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1. Introduction and Overview. This paper deals with two questions:
A. Can we accurately describe the strategies used by “expert” mathematicians to solve
problems? and
B. Can we teach students to use those strategies?
I make two basic assumptions. First: as a result of their problem-solving experience,
mathematicians develop consistent and useful problem-solving strategies. Second: most students
are not aware of, or do not use, these strategies. For example, consider the following problems.

Problem 1: Let a, b, c, and d be given numbers between 0 and 1. Prove that
(1-a)(1-b)(1-c)(1-d)>1—-a—b—c—d.

, 1,2 n
Problem 2: Determine the sum wtayt + m+nl

Problem 3: Prove that if 2"— 1 is a prime, then n is a prime.

Ostensibly, all three of these problems are accessible to high school students. None of them
require mathematical knowledge beyond algebra, and all of them have straightforward solutions.
Yet college students and professional mathematicians attack these problems in dramatically
different ways.

On Problem 1 most students will laboriously multiply the four factors on the left, subtract the
terms on the right, and then try to prove that (ab+ ac + ad+ bc + bd+ cd— abc — abd — acd— bed
+ abcd) > 0—usually without success. Virtually all of the mathematicians I’ve watched solving it
begin by proving the inequality (1—a)(1—5)>1—a—b. Then they multiply this inequality, in
turn, by (1—¢) and (1—d) to prove the three- and four-variable versions of it.

Likewise in Problem 2,"most students begin by doing the addition and placing all the terms
over a common denominator. A typical expert, on the other hand, begins with the observation:
“That looks messy. Let me calculate a few cases.” The inductive pattern is clear and easy to
prove.

The colleague who read Problem 3 and said, “That’s got to be done by contradiction,” was
typical; given the structure of the problem, one really has no alternative. Yet this almost
automatic expert observation is alien to students: a large number of those to whom I have given
the problems either respond with comments like “I have no.idea where to begin” or try a few
calculations to see whether the result is plausible and then reach a dead end.

Of course, these are special problems for which expert and novice performance is remarkably
consistent. While the experts did not consciously follow any strategies, their behavior was at
least consistent with these “heuristic” suggestions:

a. For complex problems with many variables, consider solving an analogous problem with

fewer variables. Then try to exploit either the method or the result of that solution.

b. Given a problem with an integer parameter n, calculate special cases for small n and look

for a pattern.
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c. Consider argument by contradiction, especially when extra “artillery” for solving the
problem is gained by negating the desired conclusion.
Many of the novices were unaware of the strategies, and many others “knew of them” (that is,
upon seeing the solution they acknowledged having seen similar solutions) but hadn’t thought to
use them. Expert and novice problem-solving are clearly different. The critical question is: Can
we train novices to solve the problems as experts do?

My answer is a provisional “yes.” I think it is possible to give a course in which we can teach
students to solve a wide variety of problems—including problems unlike any solved in the
course—better and more efficiently than they could otherwise. But there are many questions to
be answered. How much sophistication and background do students need before such instruc-
tion can be effective? What does it take to understand a strategy like “establish subgoals” and
how to use it? What do you need in addition to the mastery of individual strategies? Briefly, my
thesis is this.

First, the strategies are more complex than their simple descriptions would seem to indicate.
If we want students to use them, we must describe them in detail and teach them with the same
seriousness that we would teach any other mathematics. Second, there is clear evidence that the
strategies do make a difference—when there are only a small number of them and they are
taught under closely controlled circumstances. Third, being able to use individual strategies is
not enough: you have to know which ones to use, and when. We can provide students with a
reasonable structure for efficient problem-solving and can actually demonstrate improvement.

