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Introduction. Theoretical population genetics and mathematical genetics is the
study of temporal and spatial changes of frequencies of types (e.g., genes, genotypes,
gametes, etc.) in populations subject to various ecological and genetic influences.

Two general opposite tendencies operate on natural population: (i) propensity
for adaptability and persistence of specific types favorable to a given environment,
and (ii) necessity for populations to maintain potential for variation to cope with
situations of changing environments.

The use of mathematics in studying genetic systems is as old as the subject of
genetics itself. From the rediscovery of Mendel’s work at the beginning of this
century it did not take long for the Hardy-Weinberg law (1908)* on the constancy - of
gene frequency over time to be enunciated. Between 1915 and 1950 mathematical
genetics was pioneered and dominated by the names of R. A. Fisher, S. Wright, and
J. B. S. Haldane.

The challenge to understand the role of such genetic and ecological factors as
mutation and migration rates, the varied manifestations of natural selection, the
effects of population behavior and mating patterns, the relevance of recombination,
etc., motivated these men to formulate a vast hierarchy of mathematical models
describing many facets of population genetic phenomena. Relatively few of these
models have as yet yielded to complete analysis.

Haldane, in his famous series of papers in the Proceedings of the Cambridge
Philosophical Society in the 1920’s, set forth a variety of simple mathematical
analyses concerned with the way natural selection might be supposed to act. In
particular, he indicated how evolutionary forces such as viability selection, mutation,
migration, and sex-linkage could be quantified and brought into these models.

Samuel Karlin received his Princeton Ph.D. under S. Bochner. He has held positions at Cal Tech,
Princeton, Stanford. and the Weizmann Institute of Science. At various times he held the Proctor
Fellowship, Bateman Fellowship, Wald Memorial Lectureship, Guggenheim Fellowship, and National
Science Senior Fellowship. He is a Fellow of the International Statistical Institute, the Institute of
Mathematical Statistics, an elected member of the U.S. National Academy of Sciences, and the
American Academy of Arts and Sciences.

Professor Karlin has been most productive in a variety of fields. He has supervised 35 Doctoral
students, many now recognized scientists, has written over 125 research papers and the following
books: Studies in the Mathematical Theory of Inventory and Production (with K. Arrow and H. Scarf,
Stanford Univ. Press, 1958); Mathematical Methods and Theory in Games, Programming, Economics,
Volume I: Matrix Games, Programming and Mathematical Economics, (Addison-Wesley, 1959);
Mathematical Methods and Theory in Games, Programming, Economics, Volume IL: The Theory of
Infinite Games (Addison-Wesley, 1959); A First Course in Stochastic Processes (Academic Press, 1966);
Tchebycheff Systems: With Applications in Analysis and Statistics, (with W. J. Studden, Interscience,
1966); and Total Positivity, Volume I, (Stanford Univ. Press, May 1968). Editor.

*This is the G. H. Hardy of mathematical fame.

699



700 SAMUEL KARLIN [September

Fisher and Wright were also involved in the elaboration of these theories. Wright
further established that in small populations, evolutionary theory should take
account of the sampling effects involved in producing one generation from the
previous. He called this effect ‘‘random drift”’. This aspect of population genetics
has had significant mathematical consequences especially in stimulating Feller’s
investigations into boundary theory of diffusion processes on the line.

Again it was Wright and Fisher who pioneered the theory of systems of mating
between relatives, such as used by animal and plant breeders. The result was the
theory of inbreeding which entails intriguing algebraic and analytic structures much
of which is not well understood. Statistical theory probably owes its origin to R. A.
Fisher’s attempts to design and analyze experiments whose purposes were most
often to solve problems in genetics.

The objective of this paper is to acquaint the mathematics student with several
classical mathematical genetic models. Attention is mainly given to the formulation
of the models accompanied by brief analyses and appropriate references. Some
interpretations and implications of the results with reference to evolutionary theory
are appended. On occasion relevant unsettled mathematical problems are noted.

It should be underscored that the array of models to be discussed is a very slight
representation of the vast number formulated and partly dealt with by geneticists
over the past half century and very recently by some mathematicians. We have
attempted to highlight several important genetic factors and concepts by presenting
models involving different mating patterns, selective forces, migration and mutation
pressures, the recombination mechanism, etc. Many types of mathematical genetic
models have been omitted in this expository article for lack of space. For example, we
avoided entirely the enticing and important excursion into stochastic genetic models.
(The interested reader can consult Crow and Kimura [7], Chapters 10-12, for an
introduction to this part of mathematical genetics, and references cited therein.)
Models based on statistical genetics have also been left out. The general theory of
inbreeding systems is given scant attention (see Karlin [16] and [17] for a fuller
treatment of this subject). The extensive and important literature of genetic traits
determined by several loci is only briefly touched on in Section 8. (For a review on
this current very active topic, consult Kojima and Lewontin [27], see also Karlin
and Feldman [19], and Karlin [20].)

In closing the introduction, we indicate the organization of the paper. Section I
reviews succinctly some of the basic terminology and relevant genetic mechanism.
Section II covers a few basic random mating models exhibiting selection balance.
Sections III and IV highlight two important situations of non-random mating.
Section IIT is specially devoted to an exposition of some models involving positive
assortative mating while Section IV exposes the phenomena of incompatibility
mechanisms in mating patterns. These include cases of self-sterility and sex determin-
ation. Section V presents briefly the classical model of mutation selection balance
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for two alleles (alternative gene forms). Section VI is concerned with the very useful
method and concept of identity by descent. Section VII discusses some models of
the evolution of a population with an infinite number of possible types. Section VIII
introduces the simplest two locus selection model.

I. PERTINENT GENETIC PRELIMINARIES

It is unfortunate but necessary to learn a minimum of the terminology and
mechanisms of population genetic systems. Chromosomes—usually found in the
nucleus—mostly govern the inheritable characteristics of an organism. Chromosomes
may occur singly (the haploid case) as in some fungi, in pairs (the diploid case), as
in mammals, or in larger groups (triploid, tetraploid, in general polyploid) as in
many plants. The associated pairs, triplets, etc., of chromosomes are called
homologous. Locus is the position at which a gene (a sort of unit of the chromosome)
occurs on a chromosome. Alleles are alternate gene forms at a given locus. Genotypes
are the various possible combinations of alleles at corresponding loci on homologous
chromosomes. In the diploid case if the alleles are 4 and a, the genotypes are A4,
Aa, and aa.

The populations to be considered here, unless specified otherwise, contain
diploid individuals. We concentrate our attention, for the most part, on characters
determined by one or two loci, on a given pair of chromosomes. We usually assume
that two alternative genes (alleles) may occur at each locus. Consider the case of two
loci, where the alleles A and a are possible at the first locus and alleles B and b at the
second locus. A typical one of the ten possible genotypes (see listing immediately
below) could be written AB /ab. The symbol AB/ab signifies that AB sit on one
chromosome A at the first locus, B at the second locus and ab are situated on the
second chromosome. The ten genotypes are explicitly

AB AB Ab AB AB Ab Ab aB aB ab
AB’ Ab’ Ab’ aB’ ab ’ aB’ ab’ aB’ ab’ ab’

The physical manifestation of the genotype is called the phenotype. If the genotype
Aa has the phenotype of the A4 individual, then A is said to be a dominant gene
and a is called recessive to A.

We shall assume that an offspring is formed by the donation of a gamete (one of
each pair of homologous chromosomes) from each of two parents. In the case of one
locus, each parent, depending on its genotype, may donate either 4 or a to form a
zygote (fertilized egg) having genotype A4, Aa or aa. Individuals with genotype A4
or aa are homozygotes; Aa is a heterozygote. For two loci, the donated gametes can
be of four kinds, AB, Ab, aB or ab and ten zygotes are possible as listed previously.
Generations are taken to be non-overlapping.

Considering the one locus case, we are primarily interested in tracing the frequen-
cies of the three genotypes over time. Assume that the population size is very large,
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effectively infinite. Let u,, v,, and w, be the frequencies of A4, Aa and aa, respectively,
in the nth generation. In order to follow the vector (u,, v,, w,) as n increases we
must describe the mating system, i.e., the way mating pairs are to be selected.

One of the most widely studied systems of mating is random-mating. This
occurs when any one individual of one sex is equally likely to mate with any one of
the opposite sex. Thus, in the one locus case above, the mating 44 x A4 would
occur with frequency u? at the nth generation. From this mating only 44 offspring
result. However, from the mating Aa x Aa, AA, Aa and aa offspring will be produced
with probabilities %, 1, 1 respectively. This equally likely case of segregation is called
Mendelian segregation.

In an infinite population, not subject to any outside influences, and in which
random mating takes place the Hardy-Weinberg Law holds. This states that, if in a
given generation the frequencies of the 4 and a gene are p and g = 1 — p respectively,
then in all subsequent generations the frequencies remain the same. Verification of
this, and the fact that random mating is equivalent to random union of gametes
can be found in most textbooks in population genetics, e.g., Kempthorne [24]
Chapter 2.

