprovable in PA.

3. An Unprovable Theorem.* The epochal work of Kurt Godel gave the existence of state-
ments in PA which are true for the natural numbers but unprovable in PA. The statements
constructed by Godel suffered the defect of being unnatural and for the past half century a
somewhat raggedy debate ensued concerning whether or not Godel’s result applied to statements
of real mathematical interest. In 1977 Jeff Paris and Leo Harrington [2] gave the first natural
example of a statement that was true for the integers and unprovable in PA. (The term “natural”
is here a matter of subjective opinion.) Their statement comes from Ramsey Theory, a subdisci-

*The term “unprovable theorem” is abhorred by logicians. Theorems have proofs by definition. For our informal
discussion, however, it seems appropriate to the subject matter to use this delightful oxymoron.



1983] LARGE NUMBERS AND UNPROVABLE THEOREMS 673

pline of Combinatorial Analysis, and to give it one needs a moment’s introduction to that subject.
(A detailed treatment is given in [1].)

By “an r-coloring of the k-sets of S” we mean a function x with domain the family of
k-element subsets of S and range [r]. (Notation: [a, b] = {a,a + 1,...,b},[r]=[1,r], [a, b) =
[a, b — 1].) Given such a coloring x a set B C § is called monochromatic if all of the k-element
subsets of B have the same color.

We may state Ramsey’s Theorem in either a finite or an infinite form.

RAMSEY’S THEOREM (Infinite Form). For all k, r given any r-coloring of the k-sets of N, there
exists a monochromatic infinite set B.

RAMSEY’S THEOREM ( Finite Form). For all k, r, t there exists n so that given any r-coloring of the
k-sets of [n], there exists a monochromatic t-set B.

From the infinite form of Ramsey’s Theorem we deduce the finite form as follows. Suppose the
finite form false and fix k, 7, ¢ so that for all n there exists an r-coloring of the k-sets of [n] with
no monochromatic z-set B. Any coloring for a larger n also works for a smaller one. Hence, for
any given n, there is some coloring which can be extended to arbitrarily large n. Construct
colorings for successively larger values of n in turn, each of which extends to arbitrarily large n.
The union is an r-coloring of the k-sets of N with no monochromatic ¢-set B. Thus the infinite
form of Ramsey’s Theorem would be false. The reasoning above, often called a Compactness
Argument, can be applied in many situations to reduce an “infinite form” to a “finite form,” see,
e.g., [1].

Define a set S of positive integers to be large if |S| > min(S). For example, {3,4,7, 9} is large
but {4,63, 1281,4504655} is not. The statement of Paris and Harrington (in one version) requires a
seemingly minor modification of Ramsey’s Theorem.

(PH) For all k, r there exists n so that given any r-coloring of the k-sets of [k + 1, n] there exists
a large monochromatic B C [k + 1, n]. (The exclusion of 1,. ..,k is purely technical, avoiding such
trivial large sets as {2,3,4}.)

If we allow infinitistic techniques, (PH) is relatively simple to prove. Suppose (PH) is false for a
particular k, r. By the Compactness Argument there would exist an r-coloring x of the k-sets of
[k + 1, 00) with no large monochromatic finite B. However, given any such x the infinite form of
Ramsey’s Theorem guarantees the existence of an infinite monochromatic set C. The first
min(C) + 1 elements of C then give. a large monochromatic finite B.

We have deduced both Ramsey’s Theorem (finite form) and (PH) from Ramsey’s Theorem
(infinite form). Neither of these arguments is formalizable in PA since neither Ramsey’s Theorem
(infinite form) nor the Compactness Argument can even be stated in PA. This, by itself, does not
show that Ramsey’s Theorem (finite form) or (PH) are unprovable in PA, only that we have
not proven them. In fact, Ramsey’s Theorem (finite form) can be proven in PA (though we do not
prove it here) but (PH) cannot.