2. The Complexity of Heuristic Strategies. The first person to describe problem-solving
strategies in such a way that they could be taught (although he does not claim that they can be
and makes no promises about the results) was Polya. In How to Solve It (1945) and the two
volumes of Mathematical Discovery (1962 and 1965) Polya laid the foundation for explorations
in heuristics. :

Let us define a heuristic strategy as a general suggestion or technique which helps problem-
solvers to understand or to solve a problem. Heuristic strategies include the “fewer variables,”
“calculating special cases,” and “argument by contradiction” strategies described in section 1.
Fig. 3 gives many more. Many investigators have attempted to show that these strategies can
help students to solve problems. However, the results are generally inconclusive, in part because
these apparently simple strategies can turn out to be very complex. Consider the following
strategy and a few problems.

“To solve a complicated problem, it often helps to examine and solve a simpler analogous
problem. Then exploit your solution.”

Problem 4: Two points on the surface of the unit sphere (in 3-space) are connected by an arc A
which passes through the interior of the sphere. Prove that if the length of A is less than 2, then
there is a hemisphere H which does not intersect A.

Problem 5: Let a, b, and c¢ be positive real numbers. Show that not all three of the terms
a(1—b), b(1—c), and c¢(1— a) can exceed 1/4.

Problem 6: Find the volume of the unit sphere in 4-space.

Problem 7: Prove that if a*+ b*+ c>+ d*=ab+ bc+ cd+ da, then a=b=c=d.

These four problems, like Problem 1, can be solved by the “analogous problem” strategy. Yet
it is unlikely that a student untrained in using the strategy would be able to apply it successfully
to many of these. Part of the reason is that the strategy needs to be used differently in the
solution of each problem.

In solving Problem 1, we built up an inductive solution from the two-variable case, using the
result of the analogous problem as a stepping stone in the solution of the original.
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In contrast, analogy is used in Problem 4 to furnish the idea for an argument. The problem is
hard to visualize in 3-space but easy to see in the plane: we want to construct a diameter of a
unit circle which does not intersect an arc of length 2 whose endpoints are on the circle.
Observing that the diameter parallel to the straight line between the endpoints has this property
enables us to return to 3-space and to construct the analogous plane.

Problem 5 is curious. It looks as though the two-variable analogy should be useful, but I
haven’t found an easy way to solve it. At first the one-variable version looks irrelevant, but it’s
not. If you solve it, and think to take the product of the three given terms, you can solve the
given problem. So again we exploit a result, but this time a different result in a different way.

Problem 6 exploits both the methods and results of the lower-dimensional problems. We
integrate cross-sections using the same method; the measures of the cross-sections are the results
we exploit.

In Problem 7 it would seem apparent that the two-variable problem is the appropriate one to
consider. However, which two-variable problem is not at all clear to students. A large number of
those I have watched tried to solve:

Problem 7': Prove that a®>+ b*=ab implies that a=b, instead of
Problem 7": Prove that a*+ b*= ab + ba implies a=b.

We conclude that the description “exploiting simpler analogous problems” is really a
convenient label for a collection of similar, but not identical, strategies. To solve a problem using
this strategy, one must (a) think to use the strategy (this is nontrivial!), (b) be able to generate
analogous problems which are appropriate to look at, (c) select among the analogies the
appropriate one, (d) solve the analogous problem, and (e) be able to exploit either the method or
the result of the analogous problem appropriately.

This strategy isn’t especially complex. “Look for an inductive solution when you see an
integer parameter” is easiér, but “establish and exploit subgoals™ is far more difficult. The moral
of this section is that it’s easy to underestimate the amount of work that would go into teaching
students to use even a single strategy. We should single it out as a useful strategy; we should give
sample problems (like the ones above) showing how it works; we should remind the students of
its use in other problems when we use it; and we should chide them when they fail to use it.

3. Teaching Strategies to Students Makes a Difference (Sometimes). There is some convinc-
ing evidence that “experts” do use the kind of heuristic strategies we have been discussing. But
these strategies are rarely taught explicitly: they might be called “good habits learned through
experience in problem solving.” Thus some might claim (indeed, have claimed) that any gain in
a problem-solving environment is not due to the strategies taught but to the practice in solving
problems. For that reason I conducted an experiment in which two groups of students received
essentially the same problem-solving training, except that the strategies were mentioned ex-
plicitly to only one of the groups.