There are a number of factors (apart from the mating system) which act on
populations to influence the path of evolution. Perhaps the three most familiar are
mutation, migration and selection. The first two are self-explanatory. They can be
visualized as providing the raw material for selection to mould. We are interested
here in three forms of selection. The first is selection through variation in viability,
i.e. the genotypes differ in their chances of survival to reproduce. The second is
through fertility variations, i.e., different pairs of parents, on account of the genotype
of both parents may produce differing numbers of offspring. Segregation distortion
from the usual Mendelian ratios is another type of selection. These can be
considered particular manifestations of what was called by Darwin (1859) ‘‘fitness”’
in his qualitative description of the different abilities of individuals to survive and
contribute to the next generation. Of course, the mating system itself can be another
factor affecting evolution. Selection attributable to the mating system is commonly
referred to as sexual selection to distinguish it from natural selection. We shall be
partly interested in the mathematical description of the interactions between selection
and various mating systems.

Selection is incorporated mathematically in the following ways: If the mating type
AA x Aa is assumed to have fertility f then the offspring are produced in the
proportions +f AA, 3f Aa. Similar definitions hold for the other matings. The
offspring are assumed to have viabilities in the ratio o,: ¢,: 6; means that each of
the genotypes A4, Aa and aa survives to parenthood with relative chance o,: 6,: 05
respectively.

The frequencies u,, v,, w, of AA, Aa, aa in the nth generation can now be ex-
pressed in terms of those in the (n — 1)-th generation using some transformation T
which will in general be non-linear.
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Another phenomenon of considerable importance to the maintenance of genetic
variability will be mentioned before we describe the models in detail. Recombination
may occur in the case of two loci when at the first locus we have alleles 4 and a and at
the second B and b, and the two loci are not independent so far as gamete donation
is concerned. An individual heterozygous at both loci can produce four types of
gametes. For example, an individual of genotype 4AB/ab can produce gametes of
type AB and ab and also gametes of the type Ab, aB. When all four are produced in
equal numbers the loci are called unlinked. The 4B and ab gametes are called
parental while the Ab and aB are called recombinant. If the loci are linked there
will be an excess of parental gametes over recombinants. It is found that the parental
types AB, ab are produced with equal frequencies 3(1 —r) and the recombinant
types with equal frequencies 37 where the number r,0 < r £ 1, is called the recombi-
nation fraction. For the physical explanation of the phenomenon and more details
on its importance the reader should consult any genetics text book. 4

This has been a necessarily brief introduction to the terminology we shall use. No
attempt has been made to elaborate the biological scope of the terms introduced.
For this the reader should consult such texts as Stern [32], Crow and Kimura [7],
and Cavalli and Bodmer [6].

II. SOME ONE LOCUS SELECTION MODELS

1. One sex viability model. Consider a population with two possible alleles 4, a
at a specified locus undergoing random mating and subject to viability selection
where the genotypes A4, Aa and aa which survive to maturity (i.e., to reproduce) are
in the ratio o,:0,: 03 respectively.

If the frequencies of 4 and a in the current generation are p and g=1—p
respectively, then random union of genes (which is equivalent to random mating)
produces the genotypes A4, Aa, aa in the frequencies p?, 2pq, q* respectively. The
relative frequencies of the three genotypes at maturity taking account of selection
effects are then

AA Aa aa

2 2

o.p 022pq 039"

With Mendelian segregation (see Section I) the frequency p’ and g’ of 4 and a

respectively, in the next generation have relative magnitudes p’ ~ p%cy + 0,9,

g’ ~ 63q+ 0,pq. To convert these to bona fide frequencies we normalize by dividing
by the sum yielding the transformation equation

- p?c, + 0,09 def
21 L p?c, +2pqo, + q*0; 7).

The denominator is commonly called the mean fitness function, written W(p), and
enjoys the remarkable property that W(f(p)) 2 W(p) with equality holding iff

p=f(p).
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The evolution of the process is obtained by iterating the transformation law
(2.1). The following classical results are readily established (cf. Figure 1 below)
independent of the initial p (0 < p < 1).

(2.2) lim f,(p) = lim f(fu-1)(p)) =1 (= 0) when 6, = 6, > 05 (03 = 7, > 0,),

n-=*o n—»o0

0y, — 03

2.3) limp,=p = 3 when ¢, > max(o,,0;).

n-o 03 — 0y — 03
In the case min(6,,0;) > o, then

(2.4) lim p,=1forp> p,=0for p< p.

n—>o0

Figure 1 shows what happens to f,(p) in graphical form. The rigorous details
are easily supplied. :

P’y P
0 Bl ) fp  p 1t 0 p p f(p) o
f3(p) f2(p)
03 > 01,03 02 < 04,03
Fig. 1.

The equilibrium p is of great importance biologically because it entails the
simultaneous existence at an equilibrium involving all genotypes. Thus when the
heterozygote is the most fit of the three genotypes a stable polymorphism (with all
forms) will be maintained. The model of heterozygote advantage (also called the
principle of overdominance) has been central to the development of theories on the
existence of genetic variability.

2. Two sex viability models with two alleles. (This model was most recently
dealt with by Bodmer [2], see also Karlin [20].) Consider next a population divided
into males and females, mating randomly subject to viability selection where the
fitness coefficients may differ between the sexes. The array in Table 1 describes the
process (assuming male and female offspring are produced with equal probability).
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Sex Male Female

Gamete A a A a
Frequency p q P Q
Genotype AA Aa aa AA Aa aa
Fitness coefficients

(viabilities) o 1 T s 1 t
Relative frequencies after
random mating and selection opP pQ +qP qQ spP pQ +qP tqQ

TABLE 1

With Mendelian segregation we obtain for the gene frequencies in the next
generation the transformation equations

@5  p = opP +3(Q+4aP)  p _ PP +3(Q +4qP)
opP + pQ + qP + tqQ spP + pQ + qP +tqQ ’
where the denominators are the required normalization factors (cf. Model 1).
In the case at hand it is more convenient to express the changes of gene
frequencies over successive generations in terms of the equivalent pair of variables
x=plq, y=PJ/Q, 0= x, y < 0. We obtain

,_oxy+3x+y) _ s _SXy +3x+ )

Y= ey TR TGy

Write T for the mapping defined in (2.6). The fixed point 0 = (0,0) corresponds

to the pure population of only aa genotypes and oo = (00, 0) represents the pure
population of A4 genotypes.

We wish to ascertain the character of all equilibria of T and their domains of
attraction. The analysis of T and its iterates is much facilitated by exploiting the
feature that T is monotone, i.e., where z = (x, y) < Z = (Z, ) holds (the ordering
signifies the inequality for each coordinate). Then we have

(2-6) = g(x, ).

(2.6a) Tz < T with strict inequality in each coordinate unless z = Z.

The stability nature of any equilibrium is customarily ascertained by analysis of the
local linear approximation to the non-linear mapping T in the neighborhood of the
fixed point. More specifically, we examine the matrix transformation given by the
gradient matrix "

of og
ox  ox
jorl=|
f 0g
oy oy

evaluated at the fixed point Z = (X, )).
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If both eigenvalues of 0T ] » are in magnitude less than 1, then 2 is locally stable.
If at least one eigenvalue in magnitude exceeds 1, then usually 2 is unstable.
The conditions for local stability of the pure equilibrium 0 and oo are readily
determined by invoking the local linear analysis just described. We get
0 (fixation in the a gene) is stable iff 711— + % =1
2.7 1

<
2s =1

oo (pure AA population) is stable iff % +

Algebraic manipulations of the equations (2.6) show that for general positive
fitness parameters (o, 7, s, t) there exist at most 3 fixed points where both coordinates
are positive and finite. These are, of course, polymorphic equilibria.

There are five qualitative cases of interest:

(i) The same homozygote is most fit in both sexes; e.g,c<l<tand s<l<t
hold. Under these conditions adding the relations in (2.6) using obvious inequalities
produces
xy +3x+y)

. ! <2 .
(2.8) x'+y'< T+ix+ )

Since 4xy <(x +y)> we see that x’'+y' <x+y. It follows that x™ + y™
decreases in n and its limit is necessarily zero indicating that 0 is globally stable.

(ii) AA is most fit in one sex and aa is most fit in the other sex. We illustrate with
the special symmetric situation ¢ = s and ¢ = t, 6 > 1 > 5. In this case there always
exists a unique internal equilibrium z* = (&,,1/&,) where &, is the unique positive
solution of the equation

B4+E2s—-1)—ERoe—1)—1=0.

Analysis reveals that z* is stable iff the equilibrium point 0 (and simultaneously,
owing to symmetry, the point oc ) is unstable, i.e., iff 1/2¢ +1/2s > 1.

In the general case of (ii) it can be proved that there can be at most one poly-
morphic stable equilibrium.

(iii) Both homozygotes selectively inferior to the heterozygote in one sex but
superior in the other sex, i.e.,

(2.9) 1>o0,1, 1<s,t.

We illustrate with the symmetric case 6 =t and s =1t Then z*=1=(1,1)is a
fixed point of the mapping T and is locally stable iff s < 1. If we determine the
values of o =1, s =1 satisfying

2 .
i 1<1<\/as
_+_
s o
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which is certainly possible (owing to the harmonic mean, geometric mean inequality)
we find that 0, 1 and oo are all unstable. Exploiting the monotonic nature of T, we
deduce the existence of two other stable polymorphic equilibrium. Here, then, is a
case of the existence of two stable polymorphisms. This phenomenon does not arise
in the corresponding one sex model.

(iv) Heterozygote advantage in each sex (1 > o,7,s,t). The expected intuitive
result of a unique stable polymorphism is indeed realized.

(v) Heterozygote advantage in one sex and directed selection in the other sex,
i.e., 1 >0, 7, s>1>t In this case, elementary analysis of the transformation (2.6)
yields the existence of at most two stable equilibria and when two exist one has to be a
boundary equilibrium.

