THE ELEMENTARY CASES OF LANDAU’S PROBLEM OF
INEQUALITIES BETWEEN DERIVATIVES
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INTRODUCTION

In 1913 Landau initiated in [5] a new kind of extremum problem: The sharp
inequalities between the supremum-norms of derivatives. He wrote two further
papers, [6] and [7], on this subject (see also [3, 139-142]). Here we are only con-
cerned with his first paper [5]. A lively activity on this subject culminated in 1939
with Kolmogorov’s remarkable paper [4], where Landau’s R-problem was solved
for all values of n (Landau had solved it for n = 2 only). In 1941 Bang [2] gave
a second proof of Kolmogorov’s theorem using the theory of almost periodic func-
tions. Recently, the author gave a third proof in [13]. This third proof is in essence
an elaboration of Landau’s original direct approach and may be regarded as an
application of spline theory. The analogue of Kolmogorov’s theorem for the halfline
R has recently been established in [11].

The present paper discusses for both R and R, those cases of Landau’s problem
that require no knowledge beyond the elements of the Differential and Integral
Calculus of functions of one variable. The novel contribution of this paper, besides
the proofs, is the discussion of the extremizing functions in Theorems 4, 5, 6, and 7,
for the R-problem, and Theorems 9 and 11 for the R, -problem.

The author believes that the subject can be used to supplement the contents of
a calculus course, of an introductory course in numerical analysis, or for lectures
in undergraduate, or beginning graduate, seminars. In doing this there is a good
deal of flexibility. The main object of discussion are the Euler splines &,(x), and the
essential section of Part I'is §2. The §§1 and 3 only furnish further background and
may be omitted. If I were to make a selection, I would choose Theorems 1, 2, 4,
Corollaries 1, 2, and Theorem 5. This choice was implemented on when in the
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framework of the Visiting Lectureship Program of the MAA the author gave three
one-hour lectures on this subject at Wichita State University on December 6 and
7, 1971. He wishes to thank Professor Keith Moore, Albion College, and Professor
William M. Perel, Wichita State University, for arranging these lectures. This
experience encouraged the author to write this paper.

I. THE EULER SPLINES

1. Cardinal spline interpolation. Let » be a natural number and let &, = {S(x)}
be the class of functions S(x) having the following two properties

() S(x)eC" '(R).

(ii) The restriction of S(x) to every interval (v,v 4+ 1) between consecutive in-
tegers in a polynomial of degree < n.

Such functions S(x) are called cardinal spline function of degree n. Evidently
n, < <,, where m, denotes the class of polynomials of degree not exceeding n. We
may even consider &, the class of step-functions with discontinuities at the integers.
Indefinite integration of the elements of ¥, gives the elements of &, also called
cardinal linear splines (the term ‘‘spline’’ can be used either as an adjective or as
a noun). Integrating the elements of .#; we obtain those of #,, also called cardinal
quadratic splines a.s.f. The term ‘‘cardinal’’ is to remind us that we pass from one
polynomial component of S(x) to the next at the integers. These transition points
are called the knots of the spline.

It is also useful to introduce the class

(L.1) S ={S(x):;S(x + P eF,}.

The elements of & are again defined by the properties (i) and (ii), provided that
we replace in (ii) the interval (v,v + 1) by (v — 4,v + 4). The knots of S(x) are now

half-way between the integers, and S(x) may be called a midpoint spline.
%

With elements of the class &#,, or perhaps .#;, we may attempt to solve the
following
CARDINAL INTERPOLATION PROBLEM. Given the sequence of numbers
(1.2) ) = Y-2,0-1Y0: Y15 ¥25*)
we are to find S(x) such that
(1.3) S(v) =y, for all integers v.

We restrict our discussion to the case when (y,) is a bounded sequence. This means
that for an appropriate K

(1.4 | .| <K for all v.

A main result is the following
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THEOREM OF CARDINAL SPLINE INTERPOLATION. We assume that (1.4) holds.

1. If n is odd, then there exists a unique S(x) € &, such that S(x) is bounded
for all real x and satisfies the interpolation conditions (1.3).

2. If n is even, then there exists a unique S(x) € &) such that S(x) is bounded
and satisfies (1.3).

The first part of this theorem was first established by Subbotin [14]. For the
complete theorem under more general conditions (the condition (1.4) is replaced by
the requirement that y, should grow at most like some power of |v| as v— +
or v— — o0) see [10].

The theorem is trivial if n = 1, but is no longer so if n > 1. Indeed, a linear
spline S,(x) satisfying (1.3) is immediately obtained by successive linear interpoaltion
between consecutive ordinates y, and y,.,. The condition (1.4) is not needed in this
case and S,(x) is evidently unique for any sequence (y,).

Remarkable cardinal splines are obtained from the above theorem for particular
simple sequences (1.2). Here are two examples.

A. The fundamental splines. For the special sequence
(1.5) Yo=1,y,=0if v # 0,

The theorem furnishes a unique bounded solution that we denote by L,(x). Thus

(1.6) : L0 =1,L,v)=0if v#0.
Of course

&, if n is odd,
1.7 L,(x)e {

¥ if n is even.

The following is also true: The unique bounded solution S(x) of the interpolation
problem (1.3) may be represented by the formula

(1.8) S0 = T pLx-v,

where the series converges uniformly in every finite interval. This is a cardinal spline
analogue of Lagrange’s interpolation formula (see [10]).

B. The Euler splines. Very likely the most interesting examples of cardinal
spline functions arise if we apply the above theorem to the sequence

1.9) yy, =(—1)" for all v,

For each n we denote the solution by &,(x) and call it the Euler spline of degree n.
Thus
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&, if n is odd,
(1.10) &,(v) = (—1) for all v, and &,(x)e {

&¥ if n is even.
These properties, together with the requirement that &,(x) is bounded, defines this
function uniquely on the basis of the cardinal interpolation theorem. We may also
apply (1.8) and define &,(x) by

&,(x) = § (—1)'L,(x —v).

Our entire discussion so far was to show how the Euler splines fit into the theory
of cardinal spline interpolation. However, this approach to &,(x) does not help us
much, because we have not established here the general interpolation theorem, nor
have we learnt anything concerning L,(x) beyond its existence and uniqueness.
Fortunately, there is a direct constructive approach to the Euler spline &,(x) to
which we now proceed.

2. A direct construction of the Euler splines. Let f(x) be defined on R and
integrable in every finite interval.

DEFINITIONS. 1. We say that f(x) is even about the point x = a, provided that
it satisfies f(x) = f(2a —x) for all x. Likewise f(x) is odd about x = a if
f(x) = = f(2a ~ x).

2. Wesay that f(x) has the property Py, or f(x) € Py, provided that f(x) is even
about x = 0, and odd about x = 1)2.

3. We say that f(x) has the property Py, or f(x)€P,, provided that f(x) is
odd about x = 0, and even about x = 1/2.

LemMa 1. If f(x) € Py, or f(x) € Py, then f(X) is a periodic function of period 2,
hence f(x —2) = f(x).

Proof. If f(x)€ Py, then
S =~fA=x)=—-f(x-1)=f2-x) =f(x-2).
If f(x)€P,, then
f) =fl-x)=—f(x—-1) = -f2-x) = f(x -2). O
We may omit the proof of the easily established

Lemma 2. If f(x) is even (odd) about x = a then ([}f(t)dt is odd (even) about
X =a.

Lemma 3. 1. If f(x) € Py and go(x) = [5f(D)dt, then go(x) €P,.

2. If f(x) € Py and g,(x) = [,,f(D)dt, then g,(x) € P,.
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Proof: 1. Let f(x)€P,. By Lemma 2 g,(x) is odd about x = 0. Let us show
that it is even about x = 1/2. By Lemma 2 applied with a = 1/2 we have

1/2 1/2 1

0o = | “rwde = [ poar + | Cpwde= [ swdr+ [ foar
o 172 0 1/2

1-x

=), f(®dt = go(1 — x).