Each of the seven. upper-division science majors I worked with was taught and tested
individually. “Instruction” was provided on tape recordings, so that it was replicable and could
be checked by colleagues. The students were trained to solve problems “out loud” and the tests
were tape-recorded. The experiment was designed to test the students’ use of five particular
heuristic strategies:

1. Draw a diagram if at all possible.

2. If there is an an integer parameter, look for an inductive argument.

3. Consider a logical alternative: arguing by contradiction or contrapositive.

4. Consider a similar problem with fewer variables.

5. Try to establish subgoals.

During the instruction, each of the students worked twenty problems and then saw solutions
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to each of them. Each had the same amount of time for problem solving and for seeing the
solutions. However, four of the students received a heuristic “extra.” They were given a list and
explanation of the five strategies used in the experiment and an “overlay” to each solution
explaining how the strategy had been used. Fig. 1 gives the solution to a problem we have
already considered. The right-hand side is the solution seen by all students. The left-hand side
was seen only by the “heuristics” students. All the students were reminded periodically (during
practice sessions and tests) to review carefully what they were doing, and the reminders to the
heuristics group included the phrase “Look over the list of strategies.”

The four-variable problem is too You are given the real numbers a, b, ¢, and d, each of which lies
complicated. between 0 and 1. Prove the inequality

(1—aY1-b)1—c)1—-d)>1~-a—b—c—d.

. Solution

Can we learn something from a

similar one-variable problem?

No. Suppose we start by proving the equation

How about the comparable (1-a)(1-b)>1-a—>. ®

two-variable problem? It’s easy . - . .

to solve. If we multiply out the left, (*) is true if and only if

l1-a—b+ab>1—a-b,

which is true if and only if ab>0. But ab >0, since we were given
that a and b are both positive. This proves (*). Now let’s build on
this. The number ¢ is between 0 and 1, so (1—c) is positive.
Multiplying both sides of (*) by (1—c), we get

Can we use the result? (1—-a)1-b)1—¢c)>(1—a—b)1—c), or

Yes . . . build up to 3 vari-

ables . . . Then build up to 4. (1-a)(1-b)1-c)>1—a—b—c+ac+bc.

Since ac and bc are both positive, we obtain
(1—-aY1-bX1—c)>1—a—b—c. *%
Remember, when a problem is Continuing in the same vein, we notice that (1—d) is positive;

complicated...consider a similar multiplying both sides of (**) by (1 —d), we obtain
problem with fewer variables.

Then try to use either the (-a)1-b)1—-cX1-d)>(1—a—b—c)1—d),or
method or the result to solve the (1=-a1-b)1—-c)1—d)>1—a—b—c—d+ad+bd+cd.
original problem. .

As before, we see that ad, bd, and cd are all positive. Thus
(1-aX1-b)1=cX1-d)>1—a—b—c—d,

which is what we wanted to prove.

Fic. 1

I give a detailed description of the results in “Explicit heuristic training...” Even this small
sample yielded a statistically significant difference in pretest to post-test gains: each of the four
“heuristics” students outscored the non-heuristics students, a one-in-35 chance. But, more
important, the transcripts of the solutions show that explicit use of the strategies accounted for
the differences between the two groups.
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The “fewer variables” practice included Problems 1, 5, and 7, as given above, and the
following.
Problem 8: Show that it is impossible to find real numbers a,b,c,d,e,A,B,C,D, E such that
x2+y?+ 22+ r?+ s*=(ax + by + cz + dr+ es)(Ax+ By + Cz + Dr+ Es)
for all values of x, y, z, r, and s.

For each of these, all of the students saw how the one- or two-variable analog was used to solve
the original problem. If “practice” is what counts, all of them should have solved this post-test
problem:

Problem 9: Suppose p, q, r, and s are positive real numbers. Prove the inequality

P2+ 1)(@+ )P+ 1)(s2+1) 516
pqrs ’

All four of the “heuristics” students solved it, but only one of the others did. The other two
non-heuristics students multiplied through by pgrs and tried (unsuccessfully) to deal with the
resulting inequality.