To sum up, the main conclusions are as follows:

There can exist at most two stable equilibria including the possibility that both
are polymorphisms. In contrast, the one sex selection model allows at most one
stable polymorphism.

3. Two sex multi allele viability model. Suppose there exist r =3 alleles
Ay, A,, -+, A, possible at the given locus and of course, r(r + 1)/2 possible genotypes
A;A;. Let the frequencies of the genes in the male population be q4,49,,**, 4, and
Di> P2s > D, for the female population. The viability fitness matrix for females is
designated as F = ”fij “21:1 where f;; measures the relative average number of the
A;A; genotype that survive to maturity. The viability fitness matrix for males is
denoted by M = | my;|.

Stipulating random union of genes and Mendelian segregation quite analogous
to (2.5), we obtain for the gene frequencies of the next generation the recursion
relations

%[Pi X figi+a X fiij]
i=1 j=1 i

pi = ;
' 2 pifijqj
(2.10) b=t
%[Pi 2 myq;+4q; X mijpj]
q: — J=1 . Jj=1 s i=1,2’...’r.
z pim;;q

i,j=1

Call this non-linear transformation of 2r variables (2r — 2 independent ones)

T as before. Results concerning the evolution of this process, i.e., the behavior of
the iterates of T and characterizing their limit points, are of primary interest. It
would be of much interest to determine precise bounds for the number of stable
polymorphisms possible in this r allele selection model. Theorems from algebraic
geometry produce upper bounds (but excessive ones) for the number of admissible
equilibrium points. We refer to Karlin [20] for a treatment of several non-elementary
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cases of (2.10). A rather complete treatment of the special symmetric case M = F is
available, e.g., see Kingman [25].

4. Selection model for multi allelic sex linked character. (This model was first
formulated by Haldane, see also Cannings [4], [5].)

Consider a character determined by a locus on the sex chromosome with r
alleles possible. Suppose the female sex is the homogametic one, the X X chromosome.

The female genotypes assume the form 4;4;, i,j = 1, ---, r but the male genotypes
take the form A4,Y since the Y chromosome carries no complement of the gene.

The fitness coefficients corresponding to females are displayed by the matrix
F =|f,;| and for males by the vector m = (m,,m,,---,m,). Thus m; measures the
relative fitness of the male genotype 4;Y and f}, of the female genotype A;4,. Under
random mating and selection, the relative number of female offspring of type A AL
which survive to maturity is 3(p,q, + q;p)fjx for j# k and p,q,f;; for j= k. For
males of genotype A;, the relative frequency of maturing male offspring is g;m;,
since the male parent always contributes the Y chromosome. With Mendelian
segregation, we get the transformation law

r r
%[Pi ‘Z ﬁjqj +q; 2 f;’jpj]
(2.11) pi = Lol 2o s q; =
>z p ijd;
ij=1

m;p;

T
z m;p;
i=1

In general, there exists at most one polymorphic equilibrium g, § where 4 is calculated
by normalizing (so that the sum of components is 1) the positive solution of

(2.12) (FI, + 1, F)p =1.

(I,, is the diagonal matrix with m,, m,, -, m, down the diagonal and 1 is the vector
with all components of value 1.) And
q = yImpA Wlth y—l = E miﬁi'
i=1

Stability conditions of such a polymorphic solution can be determined.

We specialize now to the case r = 2. Then it is more convenient to work in terms
of the variables

J 41 q1

x=— andy = —,
123 Y 2

so that 0 < x, y < oo. The equivalent recursion equations reduce to

, _sxy +Hx+y)

2.13 = "=

where s = f, [f12, 0 =[5, [f1, and m = m, /m,. Designate the transformation (2.13)
as T(x,y)=(x',y"). It is readily verified that T is a strictly monotonic mapping
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(cf. (2.6a)). Exploiting this fact we easily establish by applying a local linear ap-
proximation, the existence of a positive pair of numbers (a, b) such that for ¢ > 0 and
sufficiently small T(ea,eb) < (ea,eb) iff m < 2¢ — 1. It follows that the fixed point
0 = (0,0) (corresponding to a pure A,A, population) is locally stable iff m < 20 — 1.
In a similar manner, we find that oo = (00, 00) is locally stable iff 2s — 1 = 1/m.
For the case where 26 — 1 < m and 2s — 1 < 1 /m there exists a unique polymorphic
globally stable equilibrium (x*, y*) with

_20—1-—m
T @2s—1)m-71
Global stability of (x*, y*) results by virtue of the following facts: (i) T is mono-
tone and exactly one interior equilibrium exists, (ii) T(ea,&b) > (ea,eb), and (iii)
T(N&, Nb) < (Na, Nb)hold for ¢ small enough and N large enough respectively. (Here
a, b are specified to satisfy m > a /b > 20 — 1 and 4, btosatisfy1/m > @/b>2s — 1.y

In the case that m < 20 — 1 and 2s — 1 < 1 /m simultaneously hold then 0 and co
are both locally stable and possess domains of attraction whose boundary is an
algebraic curve containing the point (x*, y*) defined in (2.14).

(2.14) x*

5. Segregation distortion and viability selection balance for the t-locus in house
mice. (This model was set up by Lewontin [28].)

The t-locus codes for certain enzyme function essentially involves two alleles
labeled T and t. The presence of the t-alleles affects males and females differently.
(Morphologically the t allele reveals a shortened tail—hence the name.) With refe-
rence to selection, we have

MALE FEMALE
TT Tt tt TT Tt tt
Fitnesses 1-—s, 1, 0 1—-s5 1 1—-0

(0£s<1,0= 0 < 1). Note that recessive males (¢ genotypes) suffer total lethality.
The main difference is revealed in the segregation ratios for the heterozygote in
the two sexes. Explicitly

MALES FEMALES
Tt Tt
¥ N VAR
T t T t
segregation ratios 1-m m 4 4

and m is about .90 in the actual example.

Denote by ¢, (q,) the frequency of T(¢) in the males and p,(p,) correspondingly
for females. Set u =g, /q;, v = p,/p;- Taking account of the viability selection,
segregation bias and assuming random mating, we deduce the recursion relations
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, (A =ouv+4(u +v) , m(u + v)
(2.15) = I—s+iu+o) > ° T l—s+A-m)(u+v)

The transformation (2.15) is strictly monotonic as in the earlier two allele models.
Direct examination reveals that the transformation I' in (2.15) satisfies

(2.16) I'(ea, eb) > (ea, eb)

for ¢> 0 small enough and appropriate a,b >0 iff 2(1 —s) (3 —m —s)<0 or
m + s > % and the opposite order relation holds in (2.16) when m + s < 1.

It follows that 0 = (0,0) is locally stable iff m + s < 4. We now prove global
stability for this case. To this end form

(1 —o)uv+ i(u+v) m(u + v)
1—s54+%4u+v) 1-5s+1—-m)(u+v)

<(1—a)uv+(m+%)(u+v)

= I —s+3(u+v) )

u’+v’§

But uv < ((u + v)/2)? implies

(m+PHz+ (1 —0)z2/4 _

! — 1 ! <
(2.17) Z'=u"+v = [ —s+1z h(z).

Direct verification shows that h is non-decreasing and h(z) £z for z >0 with
equality iff z = 0. Iteration of (2.17) is therefore permissible leading to

zM < h,(2) = h(h,-,(2)), n=1,2,3,-

But a simple geometric argument proves h,(z) — 0 as n — oo for any initial z > 0 and
therefore z™ — 0. Thus 0 = (0, 0) is globally stable as claimed.
The fixed points of (2.15) are obtained as the solutions of the equations

(1 =s=mp+1—mp?
(2.18) u= m— = m)

b

where v satisfies R(v) = 4503 + A,0% + A;v + A, = 0, where
Ay = m(1 —s)(s+m—1%),
Ay =m(l—0)1—-s—m)+ (1 —s)[—2m(1 — m) + s(m —3)],
A, =1 -m[A-0)2m+s—1)—(1-s)(m—1)],
Ay = — (1= 0)(1 — m)~
When s + m > 1 we have R(0) > 0 while

m _—m (1—ys)*
R(l—m)_ 5 im0

(2.19)
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Therefore, in this case there exists v* (0 < v* < m /(1 — m)) satisfying R(v*) = 0 and
u* determined from (2.18) is > 0. The point (u*,v*) is of course an equilibrium of
(2.15). With a little effort, using ¢ as a parameter (1 = ¢ = 0) it can be proved there
exists for m + s >4 a unique solution v* of R(v) =0 fulfilling the inequalities
0 <v*<m/(1 —m) and therefore in this case exactly one interior polymorphism
occurs. Since T(Na, Nb) < (Na,Nb) prevails for N large enough and appropriate
a >0, b >0, we infer, by virtue of the monotonic nature of T the limit relation
lim,_, . T"(u,v) = (u*,v*) from any initial (u,v) > 0.

6. Another model of segregation distortion. We close this section by citing a one-
locus two allele segregation distortion model considered by Haldane [14]. There are
no fertility differences in the mating types or viability selection differences. There
are two alleles 4, and 4, where the frequencies of 4,4, A, A, and 4,4, are x, y
and z respectively. The array in Table 2 decribes the segregation ratios depending
on two parameters.