2. Let f(x) e P;. By Lemma 2 g,(x) is odd about » = 1/2. Let us show that it is
even about x = 0. Again, by Lemma 2

gi(x) = f‘;f(t)dt = flo/zf(t)dt + foxf(t)dt = f,o/zf(t)dt + fo_x (»at

=f_ fdt = g(= . O
1/2

We start with the function f,(x) defined by

(2.1) o) =(=-D)ifvEx<v+1,
o L T
| | | | |
N 1 S N L S N
folx) 0 : T : 1 EolX) 5 T2 ! E !

1 []
S2(x) ¢ 1/-\ /.\ £5(x) OT\ 1 : ﬂ

ll |
fi(x) (;\\i//\\/f £5(x) (’)\i/’\\./:

f4(X) /\ /\ : ! : :

INVARVARSAARY
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whose graph is the ‘‘square-wave’” of Figure 1. From it we derive the functions
(see Figure 1)

@) i) = f Foldt, £y(x) = f A, £i() = f £,
1/2 0 12

and generally

@3 £i(x) = f Foor(tydt,

where
0 if n is even,
2.4 o, = {
1/2 if n is odd.

LEMMA 4. We have that

(25) f,,(x)e&’n, (n = 0’ 1’2,"')a
and

Py if n is odd,
(2.6) fix)e { )

P, if n is even.

Proof: (2.5) is clear from (2.3) and an earlier remark that an integral of a spline
is again a spline of a degree by one unit higher.

Also (2.6) follows from (2.3) and Lemma 3. Since fy(x) € P;, we conclude that
fi(x) € Py and therefore f,(x) e Py asf. [

LEMMA 5.1. In [0,1] the functions fy,(x) are alternately strictly, convex or
concave and vanish only at x = 0 and x = 1.

2. In [0,1] the functions fy,-,(x) are alternately strictly increasing or
decreasing and vanish at x = 1/2 only.

In particular

@7 (= D*fp=1(0) > 0, ( - 1’””%(%) > 0.

Proof: That f,,(x) vanishes at 0 follows from (2.3), (2.4), and its vanishing at 1
follows from (2.6), it being even about x = 1/2. (2.6) also implies that f,;_,(1/2) = 0.
The remaining statements follow from (2.3) by induction in n: f(x) is strictly in-
creasing, therefore f,(x) is strictly convex and therefore f3(x) is strictly decreasing.
This implies the strict concavity of f,(x), a.s.f. [

LEMMA 6. The functions defined by
2.8 € 2k-1(%) = fok-1(%)/fak-1(0)
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and
(2.9 En(X) = falx + )/ f2u(3)
are identical with the Euler splines as defined in §1B (see Figure 1).

Proof: Indeed, it should be clear that the newly defined functions enjoy the
properties (1.10) and that they are bounded, since [é”,,(x)| < 1 for all x. The unicity
of the functions having these properties establishes the identity with the old definition.
In any case for us (2.8) and (2.9) is the working definition of the Euler splines. [

If f(x) is a bounded function defined on R, we define its norm by

(2.10) 7] = sup | F(x)[.

We shall be particularly concerned with the norm of &,(x) and of its derivatives
and write

(211) ” (”ﬂ)(tV) ” = Yn,vs (V = 0, 1"")”)‘

LemMMA 7.

2.12) 159 = {lé”,‘,»(o)l if v is even,

|é°f,v)(lf)| if v is odd.
Proof: (2.3) implies that

@13 - V) = fuos®) (v =0,0,m).

Moreover, we easily show that

[£:B)] if n is even,

| £,(0)] if n is odd.

Let n = 2k, and let ¢ = 1//f5,(3). By (2.9) and (2.13) we find
Ex) = ¢ f17)(x + 1) = Suy(x + ).

By (2.14) this is seen to reach its largest absolute value at x = 0 if vis even, and at
x = 1/2if v is odd. Similarly, using (2.8), we establish (2.12) if n is odd. [

(2.14) Al = {

3. The connection with the Euler polynomials. Let us denote by P,(x) the
polynomial of degree n that represents the spline function f,(x) in the interval [0, 1].
Thus

3.1 fi(x)=P,(x)if 0=<x =1, P,(x)em,.
Thus, from Figure 1 we find

x*  x
Py(x) =1, P,(x) = x — 4, Py(x) = 7 T a.s.f.
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Clearly (2.3), (2.4) imply that
0 if n is even,

1/2 if n is odd.

n

3.2) P,(x) = f Pu_s(Odt, @ = {

and therefore

(3.3) Po(x) = Py_(x).

A sequence of polynomials, like our P,(x), that is obtained by starting from Py(x) = 1
and integrating successively, is called an Appell sequence. Integrating successively
we obtain

_ _x? a; x L%
Py(x) = x + ay, Pz(x)—z— o1t TR
the nth polynomial being
x" ‘11 xn—l _a_2 xn—z a,_1 X a,
GH PO =t G T =t T T a1

Here a,/1!, a,/2!,--- are the successive constants of integration.

Appell has observed that the infinite string of relations (3.4) can be described
by a single relation involving series of powers of z. Indeed, multiplying the power
series

3.5) g(z) = X nonand e = 3 X
0 ' 0 n!
and using (3.4) we find that
(3.6) g(z)e™ = X P,(x)z"
0

The left side is called the generating function of the polynomials P,(x).
Let us determine g(z) for the particular sequence P,(x) defined by (3.1). By (3.2)
we know that

P (0) =0, Py—1(3) =0 (k

Substituting into (3.6) the two values x = 0 and x = %, we conclude that g(z) — 1
is an odd function of z, and that g(z)e” 2 is an even function of z. We therefore have

the identities

192, 3’ )

g(z) —1 = —g(—2)+1 and g(2)e”’* = g( — z)e” 2.
Eliminating between them g( — z) we obtain that
2
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If we write
(3.9 E,(x) = nlP,(x),
then (3.6) becomes

z",

(3.9)

2¢™* _ °2°: E,(x)
e +1 o n!

This expansion shows that the E,(x) are the classical Euler polynomials. (See [9],
[1, Chapter 23] also for further references.) Combining (3.1) and (3.8) we obtain

(3.10) fi()=E,(x)n'in0=x=1,

and therefore, by (2.8) and (2.9), that

(3.11) Eak-1(%) = Egp1(¥)[Eg,—1(0) in 0 = x = 1,
(3.12) Eu(x) = Ex(x + P[En() in —3 = x = 3.

The author could trace the spline function n!f,(x) to Nérlund’s book [9, §16] where
it is denoted by E,(x), and where there are references to much earlier work by Hermite
and Sonin (1896).

In concluding this section we mention the relations

. sin mtx
(3.13) ‘ 31_{1:0 L,(x) = -
and
(3.149) lim &,(x) = cosnx,

both of which hold uniformly for all real x. Concerning (3.13) see [12]. The relation
(3.14) follows, via (2.8) and (2.9), from the beautiful Fourier series expansion of

Ja()-

II. LANDAU’S PROBLEM FOR R = (— 00, 00 ). KOLMOGOROV’S THEOREM

4. Statement of Kolmogorov’s theorem. Let n = 2. We consider here the
class of function f(x) from Rto R that are bounded and have a bounded nth deri-
vative f™(x). This last condition needs some further explanations as follows:
In the first place we assume that

4.1 f(x)eC" Y(R)
and that
4.2 F™ B(x) is piecewise continuously differentiable.

We interpret (4.2) to mean that the graph of £~ (x) has a continuously turning
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tangent, except for corners with finite slopes for their right and left tangents, and
that every finite interval contains at most a finite number of such corners. Finally,
of course, f™(x) is to be bounded for all real x.

Evidently, the Euler spline &,(x) satisfies all these conditions. In fact we have
already considered the norms (2.11) of its derivatives and Lemma 7 shows how to
identify, by (2.12), the values of

4.3) Yo = € [, 0 =0,1,--,1), 3,0 = L.
THEOREM OF KOLMOGOROV. If f(x) is such that

4.4) HEIN A T

then

(4.5) I/ S aw for v =1,2,-,n—1.