This shows that we cannot rely on students’ abilities to grasp useful problem-solving
strategies when the students are not given explicit instructions on their use and that the
instruction “made a difference.” More precisely, we can say that heuristics made a difference
under experimental conditions in which (1) there were a limited number of strategies to “worry”
about, (2) there were periodic reminders to consider using the strategies, and (3) the test
problems were clearly amenable to one of the suggested “heuristic” approaches. Taking
heuristics instruction out of the laboratory and into the real world will be no easy task.

4. The Need for Global Strategies. If heuristics can make a difference, why are the results in
the literature so equivocal? The major studies (see those by Goldberg, Kantowski, Lucas, Smith,
Webb, Wilson) are generally encouraging, but that’s about all. I can see two possible reasons for
this, one of them easily remedied.

We have seen that it is easy to underestimate the amount of work required to teach a
particular strategy. For example, Kantowski reported at the 1978 NCTM meetings that students
in a problem-solving experiment failed to “look back” over their solutions, in spite of the fact
that 40 per cent of instruction time was spent “looking back.” Videotapes of the class sessions
showed that after each problem the teacher had stepped aside and said, “Now let’s look at what
we’ve done,” and proceeded to do so. But the value of the strategy was not stressed. Students
were not shown why it is useful to “look back”—so they didn’t. If we want students to take a
strategy seriously, we have to convince them of its usefulness.

But even if we succeed in teaching students to use a series of important heuristic strategies, I
see no guarantee that there will be clear signs of improvement in their general problem solving.
Knowing how to use a strategy isn’t enough: the student must think to use it when it’s
appropriate. To justify. this claim I argue first by analogy, then briefly describe a supportive
experiment.

We can think of a heuristic strategy as a “key” to unlock a problem. There are a large
number of such “keys,” and a given problem may be “openable” by only a few of them. Imagine
facing a locked door with a key ring on which there are thirty keys, two of which will open the
door. If you only have time to try three or four keys in the lock, the fact that the “right” key is
somewhere on the chain may not help you very much. On the other hand, a strategy for selecting
the right key might. If you could narrow down the collection of “candidate” keys to ten, the
opportunity to try three or four of these gives you a much better chance of success.

Consider techniques of integration in elementary calculus. There are fewer than a dozen
important techniques, all of them algorithmic and relatively easy to learn. Most students can
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learn integration by parts, substitution, and partial fractions as individual techniques and use
them reasonably well, as long as they know which techniques they are supposed to use. (Imagine
a test on which the appropriate technique is suggested for each problem. The students would
probably do very well.) When they have to select their own techniques, however, things often go
awry. For example,

b

f xdx
x2-9
a “gift” first problem on a test, caused numerous students trouble when they tried to solve it by
partial fractions or, even worse, by a trigonometric substitution!

In “Presenting a Strategy for Indefinite Integration” (this MONTHLY, Oct. 1978) I discuss an
experiment in which half the students in a calculus class (not mine) were given a strategy for
selecting techniques of integration, based on a model of “expert” performance. The other
students were told to study as usual—using the miscellaneous exercises in the text to develop
their own approaches to problem solving. Average study time for members of the “strategy”
group was 7.1 hours, while for the others it was 8.8 hours; yet the “strategy” group significantly
out-performed the rest on a test of integration skills—in spite of the fact that they were not
given training in integration, just in selecting the techniques of integration.

The “moral” to the experiment is that students who cannot choose the “right” approach to a
problem—even in an area where there are only a few useful straightforward techniques—do not
perform nearly as well as they “should.” If we leap from techniques of integration to general
mathematical problem-solving, the number of potentially useful techniques increases substan-
tially, as does the difficulty and subtlety in applying the techniques. An efficient means for
selecting approaches to problems, for avoiding “blind alleys,” and for allocating problem-solving
resources in general thus becomes much more critical. Without it, the benefits of training in
individual heuristics may be lost.