Offspring ratios
Mating
Mating A4 A1A4; AxAz Frequency
A1A4; X A1Aq 1 0 0 x2
A1A1 X A1A4; i 1—42 0 2xy
A14; X A4, 0 1 0 2xz
M1 —p) 20—-HA -p w1 -2 »?
A14; X A14 —_— —_— _—
172 2 A2 2—A—u 2—i—u "
A14; X AzA» 0 1—wu Y2 2yz
AyAz X A2A» 0 0 1 z2
TABLE 2.

Viability effects only operate in the segregation process. Each mating has output 1.
It is straightforward to derive the recursion relations connecting genotype frequencies
over two successive generations. We get

M1 —p)
[ 2 7 2
x' = x%+2ixy +2————_}___# y
2(1 - A1 -
(2.20) y' = 2(1 —Axy+ 2xz + ——gr%(—_—?—“—)yz +2(1 — p)yz
z' = z?+2uyz + pl=4

Ry
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All equilibria can be determined in general, and for some special cases, viz.,
A=u, A=1—pu, A=0or 1, the full convergence behavior can be analysed.

Thus, when g = 0, x™ — 1 rapidly.

When A + p=1and A > %, again we find x™ - 1.

For A = p and A < 4, then it can be proved that

_)1—\/1—2,1(1—2,1)

(n). n
Xz 201 =27%)

The following can be readily checked. Assume by symmetry (0 < 4 < A < 1) then:
(i) For 0 < pu =A< 4, there exists a unique locally stable polymorphism.
(i) For 0 < u <% < A < 1, there exists no internal equilibrium. It can be proved
that fixation in the A4, allele occurs.
(iii) If4 < p =4 <1, there exists a unique internal non-stable equilibrium. -
The global convergence behavior of (2.20) for arbitrary parameters A, u is in
general unsettled.

1II. SOME MODELS OF POSITIVE ASSORTATIVE MATING

Consider a two-allele (4 and a) single locus population displaying certain pref-
erences in mating behavior. We consider here the case where the preference is
exercised by one of the sexes, say the female sex, (this covers most situations of
insect and mammal populations). (References and more detailed discussion of the
models and related models of this section can be found in Scudo and Karlin [30] and
Karlin and Scudo [18].)

1. A model of assortative mating. Assume that 4 is dominant to a so that pheno-
typically A4 and Aa are alike. The degree of partial assortative mating in the
phenotypes is measured by two parameters: « (0 < « < 1) will be the fraction of
dominant females preferring to mate with their own kind and $ (0 £ 8 £ 1) that of
recessive females preferring their own kind. Thus a fraction, 1 — «, of 4 (of A4 or
Aa) females mate indiﬂ'erently,/i.e., at random. We assume all females are fertilized
(i.e., find a suitable mate). This happens if the males are sufficiently abundant and
the same male may participate in many matings. Consider the genotypes 44, Aa,
aa (A dominant) with the frequencies u, v and w respectively in the female population.

When the prohibitions of assortative mating are operating, it is obligate that
each mate of an aa individual is of the same genotype so that the frequency of the
aa x aa mating type is w. Therefore the frequency of the matings of the dominant
phenotypes is 1 —w =u + v. Among the matings of dominants the frequency of
occurrence of the A4 x AA mating type is u? and its frequency of occurrence
considering all admissible matings is then #2 /(1 — w). The frequencies of the mating
types are listed in Table 3.
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Frequencies
Mating Type Of Assorting Types Random Mating
AA X AA o2/ (u +v) (1 —a)u2
AA X Aa 2000 (U + V) 2(1 —a@)uv
AA X aa Q2—a—RPDuw
Aa X Aa av2/ (u + v) (1 — a2
Aa X aa Q—a—Bow
aa X aa Bw a—-pwz

TABLE 3

The corresponding recurrence relations connecting genotype frequencies over
successive generations in accordance with Mendelian segregation laws become

\

u’ =( i +(1—oc))(u+%v)2

u-+ov
Gl v = é(-jﬁj:—vﬁ 10+ (1 — a)u(kv + w) + (L = fw(u + 1v),
w o= Bw + ﬁ%+(1 — D)o + w) + (1 — BwEo + w).

Introducing the A gene frequency, p = u + $v, and for the next generation, p’ =
u’' + v’ and, letting p, denote the frequency of the gene A4 in the nth generation,

we derive, from (3.1), the relationship
(3.2) p’ = p[l + (« — B)w].
The following inferences can now be made:

(i) For a > B, p, increases to 1, the pure homozygous A4 state. The rate of
convergence is algebraic.

(ii) For o < B, the population ultimately fixes in the pure homozygous aa state
and convergence occurs with an asymptotic factor of decrease per generation
A=1+4(a—p).

When o = f it is readily checked that p™ = p® for all n. Then v’ simplifies to
_ vpo
Pt
where p is the constant gene frequency. Thus f(v) is a linear fractional transformation
and therefore the nth generation frequencies v, = f,(vo) = f(f, - 1(vo)) can be explicitly
evaluated. Indeed, we have

’

v

+(1—a)2pg=f(v), (q=(1-p)),
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Uy — V1 — Ku(”o— yl)
Uy — 72 vo— 72/’

where y, and y, are the fixed points of f(v) = v and

_ T2 [2(1 —o)pq — vl]
71 12(1 = @)pg — 72

Because f(v) is concave increasing, we deduce v, — y,. For the case o« = 1 we obtain
v, = 2pvg [(nvy + 2p) so that v, — 0 at an algebraic rate.

2. Model of assortative mating with permanent bonding. In the formulation of the
previous model it was tacitly assumed that there was no set order in which the types
of mating (random or assortative) took place. The factor of timing of mating for
assorting and random mating individuals may be important, and could affect the
accessibility and availability of proper mates.

Two simple contrasting assumptions can be made to study the effect of assortment
on the timing of pair bonding depending on whether assorting females mate prior to
the nonassorting ones, or after. Let u, v, w denote the frequencies of the 44, Aa and
aa genotypes respectively.

In the first set up a fraction a(u + v) of the dominant females pair first with an
equal number of dominant males; the same occurs for fw of the recessives. The
remaining individuals, a proportion (1 — &) (4 + v) + (1 — f)w of both sexes mate at
random. The resulting relative frequencies of the mating types are given in Table 4.

Frequencies
Mating Types
Assorting Random Mating
u2
AA X AA o (1 —a)2u2/ R
u+tv
uv
AA X Aa 20 —— 2(1 —a)2uv/R
u+tv
AA X aa 20 —a)(d — puw/R
vZ
Aa X Aa o (1 —a)2v2/R
u+v
AA X aa 201 —a) (1 — pvw/R
aa X aa Bw (1 —B)2w2/R

TABLE 4.
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One can ‘‘normalize’’ back to frequencies (Case A) simply by dividing the proportions
in the random mating part by (1 — &) (u + v) + (1 — f)w. On the other hand, we can
assume (Case B) that the delay in pairing causes some decrease in reproduction.
One way to express the loss in fertility is to assume that the contribution to the next
generation on the part of the population undergoing random mating is

[A—a)(u+v)+ (1 — p)w]? instead of (1 — a)(u + v) + (1 — Bw.

An alternative formulation in which random mating females pair first can be
analyzed (see Scudo and Karlin [30]).

Recurrence relations for genotype frequencies over successive generations are as
follows:

CAsEA. R=1—-a+ (a0 — f)w

u = a (u_:—j:it_;)_z_ + (1 — )*(u + 4v)* /R,

(G3) v = 1:‘-:_%:+2(1—oc)(u+%v) {1 ;av+(1—ﬁ)w:/R,
W= ﬁw+a4(u'iv) +{1;“v+(1—ﬁ)w}z/R.
Cast B
Nu' = « Q‘{va)z-Hl — a)*(u + v)?,
(G4 N = "u“:fv” +2(1 = o) (u + 40) {1 2o+ (1 —ﬁ)w},

2

{1;“v+(1—ﬁ)w},

2

. v
Nw' = Bw+a4(u+v)+

where N =1— R(1 — R).
From (3.3) it follows that the gene frequency p = u + 4v is invariant over time,
i.e., p’ = p. Using this fact we can rewrite the second equation of (3.3) in the form

= v 200 = )[(1 = P)g +3u(B — )]
p+iv 1 —ap—pq+(B—a)v

The frequency of Aa in the nth generation is therefore v, = £,(v) (f,(v) = f, - 1(f (v))).
By direct verification we find that f(v) is concave and f(0) > 0. It follows that f(v) = v
admits a unique solution v* in (0,1) and, independent of the initial frequency v,
converges to v*. The equilibrium v* depends on p and is computed as the unique root
in (0,1) of the cubic

=f(v), (¢g=1-p).
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—03(B — ) — 2(1 — ap — f@)v* + 4v(1 — B)(1 — «)p* + 8p?q(1 — )(1 — B) = 0.
We turn to the analysis of case B. Combining appropriately the equations of (3.4)
we obtain

, _[1-(10-u)(1—R)
(33) v =r [

where R =1 —a + (¢« — B)w. Observe that the multiplying factor of p exceeds 1
(is smaller than 1) if and only if & > f (« < f) independent of w (0 <w < 1). We

deduce easily the following results.
If « > B, p,}1 as n— o0, i.e., the population fixes in the homozygote 44 state.

Ifa<p, p,yO0asn—o0.