The constants 7, , in (4.5) are best constants because the Euler spline &,(x)
satisfies (4.4) and furnishes the equality sign in (4.5), simultaneously for all values
of v. Complete proofs of this theorem, in the order of their appearance, are found
in [4], [2], and [13]. As the title of this paper indicates we shall establish here only
the cases n = 2, n = 3, and will indicate the general method of attack used in [13]
by remarks concerning the problem for n = 4, v = 1, in §10.

In order to formulate the special cases that are to be established, we need the
numerical values of the corresponding %, ,. From (2.8), (2.9), or by determining
£5(x), f5(x), fa(x) directly by successive integrations from (2.3), we obtain

. 11
(4.6) &y(x) = 1 —4x* in [—5_’5]’
4.7 E5(x) = 1 —6x2 +4x> in [0, 1],
24 16 11
.8 =1-2x24+—x*in|-%,%
(4.8) Eux) =1 SY +5x 1n[ 2,2].
Using (2.11) and (2.12), we find that
4.9) Y20 =1, 721 =4, 7,, =38,
(4.10) V3,0 =1, ¥3,0 =3, v3.2 =12, 73,3 = 24,
16 48 192 384
(4.11) Va0 = 1, Y41 = 3 Ya,2 = 30 Ya,3 = 3 V4,4 = 5

The first three cases of Kolmogorov’s theorem may now be spelled out as follows.
THEOREM 1 (Landau). If f(x) is such that
412) Il st lr)<s
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then

@.13) |r] =4
THEOREM 2. (G. E. Silov). If f(x) is such that

(4.14) I/l =1 |7 =24,

then

(4.15) 7 =3 |7 =12
TrEOREM 3. (G. E. Silov). If f(x) is such that

419 s 1) s %,

then .

@.17) Il =5 1rlss el s

For a reference to Silov’s work see [4].

5. A kinematic interpretation: 1. It seems suggestive to think of x as time and
of f= f(x) as describing the motion of a point on the f-axis. The first inequality
(4.12) means that the point f is forever moving on the segment —1 =< f < 1. The
second inequality (4.12) requires that the acceleration in absolute value should
never exceed 8 cm/(sec)®. The conclusion (4.13) states that the velocity will never
exceed 4 cm/sec. We know that this value is reached for the motion f = &,(x)
which is periodic of period 2 cm (Figure 1). Likewise (4.14) means that the rate of
change of the acceleration in absolute value is not to exceed 24 cmj/(sec)’. The
conclusions concerning the velocity and acceleration are then described by the
inequalities (4.15).

2. Let us consider the simple harmonic motion
(5.1) f = sinwx, (o positive constant).

By differentiation we find that
(5-2) 171 =t = o ] = e

We inforce (4.12) in the most advantageous way by choosing @ such that w? = 8,
hence w = 2,/2 = 2.83. Thus || " | = 8, while | f'| = w = 2.83 falls short of the
optimal value 4 given by (4.13).

Assuming (4.14) and choosing »* = 24, hence w = 2.3 = 2.88 we find from
(5.2) that | | = @ = 2.88, || f"|| = @® = 8.29, which are short of the optimal
values 3 and 12, respectively, as given by (4.15).

=w2’|

6. A general formulation of Kolmogorov’s theorem. Let F(x) be a bounded function
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having a bounded nth derivative and let

an [F] = Mo, | F®] = m,.

What upper bound can we find for

(6.2) [FO| = M,, ©<v<ny?

The best bound for M, is easily found as follows: Let a and b be positive constants
and let

6.3) f(x) = aF(bx).
We shall now determine a and b such that f(x) satisfies the conditions
(64) "f” =1, If(n)” = Vn,n-

Differentiating (6.3) and using (6.1) and (6.2), we find that
(6.5) 7] = aMo, || = ab’M,, | f®| = ab"M,.

To insure (6.4) we determine a and b from the equations aM, = 1 and ab"M, =y,
and find the values
(6.6) a=Mg" b=y MM

For these values
©.7) |7 = ab*M, = M 3l MMM,

The relations (6.4) show that f(x) satisfies the assumptions (4.4) of Kolmogorov’s
theorem. We may therefore apply its conclusion to the effect that “ f» " = Vave
Using (6.7) we find that the following statement holds.

KoLMOGOROV’S GENERAL THEOREM. The suprema (6.1) and (6.2) satisfy the
inequality

(6.8) M, £C,," M(}'M") M,‘,'/", where C, , = y,,,vy;,‘,’,/" O <v<n).

Notice that the factor C, , is a numerical constant depending on n and v, and that
it is the best constant because we obtain equality in (6.8) for the function F(x) ob-
tained from (6.3) if we set there f(x) = &,(x). This function is

F(x) = a™'¢,(b"'x),

where a and b have the values (6.6).
Using the values (4.9) and (4.10), the inequalities (6.8) become

for n = 2: M, < 2'2M}*Mm3?
and
for n = 3: M; < Q7 '3**)MI*MY?, M, < 3V3MLPMEB,
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7. A few approximate differentiation formulae. Qur immediate objective is to
establish Theorems 1 and 2. For this purpose we assemble here a few simple tools.

LeMMA 8. The following identities hold for functions f(x) having appropriate
derivatives which are integrable:

S
@) @ =0 -1+ f K,(0" (),
where
x if 0 <x =14,
@A) K,(x) = { .
x—1if3<x =<1,
1
(B) f'® =10 -£0+ L K,(x)f"(x)dx,
where
— 3x? if0sx=<4%
®) K = { .
—3x-D*if{<x=1.
1
© 0 =f)-2f0)+f(-1+ f B K;(x) f"(x)dx,
where

x+1)?> if —1=<x=50
©) K = { |
—-3x-1)* if O0<x=Z1.

Proof: These formulae belong to those elementarS' parts of numerical analysis
which deal with the approximate performance of the operations of Calculus (inter-
polation, differentiation, integration, a.s.f.). The fundamental tool in this field is
Taylor’s formula with Cauchy’s integral remainder

(t _ a)n'—l

71) f@=f@+@¢—a)f'@+ -+ Wf("—})(a)

1 ! n—1 p(n)
+ (n———‘_l)—! J; (t — X) f (x)dx.
It is derived by integrating by parts the remainder n times.
A. We apply (7.1) for n =2, a = 1/2 and the two values t =1 and ¢t = 0,
obtaining

1
A1) = F@) +11'G) + f (=06

0
£O = f@) —31'G) + fl (=0f"d
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Subtracting we get

1/2 1
O =50 =5} - fo xf"(x)dx — fm(x = Df'(x)dx

and this agrees with (A), (A’).
B. Observe that K,(x) is continuous and that
2(x) = — Ky().

We may therefore integrate b)} parts the remainder of (A) to obtain

1 1 1
f K\()f"()dx = — f FU)dK (x) = f Ko ()" (x)dx,
0 0 0

because K,(0) = K,(1) = 0. This establishes (B) and (B’). Alternatively, we apply
(7.1) for n = 3, a = 1/2 and the two values t = 1 and ¢t = 0, and subtract the re-
sulting relations.

C. Apply (7.1)for n = 3, a = 0 and the two values t = 1 and t = — 1 to obtain

1
SO =0 +50) +1f0) +1 ﬁ) (1 = x)*f"(x)dx,

-1
f(=1) =0 —-1'0)+ 10 + %J; (— 1= x)*f"(x)dx.
Adding these we get

0o 1
S =2/0) +/(=1) =1"(0) - %f_l (x + 1) f"(x)dx + %J; (x = D2 f"(x)dx

which is identical with (C) and (C’). [

8. Proofs of Theorems 1 and 2 and their extremizing functions in the strict sense.
Let us establish Theorem 1 (§4): We consider the function

8.1 Jo(x) = —&5(x).
From (4.6) and Figure 1 we see that it has the properties

8 in (0,4)
—8in (3,1).