Paris and Harrington, in their original work, showed by model-theoretic arguments that (PH)
was unprovable in PA. Robert Solovay, hearing of their result but not of their proof, discovered a
more combinatorial argument. Let PH(k, r) be the least n such that for every r-coloring of the
k-element subsets of [k + 1, n] there exists a monochromatic large B. Solovay showed that PH
grows too fast for PA.

A full discussion of Solovay’s argument is somewhat beyond the bounds of this expository
discussion (though not by too much, see [1] or the original [3]), but we can quite easily
demonstrate that PH(2, r) grows quite rapidly. (A similar exposition was given by Smorynski [5].)
To find a lower bound for PH(2, r) we give explicit r-colorings of the 2-sets of [3, n].

Split [3, 00) into consecutive intervals of the form [x,2x)—i.e., [3, 6), [6, 12) [12,24), [24, 48),. .. .
We give the pair {i, j} color 1 if i and j lie in a common interval. If all pairs in a set
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A = {ay,...,a }have color 1, then 4 C [x,2x), so |A4| < x and min(4) > x, hence 4 is not large.
Set g,(x) = 2x. Now we define g,(x) = g{*(x) = x2* and split [3, o) into consecutive intervals
of the form [x, g,(x))—that is,

[3,24), [24,24 - 224), [24 - 22424 . 224 . 2242

We give a pair {i, j}color 2 if i and j lie in a common interval and the pair does not have color 1.
If all pairs in a set 4 = {a,,...,a,} have color 2, then 4 C [x, g,(x)), which is split into x
subintervals. Each element of 4 lies in a separate subinterval (since no pair has color 1) so |[4]| < x
and 4 is not large. On [3, g,(3)) all 2-sets have either color 1 or 2 and there are no monochromatic
large sets. Thus

PH(2,2) > g,(3) = 24.

We continue in this manner, defining g, (x) = g¢* (x), partitioning [3, c0) into consecutive
intervals of the form [x, g, ,(x)), and giving a pair {i, j}color s + 1 if i and j lie in a common
interval and the pair has not been given a smaller color. Then, quite explicitly, we have shown

PH(2,3) > g3(3) =24 .2%. 224‘224

and, in general, PH(2, r) > g,(3). The function g,(3) has order roughly f, (r).

The colorings of k-sets are equally explicit but require a greater technical effort. Solovay
showed that PH(3, r) is bounded from below by f,(r) where a = w*, PH(4, r) by f,(r) where
a = w°, etc., and that PH(r, r) was bounded from below by fe,(r)- (Though we do not require it
here, Ketonen found upper bounds on these functions of roughly the same order.)

Let P(k, n) be the statement “Given any k-coloring of the k-sets of [k + 1, n] there exists a
large monochromatic B.” P(k, n) is surely provably recursive as one may check all k-colorings of
the k-sets of [k + 1, n]. Applying Kreisel’s fundamental result the statement

(k)(En) P(k,n)

is unprovable in PA.

4. Reflections. WARP 4 takes us to the tradeoff between largeness and definiteness. We have
described an algorithm for computing f, (1)—but how do we know that the algorithm will work
(i.e., terminate)? One way is by transfinite induction, the determination of f,(¢) requires ¢ calls of
the algorithm to calculate f, _, or, if a is a limit ordinal, the algorithm for f,,,. In either case these
are smaller ordinals, by induction the algorithm works for them, hence the f, algorithm works.
However, transfinite induction is a basically infinitistic tool and we can ask for a proof in PA that
the algorithm for f, will work. Here there is a very nice result. For a < g, there is such a proof in
PA. However, for a = g, there is no proof in PA that the algorithm will always work. (This gives
another statement which is true but unprovable, but one that would hardly be termed natural.)

We would agree that the number described in Fig. 8 is not legitimate as it stands. It gives, in
fact, Berry’s paradox, one of the classic Russell-type paradoxes. Since this number has been
described in less than 50 words, it must be greater-than itself. The problem lies in the notion of
describable. Let us say that a number m is describable (modulo PA) in length » if there is a
statement 4(x) in PA such that

(i) (E,x)A(x) has a proof in PA of length at most n. (E, =“there exists a unique.”)
(i) There is an algorithm for deciding A(x) and a proof in PA of length at most n that the
algorithm always terminates.