5. The Model. The model of “expert” performance described below serves as the framework
for my courses in problem solving. Of course, any attempt to characterize mathematical problem
solving on just a few sheets of paper must leave out much more than it includes.

The global outline of the strategy is given in Fig. 2. I use a flow chart to indicate the generally -
dynamic but structured nature of the process; it is meant as a guide to profitable behaviors, not
as a straitjacket that orders and restricts them. Various individual heuristics often come into play
most appropriately at certain phases of the process. These are listed in Fig. 3.

The problem-solving process begins with an analysis of what the problem entails. This
includes getting a “feel” for the problem by looking for what is given, what is asked for, why the
“givens” are given, whether what is asked for seems plausible, what major mechanisms seem to
apply, what mathematical context the problem fits into, and so on. Which heuristics (if any) are
brought to bear during analysis may depend on both the problem and who is solving it (how
much of a “problem” or routine exercise is this “task” to the individual?). But examples of the
appropriate use of some heuristic strategies at this stage of problem-solving are:

(1) to draw a diagram even when the problem appears amenable to a different kind of
argument, such as in the following:

Problem 10: Find those values of t for which the equations
x2 — y2 =0
and have 0, 1, 2, 3, or 4 solutions.
(x—1)*+y2=1
(2) to examine special cases and try to solve them or to determine patterns. For example, in:

Problem 11: Given a, b>0, determine lim,_, (a" +b")'/".
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Frequently Used Heuristics

Analysis
1. Draw a diagram if at all possible.

2. Examine special cases:
a. Choose special values to exemplify the problem and get a “feel” for it.
b. Examine limiting cases to explore the range of possibilities.
c. Set any integer parameters equal to 1,2,3,..., in sequence, and look for an inductive pattern.

3. Try to simplify the problem by
a. exploiting symmetry, or
b. “without loss of generality” arguments (including scaling).

Exploration

1. Consider essentially equivalent problems:
a. Replacing conditions by equivalent ones.
b. Re-combining the elements of the problem in different ways.
c. Introduce auxiliary elements.
d. Re-formulate the problem by
(i) change of perspective or notation
(ii) considering argument by contradiction or contrapositive
(iii) assuming you have a solution and determining its properties.

2. Consider slightly modified problems:
a. Choose subgoals (obtain partial fulfillment of the conditions)
b. Relax a condition and they try to re-impose it
c. Decompose the domain of the problem and work on it case by case.

3. Consider broadly modified problems:
a. Construct an analogous problem with fewer variables.
b. Hold all but one variable fixed to determine that variable’s impact.
c. Try to exploit any related problems that have similar
(i) form
(ii) “givens’,
(iii) conclusions.
Remember: when dealing with easier related problems, you should try to exploit both the result and the
method of solution on the given problem.

Verifying Your Solution

1. Does your solution pass these specific tests?
a. Does it use all the pertinent data?
b. Does it conform to reasonable estimates or predictions?
c. Does it withstand tests of symmetry, dimension analysis, and scaling?

2. Does it pass these general tests?
a. Can it be obtained differently?
b. Can it be substantiated by special cases?
c. Can it be reduced to known results?
d. Can it be used to generate something you know?

Fi1G.3

one might want to set a=1; in:
Problem 12: Find 3%.,1/n(n+1).

one might want to compute the sums for 1, 2, 3, 4, and 5 terms to see the (surprisingly obvious)
answer.

(3) to look for preliminary simplifications. In:



802 ALAN H. SCHOENFELD [December

Problem 13: Find the largest area of any triangle which can be inscribed in a circle of radius R.

one might (i) consider first the unit circle, (ii) note that, without loss of generality, one can
assume that the base of the triangle is horizontal, and (iii) examine several sketches and try to
guess an answer before jumping into an analytic solution.