Applying the differentiation formula (A) of §7 to fy(x) we find by (8.2) and the
explicit form (A’) of the kernel K,(x) that

(82  f0) = -1, fo(1) =1, fo(3) = 4 and fo(x) = {

(8.3) d=fidH=1+1+8 fo | Kix)| dx.

Let f(x) be any function satisfying (4.12) and let us evaluate f'(1) by the for-
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mula (A). Moreover, we may assume that f'(3) = 0, for if f'(3) <0 then we could
replace f(x) by — f(x). We now obtain

1 1
@4 02)/'GD =751 -10) +J; Kix)f"()dx = 1+1+ SL | K1(x)| dx

the last inequality being a consequence of (4.12). Moreover, the last member is
equal to 4 by (8.3) .Therefore

(8.5) lr'&)| < 4

This implies that ] S'(x0)] = 4 no matter what x, may be. For also f(x + x, — %)
satisfies all assumptions and applying (8.5) to it, we find that l f ’(xo)l <4 [
Let us assume now that

(8.6) @) =4

and see what the consequence are. Evidently (8.6) holds if and only if we have the
equality sign in (8.4). Also, again in view of the conditions (4.12), we have equality
in (8.4) if and only if f(x) satisfies the conditions

8 in (0,%)
— 8 in (4,1).

Moreover, f(0) = —1 and |f| <1 imply that f'(0) =0 and f(1) = 1, with
| £]| = 1, imply that f'(1) = 0. It clearly follows from (8.6) that

J(x) = —&5(x) in (0,1).

@7 SO =-L/1)=1f(x = {

We state this result as

THEOREM 4. If

®8) Irl=t <8

and

(8.9 f'3) =4,

then

(8.10) f(x) = — &,(x) in the interval [0,1].

Outside the interval [0, 1] there is little that we can say about the function f(x)
satisfying (8.8) and (8.9). Indeed, notice that there are many ways in which the
function (8.10) can be extended to all reals and still satisfying (8.8) (of course with
the equality sign in both inequalities). For beside the obvious extension

(8.11) f(x) = — &,(x) for all real x,
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we can also write
1 if x>1

(8.12) fx) =4 —&x)iIf0<x< 1,
-1 ifx<0,

and many similar modifications of the function (8.11).

A comment on the function f(x) satisfying (8.8) and (8.9) is in order. We can
call f(x) an extremizing function in Theorem 1 because f(x) satisfies (4.13) with
the equality sign, hence

(8.13) 7] =4

Moreover, we wish to call this f(x) an extremizing function in the strong sense
because the supremum of l f'(x) I (=4) is actually assumed for a real x, viz. x = %.
We shall see in §9 that there are numerous extremizing function f(x) in Theorem 1,
hence satisfying (8.13), such that

(8.14) | f'(x)| <4 for all real x.

Such functions may be called extremizing functions in the weak sense.

Let us establish Theorem 2 (§4): Let f(x) satisfy (4.14) || < 1, | "] = 24,
and let us show that (4.15) |f'|| < 3, |f" | = 12.

We reproduce here the second differentiation formula

1
(B) f'@) =11) - f(0) + J:) K, (%) f"(x)dx
of Lemma 8 and apply it to the function
8.15) fo®) = — 63(0) = — 1+ 6x? — 4x® in [0,1].
This function has in [0,1] the properties

(8.16) fo0) = =1, fo(1) = 1, f"(x) = — 24,

In view of (B’), of Lemma 8, we know that K,(x) <0 in (0,1), and from (B) we
derive

1
8.17) 3=fod) =1+1+24 L | Ka(x) | dx.

If f(x) is any function satisfying (4.14), let us evaluate f'(}) by (B), assuming that
f'(3) = 0 (otherwise we take — f(x)). We obtain

1 1
(8.18) 0 =)f'(G) =/(1) —f©O) + foKz(x)f”’(X)dx§1+1+24 f | Ko@) dx =3,

by (8.17) and the first inequality (4.15) is thereby established.
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At this point we interrupt our proof of Theorem 2 in order to see what we can
say about f(x) if

(8.19) 3 =3

i.e., if equality holds in (8.18). From (4.14) we see that we have equality in (8.18)
if and only if f(x) has the properties

(8.20) fO) = -1, f(1) =1, and f"(x) = —24 in (0,1).

However, as before, we also have

8.21) '@ =571=0

and, of course, (8.19). The conditions (8.19), (8.20) and (8.21) are more than sufficient
to imply

(8.22) f(x) = — &3(x) in [0,1].
Let us record here this result as

CoRrOLLARY 1. If f(x) satisfies (4.14) and (8.19), then (8.22) also holds.
We now wish to establish the second inequality (4.15): For this purpose we
need the third formula

1
© [0 =f1) -2f0) +/(-1 + f_l K3(x) " (x)dx
of Lemma 8. We recall that by the formula (C’) of that lemma the kernel has the
properties
(8.23) K;(x) >0 in (—1,0), Ks(x) <0 in (0,1).
We now apply (C) to the function
. ~146x2+4x> in [ —1,0]
(8.24) Jfo(x) = — &3(x) = { ) 5.
— 1+ 6x*—4x” in (0,1].
This function has the properties
\ 24 in (- 1,0),
(8.25) fo = 1) =1, fo(0) = =1, fo(1) = 1, fo'(x) = { .
—24 in (0,1),
and (C), (8.23), and (8.25) show that
1
(8.26) R=f0)=1+2+1+24 f | Ks(x)| dx.
-1

If f(x) is any function satisfying (4.14), and assuming that ”(0) = 0, an application
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of (C) shows that

1
0=)/"0) =f1) =2/O) + (-1 + f _le(x)f”’(x)dx
8.27) 1
< 1+2+1+24f | Ky(x)| dx = 12
-1

by (8.26). Applying this result to f(x + x,) we obtain that |f"(x,)| < 12, and
Theorem 2 is established. []
Let us assume that f(x), satisfying (4.14), is such that

(8.28) f(0) =12,

and let us examine the consequences of this assumption. Clearly (8.28) if and only if
we have the equality sign in (8.27) and this turn holds if and only if
‘ 24 in (—1,0),
(=1 =1, f0) = -1, f(1) =1, and f"(x) = { .
—24 in (0,1).

From this we conclude that

(8.29) f(x) = —&3(x)in —15x= 1.

We have therefore established the
COROLLARY 2. If f(x) satisfies (4.14) and (8.28) holds, then also (8.29) holds.
The following generalization follows by a change of origin:

COROLLARY 2’. If f(x) satisfies (4.14) and is such that

(8.30) f'(a) = + 12
then
(8.31) fx)=Fé(x—a)ifa-1=<x=Za+1.

We may now state our

THEOREM 5. If (4.14) |[f[| <1, [f"’[ =< 24 and if in one of the inequalities
(4.15) ”f’” <3, ”f"J < 12, we have the equality sign, the corresponding sup-
remum being actually attained, then

(8.32) J(x) = &5(x — ¢) for all real x,

for an appropriate constant c.

Proof: 1. Let us assume that | [
loose no generality by assuming that

= 3. This supremum being assumed, we
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(8.33) '@ =3.
Now Corollary 1 implies that
8.39 f(x) = — &3(x) in [0,1].
: | ; ;
&3(x) ; j 0 ! L _
= 2! -1 11 12 3 14
! | |
: | [}
FiG. 2.

This in turn shows that f”(1) = — 12 (see Figure 2) and now Corollary 2’ shows
f(x) = — &5(x) in [0,2]. But then surely f(2) = 12 and Corollary 2’ implies that
f(x) = — &;4(x) in [1,3]. We can continue in this way indefinitely and conclude
that f(x) = — &3 (x) for x = 0. However, the same reasoning works also to the

left: From (8.34) we conclude that f”(0) = + 12 and therefore (8.34) holds also in
[ —1,1], hence f"(—1) = —12 and (8.34) holds in [ —2,0] as.f. Therefore
f(x) = — &3(x) = &3(x — 1) holds for all real x.