3. Assortative mating with no dominance. A general formulation of a model of
assortment and random mating would involve 9 parameters. Let oy, o, and og
0= =1, a +a, + a3 < 1) be measures of the tendency of an A4 female to
choose an A4, Aa or aa mate respectively. Then 1 — a; — o, — a3 is a measure of
ambivalence in the choice of a mate (mates of random). The parameters o, and a5
can be interpreted as propensities of partial disassortment. Similarly, we denote by
BB, B; and 1 — B, — B, — B; the degrees of assortment and random mating
respectively for an Aa female. The aa genotype has corresponding assortment
parameters y,, 7, and y;. To illustrate, we discuss the case where all parameters of
disassortment are zero, i.e., o, = a3 =0, B, = 3 =0, and y; =y, = 0 (for simplicity
we drop the subscript and write o; = a, f, =B, y3 =7).

Let the frequencies of A4, Aa and aa in the present generation be u, v and w
respectively. We assume random mating occurs first, followed by assortative mating.
Permanent pairing is assumed and this entails that at the culmination of random
mating a total frequency of au + fv + yw males are available to mate with assorting
females. Thus the fractions of male and female individuals available for isogenotypic
pairings are shown in Table 5.

Proportions of

Genotypes
Available Males Assorting Females
AA u(au + pv + yw) ou
Aa v(ou + pv + yw) pv
aa w(ou + pv + yw) yw
TABLE 5.

Assorting continues until all possible pairs are formed; the remaining individuals do
not contribute to the next generation. Observe that all 44 assorting females are
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fertilized, if and only if au < u[ou + Bv + yw] or, what is the same, a < (fv + yw)/
(v + w). If we make the simplifying assumption y = o, then if y = & < § holds, we
find that all A4 and aa assorting females can pair. The fraction of unfertilized 4a
females is (B — a)v(1 — v). Verification of the entries in the Table 6 should now be
clear.

Frequencies
Mating Types
Random Mating Assortative Mating

AA X AA (1 —a)u? au

AA X Aa A—ayuw+1A—=puw

AA X aa (1 — a) 2uw

Aa X Aa 1 — B2 [a(l —v) + Bv]v
Aa X aa A—-—o)ywv+ (1A — pHwv

aa X aa (1 —a)yw? aw

TABLE 6

The associated recursion relations connecting genotype frequencies over two
successive generations are

Nu' = ocu+f%+(1—oc)u(u+—;—v)+(l—ﬁ) %v(u+—;-v),

(3.6) Nv' = f—g— +(1—a) [—21—0(1 —v)+ 2uw)] +(1-=p 710,

Nw' = aw+f%+(l—a)w(w+%v)+(l—ﬁ) —;-v(w+%v),

where N =1 — (8 — «)v(1 — v) and f = a(1 — v) + fo.
From (3.6) we have
’ r_ _ 1 —(ﬂ — “)%v ]
v v = [
so that | u' — w’] > Iu —-w | if and only if v <4. Moreover, we always have
(uw' —w")(u —w)>0. Now

, e+ (B—a] + 1 —)[Fv(d —0v) + 2uw] + (1 = B)dv
°= =8 — a)o(l — 0)

and therefore since 4uw < (1 —v)*> we have

, o+ B—ap]l+30 -1 —v)+ (1 =B _
v = (B =l =) =80,
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forall 0 < v < 1. Direct computation affirms that g’(v) = 0 (0 < v < 1). It follows that
v, < g,(v) = g,-,(g(v)) where v, is the frequency of Aa in the nth generation. The
theory of iteration of functions tells us that g,(v) converges as n — oo to the unique
fixed point v* of g(v) = v in (0,1). We find that v* satisfies

(B — a)v® ——g—(ﬂ—a)vz+v (l—a +§.) _1%“_=0;

examination reveals that v* < 4. Therefore, for n sufficiently large, it follows that
v, <3 which implies that ultimately ]u,, - w,,] continually increases. Its limit is
necessarily one. Combining these facts we have established:

(i) Ifug>wythenu,—1,v,-0,w,—0.

If uy < wo then u, -0, v, -0, w, > 1.

The approach of v, to 0 is geometrically fast at the rate 1 — /2.

(i) When u, = w,, then v, - v* and u, = w, - (1 — v*)/2 at the geometric rate
|g'@")].

The analysis when o =y > f§ paraphrases that above. The conclusions are the
same as before, except that now v* is the solution in (0, 1) of the cubic

@—Ppv* —(—Pv>*+v(l =) —4(1 —a) =0.

4. Assortative mating preceding random mating, permanent bonding. Here, as-
sortment is assumed to occur first with permanent pairing. The remaining genotypic
proportions of A4, Aa and aa individuals practicing random mating is (1 — )u,
(1 — B)v, (1 —y)w respectively. Two cases can be considered according to whether
males possess infinite fertility or not. Case B implies a loss of frequency of mating
types per generation of magnitude ou + fv + yw while Case A assumes no impairment
of fertility for females mating randomly. The consequences of the matings are
summarized in the recursion relations.

CAsEA. R=1—ou— fv—yw, CaseB. R =1,
N=1. N =1-R*(1 —R*),
R* =1 —au — fv —yw.

Z
g\
I

= ou+3pv+[(1 —u+3(1 - Bv]?/R,
(3.7 Nv' = 3Bv+2[(1 —u+3(1 = B][(1 —y)w + +(1 — fv] /R,
Nw' = yw+3pv+[(1—pw+3(1 - Bv]*/R.

We treat only Case B (see Karlin and Scudo [18] for case A).
In the present discussion we restrict attention to the important case where o = 7.
We obtain from (3.7)

(3.8) u —w=u-w) [1

— (1 —)(l — R¥)
1— R*(1 — R¥) ]
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It follows that | u’ — w’| < |u — w| if « < B and the opposite inequality holds when
o > B provided v > 0. The recursion relations (3.7) admit a single polymorphic
equilibrium (4, 6, w) where w = @ = (1 — ) /2, and & is the unique root in (0, 1) of the
equation

(a—B)?*® + v*(a—~p)[1 —5/2a+ 18]
+o[l—al—a)+3f—(t—B1 —a)] —3(1 —a)>*=0.

(i) When « > B, it can be easily proved that fixation ultimately occurs.

(i) When 0 < « < f, then for any nontrivial initial values u,, vy, w, the genotype
frequencies at the nth generation u,, v,, w, converge as n — oo to the stable poly-
morphic equilibrium (4,5, w) at a geometric rate. The following is a sketch of the
proof.

From (3.8) for the case at hand, we deduce that u, — w, — 0. The second relation
of (3.1) can be written in the form

(3.10) v, =

’%ﬂvn'i'(l - d)(l —_ ﬁ)vn(l — Un) + '%(1 _ ﬁ)zvr12+ (1 — a)z['%(l - vn)2 - %(un_ Wn)z]
I —R¥I—RD

(3.9)

where R¥ =1 — o + (¢ — B)v,,.
We regard 4(u, — w,)? = ¢, as a parameter, and the transformation then achieves
the form

(3°11) U+ =fa(vn)9

where £,(v) is the function of (3.10) with ¢, replaced by ¢. Simple analysis shows that
fo(v) on (0,1) is monotone increasing and crosses the 45° line at the unique root of
the cubic (3.9). Furthermore, f,(v) is monotone increasing for n(g) <v <1 — n(e)
with #5(¢) tending to zero as ¢ - 0.

Inspection of (3.10) reveals that v, is bounded away from 0 and 1 provided
0 < vy < 1. We infer from (3.11) that

f(()m)(vno) z vno+m gf("')(vno)’

where f(™ denotes the mth composed function f, with itself. Letting m — 00 and
exploiting the cited monotonicity properties of f, we find that

lim v, 2 6® and lim v, <5,

m- o m=> o
where 0, is the unique fixed point of f,(v)=v in (n(e), 1 —n(e)). Obviously
(Y > 5 as ¢ » 0 and thus the convergence of v, to b is established. The convergence
u,—»%(1 —9) and w,— 4(1 — 0) readily ensue.

For the case of general parameters «, §,7 a complete analysis as above appears

difficult; however, investigation of local stability of the fixations provides a good



720 SAMUEL KARLIN [September
qualitative picture of the properties of the system (3.7). (See Karlin and Scudo [18]
for details.)

5. Partial assortative mating with no priorities. We now consider the case of mixed
assortative and random mating where the two mating patterns occur in no prede-
termined order. Enough males are assumed to be present so that all females con-
tribute to the next generation with no reduction in fertility. The recursion relations
connecting genotype frequencies over successive generations are

u = au+3pr+ (1 —au+4iv)+ 0 - BPiv(u+ Lv),
(3.12) v’ Ipr+(Q—auw+3iv)+ 0 - Biv+ 1A —pw(u + Lv),
w’ w+ipr+ (1 —pwGEo+w)+ (1 = Bio(w + $v).

Some algebraic manipulations reveal that there exists at most one nontrivial equili-
brium given by

g Ltr=@-pHC-e-fp , L+y-—a)(L+a-)2-c—y)
LILG—a—y)— (@ —»?] ’ LILA—a—p) - —-o)?]

(3.13)
5o Ltae—nN@@-pH2-y-§
L[LA—a—p) -G -2 ’

where L = (1 — o) (y — B) + (1 — y) (¢ — f).

The equilibrium (3.13) exists and is globally stable if L+y—a <0 and
L+ a—7<0 hold.

The symmetrical case « = y is especially interesting. For « = y < 8 the equilibrium
simplifies to

1 R
L =

22 —a)’ 2—a’

ﬁ:ﬁ):

which is independent of the parameter f and is stable. The symmetric multi allele
version of this model can also be analyzed.