Design is in a sense a “master control.” It is not really a separate box on the flow chart but
rather pervades the entire solution process. Its function is to ensure that the problem solver is
engaged in activities most likely to be profitable. It entails keeping a global perspective on the
problem and proceeding hierarchically. An outline of the solution should be developed at a
rough qualitative level and then elaborated in detail as the solution process proceeds. For
example, detailed calculations or complex operations should not be performed until (i) alterna-
tives have been explored, (ii) there is clear justification for them, and (iii) other stages of the
problem solution have proceeded to the point where the results of the calculations either are
necessary or will clearly prove useful. (How painful it is to expend time and energy solving a
differential equation only to discover that the solution is of no real help in the “next” global
phase of the problem!)

Exploration is the heuristic “heart” of the strategy; it is in the exploratory phase that most of
the problem-solving heuristics come into play. Fig. 3 shows that exploration is divided into three
stages. Generally, the suggestions in the first stage are either easier to employ or more likely to
provide direct access to a solution of the original problem than those in the second stage;
likewise for the relation between stages 2 and 3. All other factors being equal, the problem solver
in the exploration phase would briefly consider those suggestions in stage 1 for plausibility,
select one or more, and try to exploit it. If the strategies in stage 1 prove insufficient, one
proceeds to stage 2; if need be, when stage 2 has been exhausted one tries the strategies in stage
3. If substantial progress is made at any stage, the problem solver may either return to design a
plan for the balance of the solution, or may decide to re-enter analysis, with the belief that the
insights gained in exploration can help re-cast the problem in a way not previously seen.

Implementation needs little comment, save that it should be the last step in the actual problem
solution. Verification, on the other hand, deserves attention if only because it is so often slighted.
At a local level, one can catch silly mistakes. At a global level, a review of the solution can yield
alternative methods, show connections to other seemingly unrelated subject matter, and, on
occasion, clarify a useful technique that then can be incorporated into one’s global problem-
solving approach.

6. The Instruction and Some Results. The model described in the previous section has served
as the foundation for two courses in problem solving—one given to eight upper-division
mathematics majors at Berkeley in 1976, and one given to nineteen (mostly) lower-division
liberal arts students at Hamilton College in 1979. In each course the students were given the
model as a guide to the problem-solving process. Each class session was devoted to a series of
problems solvable by one (or more) of the strategies listed in Fig. 3. We would go over the
solution, stressing both the use of the particular strategy and (relative to the model) how to
approach the whole problem with some efficiency.

There were substantial differences between the two courses, largely because of the difference
in mathematical sophistication between the two groups of students. For example, the suggestion
to consider the argument “by contradiction or contrapositive” meant very different things to the
two groups. For the upper-division mathematics majors, a few examples and a discussion of
when it might be appropriate to consider the strategy were enough; I was essentially “pulling
together” in coherent form what they had seen used as a tool in a variety of places. It was an
entirely different story with the freshmen. Many of them were unconvinced that there is a need
to prove things mathematically af all, and many had never seen an argument by contradiction! I
had assigned the following as part of a take-home midterm at Berkeley.

Problem 14: Let a be a digit from 1 to 9. Which numbers of the form aaaa...a, where a is
repeated n times, are perfect squares?
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All but one student solved it. In contrast, it occupied us (in bits and pieces) in class for a number
of days at Hamilton.

There were, however, many similarities between the two groups. Few of the students had had
conscious access to any of the heuristics strategies we have been discussing. During the first class
session at Berkeley, only two of the eight students succeeded in finding Z2.,1/n(n+ 1), using
the telescoping series. None had thought to try values of 1,2,3,4 for n. Similarly, they did not
draw diagrams where appropriate, etc. At the end of the course there was clear evidence that the
students were consciously using heuristics effectively and recognizing the appropriateness of
particular heuristics to particular types of problems. For example, this was on the final
examination.

Problem 15: Let S be any nonempty finite set. We define E(S) to be the number of subsets of S
which have an even number of elements, including the null set and possibly S. Determine E(S) in
closed form for any finite set S, and prove your answer.

Seven of the eight students approached the problem by looking for an inductive pattern, a far
cry from their entering behavior. (The eighth student, the only one who claimed to have seen the
problem before, outlined a combinatoric argument.)