2. If we have equality in the second inequality (4.15), we get the same conclusion
by applying only Corollary 2'. [

9. The extremizing functions in the weak semse. In the present section we
discuss only the cubic case of n = 3. Our last Theorem 5 has answered the question
as to when we have the equality sign in one of the inequalities (4.15) for the case
when the respective supremum is actually attained.

DEFINITION 4. We say that f(x) is an extremizing function in the weak sense
for n = 3, provided that f(x) satisfies the inequalities

©.1) £l =1 ] =24
and therefore also
92) 7] =3 ] =12

with the equality sign in one of the inequalities (9.2), the corresponding supremum
not being attained.

This definition raises the following questions:

QUESTION 1. Do extremizing functions in the weak sense exist?

QUESTION 2. Let us suppose that they do and let f(x) be one such. Does then
the equality sign hold in all four inequalities (9.1), (9.2)?
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We shall see that the answers to both questions are affirmative.
The affirmative answer to Question 1 is contained in

THEOREM 6. There exist functions f(x) such that
03 Il =1 bl =3 ] = ] =24
while
04 /@] <1, |F®| <3, |f/®)] <12, [f"x)| <24 for all real x.

Proof: We know that f(x) = &5(x) satisfies (9.3), but not (9.4). To enforce
both (9.3) and (9.4) we let the function ‘‘sag between — co and + o0’ by passing
to the new function

©.3) f(x) = &3(x)9(x)

with an appropriate positive function ¢(x) to be constructed.
Using the known values (4.10) of y;,, = ” &» “ we derive from (9.5) the ine-
qualities

[f0] = |€o] < ¢,
/@] = |60+ 8¢ <3¢() +| ()],
OO 1) = |66 + 260" + 6¢7| < 12609 +6| 90| + | #7C0),
|£")| = | 6" + 38"¢" + 389" + 6¢"| < 24(x) + 36 ¢'(%)]
+9|¢" )| +| 6"
We shall therefore satisfy (9.4) if ¢(x) is positive and such that
$<1,
3¢ +|¢'| <3,
12¢ +6|¢'| +|¢"| <12,
24 + 36| ¢'| +9| ¢"| +| "] <24, for all real x.
These amount to
1—¢>0,
1-¢>34,
1=6>3]¢ ]+l

3 ! 3 " 1 n
1—¢>3|¢'| +5]0"| + 5] 0"].
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Observe that the last ineqliality implies the previous ones. It suffices therefore to
require that ¢(x) be positive and to satisfy the differential inequality

3 3 1 .,
©.7 1—¢(x)> §|¢’(x)] + §| ¢”(x)| + 2—4| o (x)l for all real x.
In order to insure also the equations (9.3), it is clear that ¢(x) should also satisfy
the boundary conditions
(€R)) ¢(x)— 1, ¢'(x) >0, ¢"(x) >0, ¢"(x) >0 as x— £ oo.

Indeed, Leibniz’s formulae (see (9.6)!) and the periodicity of &(x) will then show
that

lrlz Tm (@] =[], ©=0123.

Let
9.9) Y(x) =1 —e *, (y positive constant).

A simple calculation shows that y(x) will surely satisfy (9.7), provided that

303, 1.,
(9.10) 1> 2y 459" + 577

for which 0 <y < 1/2 will certainly do. We now define

1—e™ ifx=1,
9.11) o(x) = { )
¢(—x) ifx=s -1
Assuming (9.10), this function satisfies (9.7) outside the interval ( — 1,1). Moreover,
¢(x) is positive and also satisfies the boundary conditions (9.8).
There remains to bridge the gap between — 1and 1 and this we do by interpolation
as follows. Let

9.12) P(x) = A + Bx* + Cx*
and
9.13) #(x) =P(x) in —1<x = 1.

We also require P(x) to satisfy the interpolatory conditions
(.14 P(1) = y(1), P'(1) = y'(), P"(1) = y"(1).

The functions P(x) and ¢(x) being both even, it is clear that the requirements (9.14)
will insure that ¢(x) € C"(R).

We are yet to insure that P(x) is positive and satisfies (9.7) in [0,1], and therefore
also in [ — 1,1]. From (9.14) we easily get for the coeflicients of P(x) the values
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©15) A=1-( +8§y +%y2)e", B =‘%y(3 +9e?, C = —gl-y(l + e,

1. The positivity of P(x) in [0,1]: Dropping the positive term Bx>
P(x) = A+Bx*+Cx*>4+C

5 - 1 -
1—(1+§y+%y2)e 7—§y(1+y)e >0

because the last inequality is equivalent to e’ > 1 + $y + 22, which evidently holds.
2. P(x) satisfies (9.7) in [0,1]: We are to find y such that

3 3 1
(9.16) 1—A—Bx* - Cx* >5[ 2Bx +4Cx’ +52B + 12¢x*| + 541 24 Cx|

holds in 0 < x < 1. Dropping on the left the positive term — Cx*, cancelling the
common factor "7, and taking on the left side all terms with their negative values
for x =1 and on the right with their positive values for x = 1, we easily find, after
rearrangements that the inequality (9.16) is surely satisfied if the inequality
1 > 1 (35y + 25y%) holds. This is the case if

.17 O<y< 15
To summarize: Let y satisfy (9.17) and P(x) be defined by (9.12) and (9.15).

Finally let
L= if x| 21

P(x) if —1<x<l1.

Then f{(x), defined by (9.5), satisfies the conditions (9.3) and (9.4) of Theorem 6. []
The second question is answered affirmatively by

b(x) = {

THEOREM 7. Let f(x) be such that
019 £l st |77 < 28
and therefore
©.19) 17l s3I s 2

If the equality sign holds in one of the inequalities (9.19), then the equality sign
holds in all four inequalities.

Proof: 1. Let us assume that
(9.20) £ = 3.
If the supremum " f' " is assumed, then we know by Theorem 5 that (8.32) holds
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and we are through. We may therefore assume that
9.21) | £/(x)| <3 for all real x.
Let (x,), (v = 1,2, ), be a sequence of points such that
9.22) lim f'(x,) =3,

v o0

the reasoning to be applied being similar if this limit should be — 3. It should be
clear that the sequence (x,) can not have a finite limit point £, for we could then
conclude from the continuity of f'(x) that f'(¢) = 3, in contradiction to (9.21).
We may therefore assume that x, - + 0o, or perhaps — oo . Let us assume that

(9.23) lim x, = + 0.

v—* o0

By the formula (B) of Lemma 8 we may write
9249 ') =fG+H—Sflx, - D + fol K,(®)f"(x + x, — $)dx,
while (8.17) shows that
(9.25) 3=1+1+ f 01| Ky(x)| - 24dx.
From (9.22) we conclude that

1
Foo+4) — e — 1) + f K] { =S+ 3, = D
(9.26)
1
—+1+1+J‘|K2(x)|-24dx as v— 0.
0

From this relation we shall derive all that we need.
We observe first that

1 1
f(xv+%)—f(xv—4})+fo |K2|{—f*'}dx>1+1+f0 | K| - 24dx — ¢

if v > N(g), while

1 1
f | K, |24dx 2 f | Ks| { —f"}dx
0 0
and 1 = — f(x, — %) hold anyway. Adding these three inequalities we find that
f(x, +3) > 1 —¢if v> N(e) and therefore
9.27) lim f(x,+%) = 1.

v+
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Similarly we find that
(9.28) lim f(x, —%) = -1,

v+

and finally, from (9.26), that

1 1
i [ ) (=74 5, — Dl = [ o0 - 240,

If we write
(9.29) o(x) =24+ f"(x+x,—-%), @O=xs1,
we know that this sequence of piece-wise continuous functions has the properties
9:30) 0 < ¢,(x) < 48 in [0,1],
and
1

9.31) lim f | K2(%)| ¢,(x)dx = 0.

v=+o JO

From (B’) of §7 we know that |K2(x)] vanishes at 0 and 1, that it increases in
[0,4] and decreases in [4,1]. Also that K,(x) = K,(1 — x). We choose « such that
0 <« < % and may write

1 1-a
032 |1k b0dx 2| K@)] [ b0 2| K@) - ink 00

Now (9.31) implies that
(9.33) inf ¢,(x)—0 as v— o0.