IV. INCOMPATIBILITY SYSTEMS AND SELF STERILITY

When not all possible matings can take place, incompatibility mechanisms usually
operate for the prohibition of certain matings. An example which springs to mind
is the human population where male-male and female-female incompatibility are in
force and only male-female matings can occur. There are many other subtle in-
compatibilities in nature, especially involving plant populations (e.g., see East [8]),
and we now study some simple mathematics of this phenomena.

1. A pollen elimination model. Consider a plant species in which the phenotype
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in question is controlled by a single diploid locus at which there are three possible
alleles 4, B and C. Each plant produces both pollen and ova, but we prohibit the
mating between a given pollen grain and an ovule of a plant whose genotype contains
the same allele as the pollen. The model decrees that an ovule of a plant of type
AB may be fertilized by only pollen of type C so that the offspring will be 3 AC and
1 BC.

Suppose now that at the nth generation we have x,, y, and z, as the proportions
of AB, AC and BC respectively and suppose further that all ova are fertilized.
It is trivial to verify that

. z, 1-x,
(4.1) Yapr =+ S =T = gy 4

Iterating and by symmetry we obtain
Xy = 3+ X =D, =3+ —H(-D
n =3+ @D

Hence x,, y, and z, all converge to 1§, at an oscillating geometric rate.

So far the incompatibility we have discussed arises as an incompatibility between
the diploid genotype of the ovule and the haploid genotype of the pollen. Thus
pollen of the incompatible type, although it contacts the female organ of the plant,
dies leaving the ova intact and still available for a compatible fertilization. The
inconipatibility is determined by the genotype of the diploid ovule. The type of
incompatibility system described above occurs in the tobacco plant (nicotiana).

(4.2)

z

2. A zygote elimination model. We next examine the case in which the chance of a
mating is proportional to the product of the relative frequencies of both parents
subject to the same incompatibility as before. In this case the chance that an AB
female mates with the male genotypes AC or BC is proportional to x(y + z)
= x(1 — x). Table 7 is relevant at the nth generation.

Frequencies

Females of mating Offspring
AC BC
X, AB x, (1 — x,) T s T
AB BC
Yy AC Va1 — ¥ R 2
AB AC
z, BC z,(1 —z) T , —2—

TABLE 7
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From Table 7 we find the frequencies in the next generation:

(4.3) Nx'=4y(1 = y)+42(1 - 2), Ny’ ={x(1 —x) +}2(1 - 2),
Nz' = $x(1 —x)+3y(1—y),

where N is the normalizing constant 1 — x? — y? — z% measuring the loss in fertility
due to the diploid-diploid incompatibility.

Subtracting the pairs of equations readily shows that if y > x then x’> y’ in the
next generation and similarly if z > x then x’ > z’, etc.

Suppose, for definiteness that zy < y, < x, in the initial generation and so,
min (x,,z,) <y, < max(x,,z,) in every succeeding generation. Clearly y, <3
and therefore

Yo < 1 1
“4) = —13-20) =4 —y0) = 2

IIA

we deduce that | x; — z, | < }| xo — 2o/, and so

1 1
lxn+1 - zn+1l é?(xn—zn) é ?“xo _Zol

which implies that x, — %, z, — % and y, — 1 at a geometric rate.

Model 1 is an example of what is called pollen elimination since unsuitable pollen
is not accepted while the ova remains intact until compatible pollen arrives. Model 2
corresponds to that called zygote elimination as pollen derived from an incompatible
parent destroys the contacted ova.

3. A multi allelic self sterility model. In practice the number of alleles in a self
sterility system of the kind discussed in IV §1 is much larger than 3. In fact as many
as.35 alleles have been identified in a sample of 500 plants of Oxalis Rosa. We now
consider a multi-allele version of IV §1 where once again it is assumed that all ova are
fertilized.

Let the r alleles be denoted by 4,, 4,,-:+, A,. Then our model postulates that an
A, A, ovule may be fertilized by 43, A4, -+, 4, pollen only, etc. Let s;; be the frequency
of the A4;4; genotype and we distinguish between 4;4; and A;4;. Hence s;; =0,
2;;s;; = 2. Then, at a given generation, the frequency of the pollen containing 4, is
g;=%{3 X;s;; + 3 X;s;;}. Now noting that X5, = X;s;; we have

“5) Gi= % s

l\.)lr—

We next calculate the frequency s;; of the 4;4; genotype in the next generation. The
frequency of a particular ovule, say A4;4,, in the present generation is s;,. This ovule
will produce one half A4, gametes and one half 4, gametes. The proportion of 4;
pollen which is available to the ovule is taken to be the probability of its being
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fertilized by A; pollen. Since the proportion of compatible pollen is 1 — q; — g, we
have q; /(1 — q; — q;) for the frequency of compatible pollen which will produce the
desired A;A; zygote. Thus, from the A4;4, ovule we expect a frequency
{suq;/(1 — g — @)} 3 of A;A; zygotes. Note that 4;A4,, A 4;, A, A; ovules also
produce 4,4 zygotes. Combining and simplifying we obtain (when i) the recursion
relations

The following facts can be checked directly. For any (I =),

2

J=I—(T:—1—)—' forl#],sii=0

Si
is a fixed point of (4.6) where the indices i,j vary over a subset I of the original
indices and the other frequencies are zero.

It can be shown that the gene frequency ¢; = 1/r (i = 1,2,--:,7),r = 3 is alocally
stable equilibrium. The problem of global stability has not been settled as yet.

4. Sex Determination Models. The first mathematical analysis of diploid-diploid
incompatibility systems were concerned with certain naturally occurring plant genetic
systems (see Fisher [13], Finney [12], Bodmer [1]). Subsequent investigators treated
such models as special cases of the more general phenomenon of negative assortative
matings, the most prominent being that of the XX, XY determination of sex in
humans; although this is undoubtedly the most familiar diploid-diploid incompa-
tibility many organisms exhibit other forms of sex determination and associated
incompatibility mechanisms. The genotypes can be considered to be partitioned into
two sets, with matings possible only between individuals in different sets although at
random within this restriction. In the terminology set previously the models are of
the zygote elimination type. For a biological justification of this formulation, see
Scudo [29].

The first model treated here is extremely simple. We allow three genotypes A4,
AB and BB, but the only matings producing viable offspring are those between a
homozygote and heterozygote.

MopkeL I

Set 1 Set 2

AA BB AB

TABLE 8
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Matings are possible only between members of different sets. If the frequencies of
the A4, AB and BB in the nth generation are respectively u,, v,, w,, we obtain the
recursion relations

Tooyuy = ty_g0,-y,
4.7 Too1vy = Uyoy Uyy + Wy g Uy
Tn—l Wy = Wy—1Up—1
where T,_; is a normalizing constant inserted to keep everything in terms of
frequencies.
Obviously u, /w, = uy /w, = a and v, = } for n = 1. It follows that
_ o W — 1
T 214w’ " 214w

Significant changes occur when a third allele is incorporated into the above
model. We consider two cases according to whether the third allele C is introduced

into set 1 (model I';) or set 2 (model I',). In the model T'; the incompatibility is
specified by Table 9.

u, forn=1.

MopEeL T’y
set 1 set 2
genotype AA BB BC AC CC AB
nth generation frequency Uy, Wy Xy Yy z, UR
TABLE 9

Again matings are considered to take place only between individuals in different
sets. The relations connecting genotype frequencies over successive generations are

vn—l(xn—l + Yn-1

Tn-—lvn = Up—q1lUp-1 + Uy 1Wn-1 + 2 s

Un—1Vn-1 Up—1%Xn—1
(48) Tn—lun=vn—1un—1 + = 2 ’ 'I;,._IW,,=U”_1W”_1 + 2 >

T _ Up—1¥n-1 + Un—1Vn-1 T __vn—lxn—l + Uy—1Vn—-1
n—1%Xn = 2 s dp—1Vn = 2 s

z, =0 for n>1, where T,_, =2v,_,(1 —v,-,) is the normalizing factor. Notice
that u, + w, = v, and x, =y, for n = 1. Hence
u, Uy 1 1 u n

- u w,
to =tz o =8 Mo g B 2y Mo
X, Xp-1 2 X,-, 2 Xo X, 2 Xo

Therefore x, — 0 and then y, — 0, so that u, + v, + w, = 2v, — 1 or v, — $. Since
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Ug n
u X 2
n="0 % ,lasn->ow
w, Wo +n

Xo 2

we have u,— %, w,— %. The ultimate configuration of the population is therefoer
u,=w, =%, v, =% and is independent of the initial makeup of the population.

Note that the previous continuum of fixed points of model I is reduced to the
single point u, = w, = %, v, = 4. In model I" the equilibrium point (which depends on
the initial conditions) is achieved in one generation. In model T'; the third allele
disappears quite slowly at an algebraic rate.

The incorporation of the third allele into model I" to form model ", profoundly
alters the equilibrium behavior, as shown above. The only change from model I'y
in constructing model I', is the set to which C has been added. There are three
families of equilibrium points, and the initial conditions determine which is reached.
The equilibrium behavior differs markedly from that of the previous model. The
following is a brief discussion of the results obtained.

MobeL [
Set 1 Set 2
genotype AA BB AB AC BC cC
nth generation frequencies u, W, v, Vu X, z,
TABLE 10

There exist exactly three families of equilibria
Fl:w=%,6+f=%, Fz:ﬁ='%,6+ﬁ=%,
Fa:uA""\T’:%,ﬁ:%

and the vector (u,,, W,, V,, X, ,) alWways converges as n — oo . Itis possible to determine
precise domains of attraction to the respective equilibria.