There were similar results for this strategy in the course at Hamilton. On a test at the
beginning of the course, 4 students of 19 thought to calculate sums in this:

Problem 16: What is the sum of the first 89 odd numbers?

and some others used Gauss’s pairing of terms (which they had seen before) to get the answer.
On the final examination, 18 of 19 solved the following.

Problem 17: What is the sum of the coefficients of (x+1)*'?

Nothing resembling Problem 17 had been discussed in the course.

Likewise in both courses there were clear differences on the “fewer variables” strategy and on
other strategies that are equally well defined. Student performance on Problem 1, which I used
at the beginning of both courses, has been discussed. Problem 9 was on both final exams, and
more than three-fourths of the students in each course solved it.

I should balance these “success stories” somewhat. As we saw in section 2, heuristics are
subtle and students can easily go astray when trying to use them. There we saw that choosing
the “right” analogous problem was not easy. Also, we “experts” have the ability to “see
through” certain forms which even the more advanced undergraduates are unable to recognize.
The last line in our proof of Problem 7 at Berkeley was: “Since (a— b)*+(b—c)*+(c—d)?
+(d—a)*=0, then a=b, b=c, c=d, and d=a.” Leaving this line on the board, I gave the class
the following problem.

Problem 18: Let the numbers a; and b, be given for i=1,2,...,n. Determine necessary and
sufficient conditions on the a; and b, such that there exist real numbers A and B such that
(ayx+b)*+ -+ +(a,x+b,)>=(Ax+ B)? for all x.

The morass of symbols in the second problem, including the variable x, the subscripts, and so
on, obscured the similarity between the two problems. The students failed to see the essentially
analogous structure that “a sum of squares equals something that is or can be made equal to
zero.” They were thus unable to solve the second problem.

We cannot expect students to use any heuristic in ways that go significantly beyond the way
they have been shown to use it. Asked to find the number of positive integer divisors D(N) of
the integer N, my students had no trouble in seeing that they should calculate D(N) for different
values of N. When the results did not look suggestive, however, they did not think to ask, “What
values of N give particular values of D(N)?”—which unlocks the problem. Likewise problems
that call for a clever synthesis of two heuristics they have studied (like Pick’s theorem, which
calls for first fixing one variable and then doing an induction on the free one) will often prove
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beyond the students’ reach. These are not grounds for despair, but merely a call for realistic
expectations.

Our reasonable expectations can actually be rather high. At least in the short term, testing
before and after the course indicates some substantial progress on the part of the students. Of
course, the more important question is the long-term impact of the instruction and the effect, if
any, that it has on the students’ performance outside the class. It’s still too early to tell, but
preliminary reports from students who have taken the courses have been enthusiastic and
favorable. _

To be perfectly honest, I should mention that a course in problem solving requires a
substantial commitment from all concerned. The teacher has to be especially flexible, because
it’s the process of problem solving that counts and the teacher is essentially serving as a “coach”
to the students. The students are being asked to think, and to create, rather than to “recite”
subject matter. That’s not an easy task, but it is a critically important one—and ultimately a
very rewarding one, well worth the effort on the part of the students. It is also, of course, a
source of tremendous gratification for the successful instructor.

Note. While this article was in press, I taught the problem-solving course again—this time with an extensive
barrage of before-and-after testing and a “control group” for comparison. The results were quite dramatic and will
be written up in later reports.

I thank Jean J. Pedersen for valuable editorial criticism.
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THE FORMULA OF FAA DI BRUNO
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1. Introduction. Almost every calculus student is familiar with the formula of Leibniz for the
nth derivative of the product of two functions

D*f(t)g(t)= kéo(Z)Dkf(t)D"—kg(t)_

A much less well known formula is that of Faa di Bruno for the nth derivative of the
composition f(g(¢)) (see Theorem 2). It is the purpose of this paper to give a new proof of this
formula.

Several proofs of this formula have appeared in the literature. For example, in [1] there is a
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