[2,1—a]
Selecting ¢, in [«,1 —a] such that ¢,(&,) <inf¢,(x) +27", we conclude from
(9.33) that ¢,(£,) — 0. Finally, returning to f” by (9.29) we have shown that

(9.34) lim £, + %, —3) = — 24,

v+

Evidently (9.27), or (9.28), and (9.34) show that

039 7l =1, 1] = 20
There remains to show that
(9.36) £ = 12.
From (9.31) and (9.32) we conclude that
1-a

lim o,(x)dx = 0.

v= o0 [
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However, this integral can be evaluated by (9.29) and we obtain

24(1 = 2e) +f"(ny) = f" (V) > O,

where n, = 1 —a+x, — 4, §, = a + x, — 4. Therefore f"(¢,) — f"(n,) = 24(1 — 20)
as v— oo, hence f"(¢)—f"(n,) >24 —480 —¢ if v> N(¢). Adding to this the
inequality f”(n,) = — 12 we obtain that f"(£,) > 12 —48x — ¢ if v > N(e). Since
¢, — + oo and « is arbitrarily small, we conclude that
lim f"(x) = 12.
X+ 00
This, together with | f” | < 12, shows that (9.36) holds.

2. A similar method, this time using the approximate differentiation formula (C)
of Lemma 8, allows to show that (9.36) implies the equality sign in all other ine-
qualities (9.18) and (9.19). However, we omit further details. [

3. There are theorems analogous to Theorems 6 and 7 for the case when n = 2
and they are easier to derive. Also for n = 2 there are extremizing functions in the
weak sense, i.e., satisfying (8.8), (8.13), and (8.14). The details may be left to the
reader.

10. How is Theorem 3 established? As its title indicates, this paper is devoted to
the elementary cases of Landau’s problem. However, Theorem 3 is no longer an
elementary case. The ideas underlying its proof are just as simple as before, but the
necessary tools, i.e., the required approximate differentiation formulae, are more

complicated.
Let us sketch, with a minimum of detail, a proof of the first inequality
(10.1) |£] = 16/5

of Theorem 3, assuming that
(10.2) I£] =1, |£¥) = 384/5.
The approximate differentiation formula that we need is

@) = ufQ) + prAf2) + pi2f3) + -

(10.3) w

~ W = WA= ) = w2 (=2 + [ Keyr O,
where
(104) pu = -ﬂsi\/—?’g = 114534, A = — 11 +2\/ﬁ = —.045 548.

The kernel K(x) is a cardinal cubic spline, i.e., having its knots at the integers,
except that at x = 1 it has a discontinuity in its second derivative. It satisfies
K(x) = — K(1 — x) and is therefore odd about the point x = 1/2. K(x) decays
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exponentially as x — + oo so that K(x) is absolutely integrable on the real axis.
Moreover

(10.5) K(v+1%4) =0 for all integer v,
and K(x) vanishes nowhere else. Finally
(10.6) Kx)<0if —+<x<i

and it changes sign at each v + % (see Figure 3).

K(x) /\
- : /?\ : T
7 -2 2

|
[y
;(
|
—
|
Dol
é
-
—
ok |
o &
ln
w
ldI\l‘

If we substitute into (10.3) the function

Jo(X) = —&4(x),

we find that K(x)f5”(x) is positive for all x, except that it vanishes if x = v + 4
by (10.5). Since f{*(x) = =+ 384/5 we obtain the result

(10.7) —13§=f0'(%)—2u | +384f | K(x)| dx.

If f(x) is any function satisfying (10.2), and assuming that f'(3) = 0, we obtain
from (10.3) and (10.2) the estimate

384 16

0<f()<2y B i+ 5 ]K(x)ldx——
by (10.7). By reasonings used before, the equality sign is seen to hold only if
J(x) = — &4(x). This establishes (10.1), except that we have not proved the
identity (10.3), nor do we propose to do so. However, let me say the following:
The formula (10.3) is exact, i.e., its remainder vanishes, whenever f(x) is a cubic
polynomial. This clearly does not characterize the formula. However, (10.3) can be
shown to be exact if f(x) is a cardinal cubic spline with knots at v + } that grows
at most like a power of | xl as x — t oo, and this condition characterizes the formula
(10.3) and allows to derive it. )

A last remark : The question arises whether (10.3) could be replaced in the above
application by some appropriate finite formula that involves only finitely many
of the ordinates f(v). The answer is no: It can be shown that no finite differentiation
formula exists that will serve the same purpose. For further details we refer to [13].
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III. LANDAU’S PROBLEM FOR R, = [0, co0).

11. The case n = 2. Landau’s problem for the halfline R, is similar to the
problem solved by Kolmogorov’s theorem, the difference being that now the com-
petition is open only for functions from R, to R. Accordingly, the role of the pre-
vious norm || f|| is now taken over by the halfline norm

(11.1) ||+ = sup|f(x)| for x = 0.

To facilitate the comparison with the results of Part 1I, we choose the same normal-
ization as in Kolmogorov’s theorem, namely

(11.2) I£l+ = 4 £+ = vans

the objective being to find within this class those functions that maximize the norms
(11.3) £ ||+, for v =1,2,--,n—1.

The transition to other normalizations, such as the one used in [11], can be achieved
by means of the trivial transformation (6.3) used in §6. In §13 the R -analogue of
Kolmogorov’s theorem will be mentioned. In the meantime we turn to the first of
the two elementary cases of the problem.

We assume that

(114 Ifls s 1 7] S8,

and seek a function fy(x) such that ” fo ||+ = || f! || + for all functions f(x) satisfy-
ing (11.4).

The function &,(x) satisfies (11.4) and we also know that (| &3 ||, = 4 (this is
where the constant 4 of Theorem 1 came from). Now we can do better! Indeed,
let us consider &,(x) for x = — 3, and let us remove the knot at x = — 4 and
continue the quadratic y = 1 —4x? (see (4.6)) also for values of x < — %, until
we reach the point where the parabolic graph of y = 1 — 4x? intersects the horizontal
line y = — 1. We find that this happens for x = — 1/\/5. We consider the function

1—4x* if —1/2<x<0,
g(x) = { ) '
&,(x) f0=x< oo,
and shift the origin to — 1/,/2 to define
fo(x) = g(x — 1/4/2) for x = 0, (see Figure 4).
Clearly
(115) [fole =1, Ao+ =

However, it should also be clear from Figure 4 that || fo " + lis reached by ] fé(x)]
for x = 0 so that

Ifsll+ =150 = g'(— 1/yJ2) = = 8x|s=—1yy2 = 4y/2 = 5.65684.
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Jo(x)

Fia. 4.

Therefore
(11.6) I o]+ = fo@ = 4y2.

We see that the conditions (11.4) no longer imply that | /|, < 4, as in Theorem 1,
but allow considerably larger values such as | f’|. = 4,/2. This, however, is the
largest value, a fact which we state as

TueoreM 8. (Landau’s theorem). If

(1.7 Il st |r7]es8,
then
(11.8) 171+ = 442

Here 4\/5 is the best constant because it is reached for the above function fy(x).

Proof: As in the case of Theorem 1, we need a differentiation formula. By
Taylor’s formula (7.1), for n = 2, a = 0 and ¢t = 1/,/2, we have

_ _ 1/v2 _

fUV2) =£(0) +(1//2)f'(0) + jo (1/4/2 = x) f"(x)dx.