In fact if ug/we £ 1, yo /X< 1 and uyyo/wexo < 1, then the limiting equilibrium
is in F,. Symmetrically, if wo /ug < 1, X [y < 1 and woX, /4y < 1 then the limiting
equilibrium belongs to F,. If (u,_/w,-,) — 1 and (u,/w,) — 1 alternate continually
as n— oo or are zero, then the limit equilibrium belongs to F; (see Karlin [16]
for proofs). The domain of attraction to F5 is usually a hypersurface.

One final example is where each sex is characterized by three genotypes as
follows. (A nine allele expression of this model arises in a strain of wasp. For certain
fungi, including yeast, sex determination appears to be controlled at a single locus.)
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Set 1 Set 2
AA BB CC AB AC BC
frequency x y z u v w

The recurrence relations are as follows:
Tx' = x(u + v), Tu" = (x+y)u+vy+wx,
Ty = y(u + w), Tv' = (x+2)v+uz + xw,
Tz' = z(v + w), Tw = (y+2z)w+vy+uz,
T=2x+y+2z) (u+v+w).

The stable equilibria are precisely the fixed points

x+y =3 u =3%; x =3 v+w =1
x+z =% v=4%4 y=%1 u4+w=1%
ytz =% w=14% z=1%1 v+w=1}.

An interior unstable fixed point x =y =2z=1/9, u =v=w =2/9, also exists.

It can be proved generally in the case of three alleles at a single locus that, any
grouping for sex determination exhibits only the % sex ratio in a stable configuration.
When sex is determined involving at least two loci, then a stable sex ratio may be
different from %.

V. MUTATION SELECTION BALANCE

1. Mutation balance. We assume that each A allele has a probability x4 of mutating
to B (and hence 1 — u of not mutating), that v similarly is the mutation rate of B to 4
and that no other forces are acting to change gene frequencies. It is easily seen that

(5'1) Pn= (1 - .u) Pn-1 + V(l - pn-—l)’

where p, is the gene frequency of A4 in the nth generation. This equation can be
rewritten in the form
v R \ v
(Pn - ,u_-l—-—v) =(1—-p—-v) (Pn—1 T =1-p-v (Po ﬂ—;)

Thus p, — v/(u + v) as n —» oo at a rate (1 — (¢ + v))"i.e., p, — 1/(u + v) is of order
(1 — p — v)". There is thus a stable intermediate equilibrium point, whose position
depends on the ratios of the two mutation rates. However, since mutation rates are
generally less than 10-5, the rate of convergence to the equilibrium is exceedingly
slow. As we shall see below, it seems likely that selection differentials are nearly al-
ways large enough to mask these balancing effects of opposing mutation rates.
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2. Immigration balance. We assume that a proportion m of the population is
replaced in each generation by individuals from another population with constant A
and B gene frequencies P and Q respectively. The change in gene frequency is then
given by

(5.2) p.=({ —m)p,_, + mP.

As n— oo, then p,— P, the frequency of the immigrant population, at a rate
(1 —m)". If we put v=mP and pu = m(1 — P) then equation (5.2) is identical to
equation (5.1), so that this situation is exactly analogous to the mutation balance.
Both factors cause linear changes in the gene frequencies.

3. Mutation-selection balance for disadvantageous genes. Assume genotypes A4,
AB and BB have relative fitnesses 1, 1 — hs, and 1 — s where s, h = 0, and that p
and q are the gene frequencies in fertilized zygotes. Gene frequencies are measured
in the gametes which combine at random to form the fertilized zygote, before selection
has acted, and mutation is assumed to occur after selection during the formation of
the next generation’s gametes.

As in Section 2, the gene frequencies of 4 and B after selection, before mutation,
are

p’+A—hs)pg  (—5)a> +1 ~hs)pq
1 — 2hspq — sq? 1 — 2hspq — sq>

bl

respectively. Allowing only one way mutation 4 — B, the new frequency of B will be

’ , _ (U =s)g*>+(A —hs)pg [p>+ (1 — hs)pq]
(-2) T = "1 " 2hspq — 5¢° r o " 2hspg —sq2

Equilibria are obtained as the solutions of
(5.3) $q3(2h — 1) + sq*[1 —3h — hu] + q[p + hs(1 + p)] —u =0.
The mutation rate u is always very small. One stable equilibrium is approximately

(54) q~ plhs

provided u is small compared with hs. The nth generation frequency g, approaches
its equilibrium value of u/sh at a geometric rate of approximate order 1-sh. It is
noteworthy that this solution depends only on the product sh and not on s alone,
indicating that the fitness of the heterozygote dominates the situation. Given g and hs
for any particular gene, assumed to have reached its equilibrium frequency, we can
estimate from (5.4) the magnitude of the mutation rate u. This was, in fact, the way
that mutation rates in man were originally derived by Danforth in 1920 and later by
Haldane.

When h = 0 the allele B is recessive with respect to its effect on fitness and (5.4)
reduces to (¢ — 1) (sq? — n) = 0. The solution g = \/ﬁ/? is the only stable equilibrium,
of course provided u <s.
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The results of this model have been frequently applied in estimating the mutation
rate for recessive human diseases.

Criteria for selection mutation balance for a character controlled at two loci are
given in Karlin and McGregor [21]. In Section 8 we present a model for mutation
selection balance involving an infinite number of types. Those considerations are
also relevant to an understanding of polygenic inheritance (characters determined by

many loci).

VI. THE CONCEPT OF IDENTITY BY DESCENT AND APPLICATIONS

The inbreeding coefficient of an individual (introduced first by Wright) is defined
to be the probability that two genes at a single locus are identical by descent by which
we mean that the genes can be traced back to copies of the same gene in a particular
individual of a previous generation. Certain finite size population genetic problems
can be solved relatively easily using calculations for probabilities of descent. We
expose a series of important models exemplifying the method. (This method has been
exploited by many including Malécot, Kimura, Kempthorne and others. See Karlin
[16] and [17] for further applications and references on this subject.)

1. Monoecious diploid finite population. A monoecious individual is one that
can contribute both male and female gametes (e.g., as occurs commonly in plants).

Consider a population of N monoecious individuals diploid at an autosomal
locus, reproducing randomly but maintaining constant population size. More
specifically we may stipulate that each individual produces an infinite number of
copies of each of his genes to form a pool from which the next generation is formed
by choosing N pairs at random where each parental gene is represented to the extent
of 1N~ 1.th of the complete gene pool.

Let I, denote the probability that two homologous chromosomes at a given
locus in an individual in the tth generation carry genes identical by descent. Let J, be
the probability that two homologous chromosomes of the tth generation, chosen at
random one from each of two different individuals, carry genes identical by descent.

Under random mating two genes are derived from the same parental individual
with probability 1 /N or from different individuals with probability 1 — 1/N. In the
former event either they are copies of the same gene or they are copies of the
homologous pair, each occurring with probability . We may evidently compute I,
and J, according to the same recursion relations

L
(6.1) Jyand I, = Nl— (% + 71,_1) + (1 —]%) Jo_p t2 1.

Thus I, = J, for t 2 1 and (6.1) reduces to

(6.2) L=34N-'4+(1—3N-YI,_, t=2.
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We introduce the quantity H, = 1 — I, and then (6.2) is converted into
(6.3) H=Q-4N"YH,_, =1 —-3IN")"'H;, t21,

where Hy =1—1; and I, =3N"'(1 +Iy) + (1 — N~')J,. Equation (6.3) shows
that H, tends to zero at a geometric rate (1 — 3 N~1).

The above analysis implies two interesting conclusions. Firstly, the ultimate
population is composed exclusively of inbred individuals, i.e., individuals with
inbreeding coefficient 1. Secondly, even for the process of random mating, limitation
of population size imposes a certain degree of inbreeding which eliminates, at an
exponential rate, the heterozygote types.

2. Dioecious finite diploid population. We consider a two sex population consisting
of N, males and N, females. Let I, be the probability that two homologous genes
from the same male or female of the rth generation are identical by descent. Let
J, be the probability that two genes chosen at random one from each of two different
males or females in the tth generation are identical by descent. Let K, be the prob-
ability that two genes chosen at random, one from a male, the other from a female of
the tth generation, are identical by descent. Finally, let J, denote the probability that
two genes chosen at random in the tth generation, one each from different individuals
(with no reference to sex), are identical by descent. Symmetry suggests and indeed it
can be easily proved that I, and J, = J, are well defined.

We now develop recursion formulas for the quantities introduced above by
examining the source of the two genes in a given individual traced two generations
back. Consider two genes in a given individual. Conditional that they both come
from males, two generations back, the probability they derive from the same male
(say A)is (N, /N =N .

The probability is 4 that two children B and C of 4 transmit to their offspring D
the genes received from A. Now the genes given B and C by A are copies of the same
gene or correspond to distinct homologous genes with probability } each. In the
latter event the genes are identical by descent with probability I,_,. This accounts
for the first term of the recursion relation

(64) L =4N7'G+3,0) + 4N G+ 3,-0) + (L= 4N = 4N D, s.

The second term reflects the circumstance when both genes derive from the same
female parent. The probability is (1 — 1N ' — 4N, ') that the two genes of D derive
from distinct individuals of the (t — 2)-th generation, in which case the probability
is J,_, that they are identical by descent.