(iii) A(m).
We construct a legitimate alternative (see Fig. 9). This number cannot be described by a book the
size of the known universe, with electrons for characters, in the language of PA. The function g
lies beyond PA—but just barely. It is of order f, and the above card is still WARP 4.

To go beyond WARP 4 we strengthen PA. Let GAM be a formalization of Generally Accepted
Mathematics. (See Fig. 10.)
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The largest number describable

in at most fifty words, plus one. WARPED
FiG. 8.
Let g(n) equal the largest m Let ggamin) equal the largest m
describable (modulo PA) in describable (modulo GAM) in
WARP 5(?)
length < n. length < n.
g (10'99) 4 4 gaam (1090 +1
Fi1G. 9. FiG. 10.

Travel beyond WARP 4 now depends on what one allows in GAM. There is always the danger -
that if too much is allowed, the system will become inconsistent and the 3 X 5 card will no longer
define an integer. The game of describing the largest integer, when played by experts, lapses into
hopeless argument over legitimacy.
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MISCELLANEA
116.

The condensation of metaphor involves no denial of logic: it is simply an extension of the
implications of grammar, the development of a notation which, being less cumbersome, enables us
to think more easily. It may be compared to the invention of a new notation, say that of Leibniz
or Hamilton, in mathematics: the new is defined in terms of the old, it is a shorthand which must
be learned by patient effort, but, once learnt, it makes possible the solution of problems which
were too complicated to attack before. The human head can only carry a certain amount of
notation at any one moment and poetry takes up less space than prose.

—~Michael Roberts, The Faber Book of Modern
Verse, London, Faber and Faber, 1937, p. 20.



	Article Contents
	p. 669
	p. 670
	p. 671
	p. 672
	p. 673
	p. 674
	p. 675

	Issue Table of Contents
	American Mathematical Monthly, Vol. 90, No. 10 (Dec., 1983), pp. 661-700+C109-C124+701-732
	Volume Information [pp. 723-732]
	Front Matter
	Author vs. Referee: A Case History for Middle Level Mathematicians [pp. 661-668]
	Miscellanea [p. 668]
	Large Numbers and Unprovable Theorems [pp. 669-675]
	Miscellanea [p. 675]
	[Photo] [pp. 676+705]
	Functions Which Parametrize Means [pp. 677-683]
	Unsolved Problems
	Monthly Unsolved Problems 1969-1983 [pp. 683-690]

	Notes
	Applications of a Result on Spherical Integration to the Theory of Convex Sets [pp. 690-693]
	Iterating the Derived Set Function [pp. 693-697]
	Cross Products of Vectors in Higher Dimensional Euclidean Spaces [pp. 697-701]

	Center Section
	Telegraphic Reviews [pp. C109-C124]

	Notes
	A "Counterexample" for the Schwarz-Christoffel Transform [pp. 701-703]

	The Teaching of Mathematics
	A Classroom Note on the Sample Variance and the Second Moment [pp. 703-705]

	Problems and Solutions
	Elementary Problems: E3025-E3030 [pp. 706-707]
	Solutions of Elementary Problems
	E2919 [p. 707]
	E2920 [pp. 707-708]
	E2926 [pp. 708-709]

	Advanced Problems: 6445-6447 [pp. 709-710]
	Solutions of Advanced Problems
	6386 [pp. 710-711]
	6387 [p. 711]
	6388 [pp. 711-712]
	6389 [pp. 712-713]
	6390 [pp. 713-714]
	6391 [pp. 714-715]


	Reviews
	Review: untitled [pp. 715-717]
	Review: untitled [pp. 717-718]
	Review: untitled [pp. 719-720]
	Review: untitled [pp. 720-721]

	Letters to the Editor [p. 722]
	Miscellanea [p. 722]
	Errata and Addenda: A Universal Entire Function [p. 732]
	Back Matter