Solving for f'(0) we obtain
_ _ _ Y2 _
(1L9)  f(0) = V2F(U2) — V210 - f (= x/2)f0ax.
Applying this to fy(x) we find that
v
(11.10) 42 =£30) =2+ 2+8 f " (1 — x\/2)dx.
V]

If f(x) is any function satisfying (11.7), and assuming f’(0) = O (else we work with
— f), and estimating f'(0) from (11.9) and (11.7) we obtain
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_ _ 1192 _ 3
0<f'(0) S J2+y2+8 f (1 = x/Bdx = 43
1]
by (11.10). Therefore

(11.11) |£©] = 42

However, if f(x) satisfies (11.7), also f(x + x,), With x, = 0, will satisfy (11.7).
We may therefore apply to f(x + x,) our previous conclusion (11.11) to infer that
[£/(xo)| < 4,/2. Therefore || /']« < 442. O

We turn now to the extremizing functions. Unlike the situation discussed in §9
(for n = 3) there are no extremizing functions in the weak sense in the present case
of R.,. In fact we have the following very precise theorem.

THEOREM 9. If f(x) satisfies (11.7) and if

(11.12) £+ =442
then
(11.13) f(x) = + fo(x) in the interval 0 < x < 1/,/2.

REMARK. Beyond (11.13) there is little that can be said about the extremizing
function f(x). Indeed, the function (11.13) can be continued from 1/\/5 to + o in
various ways, such as f(x) = + 1if x > 1/,/2, or else by f(x) = + &,(x — (1/4/2)),
without violating the basic condition (11.7).

Proof: We distinguish two cases depending on whether the supremum ” f' ”+
is attained or not.
1. Let us assume that it is attained and that

(11.14) (6 =42,
for if this value were — 4\/5 we could work with — f(x). Let us write
(11.15) K(x) =1—-x2, 0 < x < 1//2)

for the kernel in the formula (11.9). By (11.9) and (11.10) we conclude that the
equation (11.14) is equivalent to

1/V2

V2 (e 715) ~Va@O - [ K@+ ar

0

(11.16) 112

=J2+2+8 f K(x)dx.

0

Because K(x) is positive in [0, 1/\/5), (11.16) and (11.7) imply that
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1117y £ = -1, f(é + \/2) =1, and f"(x +& = -8 1n( \/2)

Clearly ¢ = 0, for if { were positive, then f(§) = —1and |f]|, < 1, would imply
that f'(§) = 0, in contradiction to the assumption (11.14). Now (11.17) reduce to

O = -1, f1\2) = 1, f'(x) = -8 in (0,1/\/2),

and this already implies that f(x) = — 1 +4,/2x —4x? = f,(x) in [0, 1/{/2].
Therefore (11.13) is established for this case.
2. Let us assume that

(11.18) | f/(x)| <42 for x 2 0,

and let us show that this can not possibly happen.
Indeed, the assumption (11.12) implies the existence of an infinite sequence
(x,) of points of R, such that

(11.19) lim f'(x,) = 4/2,

v—> o

where on the right we have chosen the positive sign without loss of generality.
On the other hand we have the following: If

(11.20) x 23,

then the formula (A) of Lemma 8, the relation (8.3), and the assumptions (11.7)
show that

1
[F®| =[f&x+H-fx— + J; K, f"(t +x — Dt

’ 1
S1+1+8 f [ K@) dt = 4.
0

Thus (11.20) implies that

(11.21) [f'®)] = 4

From (11.19) we now conclude (observe that 4 < 4,/2!) that
(11.22) 0 = x, = § for v sufficiently large, v > N say.

From the Bolzano-Weierstrass theorem we infer that the sequence (x,) has a limit
point ¢ in [0,4] and therefore
(11.23) lim x, =¢,

v =
where v’ is an appropriate increasing sequence of integers. The continuity of f'(x)
now implies that

42 = limf'(x,) = f'(limx,) = f'(&).
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Therefore f'(£) = 4\/5, in contradiction to (11.18). The second possibility therefore
never arises and Theorem 9 is established. []

12. The case n = 3. As in the previous case we retain the conditions (4.14) of
Theorem 2 but this time for R, , hence

(12,1 171 =1, £

and wish to find fy(x) satisfying (12.1) and having the largest possible value for the
norm | fg ||+ of its first derivative. We also seek (perhaps another) fy(x) satisfying
(12.1) and maximizing | f;]|+. We shall see that one and the same function fy(x)
will do both. From (4.3) and (4.10) we know that

@y fal. =t al. =5, il = 12, 7

so that &3(x) satisfies (12.1). However, by an appropriate modification of &,(x)
we can increase considerably the norms of f’ and f”.

To obtain the modified function f,(x) we remove the knot x = 0 of &,(x), and
continue its cubic polynomial branch (4.7), hence 1 — 6x2 + 4x3, for negative
values of x until it intersects the line y = — 1. This happens for x = — % and we
define the function

<,

|+ =24,

1—6x2+4x® if —4<x =0,
(123) 9(x) = { )
&5(x) if x=0.
For technical reasons we shift the origin to the point x = — 4 and define
(12.4) Jo(x) = g(x — 1) (see Figure 5).
Notice that fy(x) is a cubic spline in R, having no longer a knot at x = 4, in fact
(12.5) So(x) = — 1+ 9x — 12x2 + 4x3 if 0=x<3)2.
Clearly
(12.6) If6ll+ =1 £ =24
! 1
I
|
|
|
X
Jox) ? 3 2 3
0 ’ T
b |
]
|
|
1
|
|

FIG. §.
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Moreover, we verify easily from (12.5) that | fo(x)| reaches its largest value for
x = 0, hence
(12.7) o]+ =@ =09.

Similarly we find that also ] fé’(x)l reaches its largest value for x = 0. From (12.5)
we read off this value to be

(12.8) |5] = - 150 = 24.

Comparing (12.7) and (12.8) with (4.15), we see that f,(x) surpasses by far the
corresponding, bounds of Theorem 2. These, however, are the largest possible values,

as stated by
THeoREM 10. (A. P. Matorin). If

(12.9) 17+ =1 7]+ =24,
then
(12.10) lf s =9 7]+ <24

In (12.10) the constants 9 and 24 are the best constants because they are reached
by the above function fy(x), (see [8]).

Proof: We need two differentiation formulae that we get from (7.1). Applying
(7.1) for n = 3, a = 0, and the two values ¢ = % and ¢t = 3/2, we obtain

7(3) =@ +5r@r 4o+ [ (5-%) rreoas,

/

3 3, 9, L33
1(3) =10 +3r@+370+3 [ (5-) s
Solving these equations for f'(0) and f”(0) we obtain the two formulae

3/2

1
w1y 7= -30+37(3)-3() + [ Ko,

where
1
—_ : < —
x(l 3x) 1f0=x§2,
(12.12) K,(x) = 1 i_x)z . l -, <§
6\2 2 =2’
and

3/2

4
(12.13) £(0) = g £(0) —4 f(%) + §f€) + , Ks(x) f"(x)dx,
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where
4/, 3 1
= _= < -
f3(x 4) 1f0=x=2,
(12.14) Ks(x) = _%(x_g.z f1< <3
3\ 2) ty=x=3

Notice that in each of these formulae the coefficients of f(0), f G), and f (;)

alternate in sign and that

(12.15) K, (x)>0 and Ks5(x) <0 in 0 <x <23—.

We now return to the function f,(x) defined by (12.4) and graphed in Figure 5.
From Figure 5 and (12.5) we gather the following properties:

1 3
(12.16 710 = =1, 3) =1 53) = - 1.
(12.17) f00) =9, f6(0) = — 24,
(12.18) fJ(x) = 24 in [0,35).
Applying the identities (12.11) and (12.13) to fy(x), we obtain by (12.15) the relations
, 8 1 32
(12.19) fi® =9=3+3+3+ 24f0 | Ko(x)] dx,
" 8 4 342
(12.20) —fi0) =28 =3+4+3+ 24]0 | Ks(x)| dx.

If f(x) is a function satisfying the conditions (12.9), we can estimate its derivatives
at the origin by (12.11) and (12.13), and obtain

8

3/2
[£0)] = +3+-15+24f | Ka(x)| dx,
0

3
" 8
7@ = 3

4 3/2
+4+§+24f | Ks(x)| dx.
0

The right hand sides being equal to 9 and 24, respectively, in view of (12.19) and
(12.20), we conclude that

|£/0)] 29, |f(0)] < 24.

Applying this result to f(x + x,), where x, > 0, we obtain (12.10). []
We shall now investigate the extremizing functions in Matorin’s Theorem 10
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and shall see'that extremizing functions in the weak sense do not exist. We begin
with

LemMA 9. 1. If f(x) satisfies (12.9) and
(12.21) | £©)| =9 for some & =0,
then necessarily £ = 0 and
(12.22) S = £ fo(x), (x 2 0),

where fo(x) is the function defined by (12.4) (Figure 5).
2. The same conclusions (¢ = 0 and (12.22)) hold if

(12.23) | £7(©)| = 24 for some & = 0.
Proof: 1. Let us first assume that ¢ = 0 hence
(12.24) ' =9.
By an oft repeated argument we conclude from (12.11) and (12.19), that (12.24) is
equivalent to the relation
8 1 1.3\ [ 32
(12.25) - 3 SO)+3f (5) ~3 f (5) + | Ku()f"(x)dx ——+3 + +24 f ]K4(x)|dx,

and that this implies that

(12.26) f0) = —1, f@-) =1, f(%) =1, f"(x) = 24 in (o, ;-)

This information already suffices to conclude that
(12.27) F(x) = fo(x) in [0,3/2].

But then f"(3/2) = 12 (see Figure 5). By Corollary 2’ we now conclude that the
identity (12.27) can be extended to [1/2, 5/2]. Continuing in this manner we see that
(12.27) holds for x = 0.

Let us now show that £ must vanish. Indeed, if

(12.28) ¢>0 and f'(¢) =9 (say),

then as above we conclude, as in (12.26), that f(¢) = — 1, a.s.f. But then we must
have f'({) =0 (or else <1 would be violated!), which contradicts the
assumption f'(§) = 9.

2. If (12.23) holds, we apply similar reasonings using formulae (12.13) and
(12.20). O
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THEOREM 11. Let

(12.29) £+ =1 s =24,

and therefore

(12.30) I£ 1+ =9, | £ ]+ < 24

If the equality sign holds in one of the inequalities (12.30), then
(12.31) J(x) = £ fo(x) for x 20,

where fo(x) is the function defined by (12.4) (Figure 5).
Proof: 1. Let us suppose that
(12.32) I£ |+ =9

If this supremum is assumed, hence (12.21) holds, then the conclusion (12.31) is
already assured by Lemma 9. We may therefore assume that

(12.33) | f'(x)| <9 for x >0,
and let us show that this can not happen by reaching a contradiction.

By (12.32) and (12.33), there exists an infinite sequence (x,) of points of R,
such that

(12.34) lim f'(x,) = 9.

v= w0

(If this limit were — 9 we could work with — f(x)). In the interval x = 1/2 we can
apply the differentiation formula (B) of Lemma 8, in the form

') =fx+H)—-fx-H+ L K(0f"(t + x — Bydt

to conclude from (8.17) that |f'(x)| < 1 + 1 + 24 [3]K,(1)| dt = 3. Thus
(12.35) |f'x)| £3if x = 4.

Confronting (12.34) with (12.35) we conclude that 0 < x, < 1if v > N. The Bolzano-
Weierstrass theorem insures the existence of an appropriate infinite sequence of
increasing integers (v') such that

(12.36) lim x,, = ¢, for some ¢ within [0,%].

Using the continuity of f’(x), we conclude from (12.36) and (12.34) that f'(¢) = 9,
which contradicts our assumption (12.33).

2. If [| I [|+ = 24, we may use entirely similar arguments. If the supremum is
assumed, we use Lemma 9. That the supremum is always assumed is shown by
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contradiction as above: Formula (C) of Lemma 8 shows that l f ”(x)l sR2ifxz1
(here we use (8.26)!), and the continuity of f”(x) takes care of the rest. [

13. The case n = 4 is not elementary. Our success in attacking the Landau
problem for R, for n = 2 and n = 3 with the modified Euler splines f,(x) seems
surprising, to say the least. However, for n = 4 this approach does not work
anymore. To make it clear why, let us try to do it. Our problem is to study functions
satisfying

(13.1) £+ =1, | £9]+ = 384/5 = 76.8
and to determine within this class the best, or least, constants y;" , such that
(13.2) £+ svdy =123

Stated equivalently: Within the class of functions satisfying (13.1) we wish to
maximize each of the three norms on the left side of (13.2).
We start from &,(x). From (4.8) we know that
P(x) =1 —gsix2 +%x4 = &,(x) if —% <x= 51

We consider &,(x) for x = — % only, and remove its knot at x = — } to continue
the graph of the quartic P(x) for x < — 4. We find that it has a minimum value at
x = — \/5/2 = —.866, where it assumes the value — 4/5, and thereafter increases
to + oo as x » — c0. The new function so obtained satisfies the second condition
(13.1). However, to satisfy also the first condition (13.1), we must cut it off at the
point where it intersects the line y = 1. This is found to take place at x = — ,/6/2
= — 1.225. Accordingly we define

1 -2 ey [ —/6/2,0],
g(x) = { 3 3
E4(x) in [0, o).
As before, we shift the origin to — \/3/2 and define the function
(13.3) So(x) = g(x - é) for x = 0 (see Figure 6).
We find that B
If]l+ = —f3(0) = 48,/6/10 = 11.7576
(13.4) 1]+ = @ =48
[557]+ = —/5'(0) = 384/6/10 = 94.0604.

These values are surely lower bounds for the best constants y; , of (13.2). However,
our fy(x) is certainly not an extremizing function. This can be seen from Figure 6
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Jo(%)
B+2
B =1(/6-1)=.725
FiG. 6.
because the first minimum value of fo(x) is = —4/5 and thereby fails to reach
down to the line y = — 1. However, I do not know any explicitly defined function

Sf(x), satisfying (13.1), whose norms are superior to the norms (13.4) of fo(x).
At this point we state (see [11])

THE R, ~ANALOGUE OF KOLMOGOROV’S THEOREM. Let n = 2. There is a spline
Sfunction e,(x) of degree n, satisfying " e, "+ =1, I e "+ = Yu,n» With the following
property: If

(13.5) 171+ 4 1771+ = vms
then
136) [/ = e+ =), (0 =12-,n-1).

These are the best constants because we have equalities if f(x) = e, (x). If n = 3,
then + e,(x) are the only functions with these properties.

We call e,(x) the one-sided Euler spline of degree n. Just like &,(x), also e,(x)
has the property that e{”(x) is a step-function assuming the values + y,, only.
Figures 4 and 5 show the graphs of e,(x) and e;(x), respectively. The knots of fo(x)
(Figure 6) are at its zeros B + 1,8 + 2,---. The graph of e,(x) looks much like the
graph of fy(x) (Figure 6), except that also its first minimum is = — 1. However,
the knots of e,(x) do not agree with its zeros, but approach them in the limit as
we approach + 0.

No explicit expressions are known for e,(x) (n = 4). Rather ¢,(x) is defined in [11]
as the limit of a sequence of spline functions of degree n, that are themselves defined
by minimum properties. In deriving the numerical results of [11] good approximation
of e,(x), for n = 4, 5, 6, are used. These approximations furnish for n = 4 the
values of the best constants in (13.2):
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— ¢}(0) = 12.695
74, = €4(0) = 50.393
743 = —€40) = 96.197.

+
V4,1

In conclusion let me say the following. The Landau problems are extremum
problems. Faced with an extremum problem we are often well on the way to its
solution, provided that we are lucky enough to guess what the extremizing function is.
The extremizing functions &,(x) of the R-problem are beautiful, simple, and easily
computable functions. This is decidedly not the case of e,(x), if n = 4, and this is
the reason why the R, -problem was more difficult to solve.

This work was sponsored by the Mathematics Research Center, Madison, Wisconsin, under
Contract No. DA-31-124-AR0O-D-462.
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