A similar kind of reasoning establishes the relation

(6.5) J =3iNT'(G+3L-) +4N' G+ 3 )+ (A= 4NT' = 4N D,y

Notice that the subscript on the right now involves the (¢ — 1)-th generation rather
than the (¢t — 2)-th.
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The identical formula as in (6.5) obtains with the left side replaced by K,. It
follows that J, = K,. Comparing (6.5) and (6.4) we may conclude thatJ,_; = I, and
then we rewrite (6.4) in the form

(6.6) L =N +41,-2) +(1 = N; DIy,

where NJ ' =1IN;! +1N;', a quantity commonly called the effective population
number. Let H, =1 — I, and then (6.6) becomes

6.7 H=(-N;DH,_;+iN;'H,_,, 122

The solution of this second order difference equation has the form H,=al] + bi},
t = 2, where ; (i = 1,2) are roots of the quadratic equation 1> — (1— N, ))A—%N!
= 0. Hence as t— oo, H, behaves asymptotically as

(6.8) H,~%a[l - N;'+(1 +NH].

The special case of sib mating arises when N; = N, =1 and so N, = 2. Then
H, ~a(i(1 + /3"

3. Loss of k alleles out of p in a haploid model. Consider a finite constant size
(say N individuals) haploid population (each individual carries one dose of an allele)
undergoing some general pattern of reproduction where the number of alternative
alleles represented in the population is at least p > 2. We investigate the problem of
determining the rate at which k of the p alleles are lost from the population.

The reproduction mechanism is as follows. Each individual replicates his type in
some general fashion but with no selection differences operating among the types.
The next generation is formed by choosing at random N progeny from the output
of the previous generation. The parameters of the reproduction mechanism are the
numbers g;; = to the probability that i randomly chosen progeny derive from j
distinct parents (i,j=1,2,---,N). Obviously g;;=0 for j>i so the matrix
G = g;|! is lower triangular. Clearly g, =1 and we postulate that

(6.9) 8k > Skt k+1 > 0 (k=1,2,---,N —1)and g4, >0

in order to avoid pathological algebraic annoyances. These conditions are satisfied
in almost all examples. In the special case where each parent contributes exactly r
replicas of his own type then an elementary combinatorial analysis shows that

(6.10) g = (Nr)

1
0 i<j,

izj

where 2* indicates summation over all i, i,,--+,i; 2 1 subjecttoi; + i, + -+ + i; = i.
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The conditions of (6.9) are obviously satisfied in this circumstance. Notice that
" here g;—»>(N(N—=1)---(N—i+1))/N' as r— 0.

Let P§}) be the probability that i randomly chosen different individuals of the
tth generation consist of j different types (alleles). Our objective is to ascertain the
asymptotic properties of P,&j-’ as t » oo for j=1,2,---, p. Since the population size
is kept constant we expect ultimate fixation in one type, i.e., P{)> 0 as t —» oo for
Jj=2,---,N. We wish to determine the rate of this approach to zero. The key to the
analysis is the recursion relation

N
(6.11) Pty =k_21 guP;  (ijs5 N).

The derivation is simple and follows by considering the various possibilities describing
the parental genes that can produce the given sampled genes. .

If we introduce the matrices P’ = | P{|, then (6.11) can be written concisely
as the matrix product P**? = GP®, and iteration produces

(6.12) PY = G'PO,

where G' is the tth power of the matrix G and P‘® provides the information of the
initial frequencies of types. Since G is lower triangular and the diagonal elements are
distinct by assumption, we may conclude that the eigenvalues of G are A, = g,; =1,

A2 = 8225 M = k> **'s AN = &NN-
A system of left eigenvectors of G can be constructed of the form

vk = w®, ., 0$0,---,0), k=1,2,-+N

with the property v} 7 0. This last fact derives from the condition gy, > g—4.5—;-
Let V be the matrix with row vectors v, v, .... o™ and U =V ~L Since V is
lower triangular, so is U. Of course, G = UQV, where  is the diagonal matrix of
eigenvalues of G whose values are g,;, 2,5, ', gyn- It is not difficult to prove in-
ductively that uf*’ > 0 for all i = k. Consider now

N N
o ) pO _ t 0
N = Py GNkij = X va,( ij-
k=1 k=j

Expanding

N N

t k _t j k t.(J

Nj X uy gk;cvl(c” = X u{[gu]v”
k=1 k=j

(5 1ui’ + O[gj41,7411"
where the last reduction is valid since v’ =0 for k < j. Since u$’ > 0 we have
proved the following theorem.

THEOREM. Suppose (6.9) holds. IfP?j > 0 then the probability that a population
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of N haploid individuals contains at least j types in the t-th generation is of the
order of magnitude c;[g;;]'where c; is a positive constant depending on the initial set
of frequencies.

The condition Pf} > 0 for j = p is very weak and would ordinarily be satisfied.
For further discussion of this model and ramifications we refer to Karlin [17]
Section 6, and Felsenstein [11].

5. Identity by descent and mutation effects. Consider a population of N diploid
individuals or 2N genes with an infinite series 4,, 4,, --- of possible alleles at a locus
with no selective differences among the allelic types. The population is randomly
reproducing as in Model I, i.e., the 2N genes of the next generation are formed by
repeated sampling with replacement from the 2N genes of the present generation.
Suppose moreover that as each gene is drawn there is a probability u that a mutation
occurs and any new mutant allele is of a not previously existing type.

Let I, be the probability in generation ¢ that two genes sampled at random are
identical by descent. A recursion formula analogous to (6.1) with due account of
mutation is

1 /1 1 ' 1
I,= [‘ﬁ ('—2— +71,_1) + (1 —'—N—)I,_l] (1 —u)z.
Letting ¢t — oo, we get the equilibrium value lim, , , I, = I, where

(I—u)?

L= aNu Sonaz

and for u small and N large such that 4Nu = 6 we have the approximate formula
I=1/1+086).

Of considerable interest for discussions relevant to non-Darwinian evolution
(Neutral mutation theory) is the evaluation of the probability

(613) P{ZN,U, Ny, n25"'9nk}

that a sample of r genes, chosen from the population, contains just k different allelic
types with n, of one kind, n, of a second kind and so on, n, of a kthkind where the
n, are positive integers with sum r. For the significance of the computation of (6.13)
and its utility in evaluating the relevance of neutral mutation theory, we refer to
Ewens [10]. The quantity (6.13) is a complicated function of 2N and u. However, if
we let N— oo and u— 0 in such a way that 4Nu converges to a finite non-zero
limit 6, then (6.13) converges to a relatively simple limit formula

r! 0"
b
Rihy -y oy lop!-a,! L(0)

(6.14) P(O;ny,ny,-ny) =

where p is the number of distinct integers in the set {n,, n,, ---, n,} of which there are
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exactly o, indices equal to an integer, a, indices equal to a different integer, and so on,
and exactly o, indices equal to the pth distinct value among the numbers ny, ny, -+, 1.
Here

L(0)=000+1)(0+2)-(0+r—1).

The formula was suggested by Ewens [10] and rigorously established in Karlin and
McGregor [22]. The method relies heavily on the concept of identity by descent.

VII. EVOLUTION OF A POPULATION WITH POLYGENIC CHARACTERS

1. A model of a polygenic trait. Consider a population with an infinite number of
possible types. Assume that the different types are identified with points of the real
line R. One example is where the type x can be associated with the ‘“fitness’” of the
given individual. A second case is where x corresponds to a measurable numerical
trait whose value is determined by the combined effects of many loci.

Consider the frequency distribution of the types in the population. More precisely,
let A be any interval (or Borel measurable set) in R and let m(A4) be the proportion
of the population (population size is for our purposes, regarded of large-infinite
size) of types corresponding to A at generation t. Selection and mutation affect
changes in m, over successive generations in the following manner:

(i) The relative viability of an offspring of type x compared to that of type y is in
the ratio y(x)/y(y) which we stipulated as a first approximation to be independent
of time. Assuming each parental type replicates its identical type, the change of
frequency distribution due to this selection is to be calculated by the formula

f Y()m,(dx)
Py y(A) = A

f Y()m,(dx)
R

for all intervals (and sets) A.

(ii) Mutation acts after selection as follows: let p(B,x) be the conditional
probability that an offspring of an x-type parent of generation ¢ alter its form to that
of type in B. Then a parent of type x, affected by selection and mutation will produce
offspring of type in 4 is calculated modulo a proportionality constant by the expression
9(x)p,(4, x). It follows that the total number of A-type offspring in generation ¢t + 1
is proportional to f w(¥)p,(4, x)m (dx) which after converting to frequencies, becomes

fR PP A, X)m(dx)
(7.1) m,.(A) = .

f yCOm,(dx)
R
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The evolution of the frequency distributions m, over time is the primary object under
investigation. To achieve qualitative results and deeper insights into the behavior of
m, as t increases we now specialize to the situation where

(7.2) p(B,u) = fB dG(x — u) and y(x) = 1%, A>1

so that the difference between a parent and offspring has the same distribution G(u)
(called the distribution of the mutation) over the whole population. The reproduction
rate of an x-type parent is A” so that a type is more advantageous with larger values.
For the case of y(x) = A* the meaning of x is strongly correlated with the actual
fitness of the x-individual.

Let F,(x) be the proportion of types < x in the population at time ¢. Manifestly,
F,(x) is a distribution function of the variable x. Define E, = [*, xdF,(x) as the’
average fitness and V, = [2, [x — E,]2dF(x) as the fitness variance. Define for any
distribution H(x) the quantity A = inf {x]H(x) =1} as the largest point in the
spectrum of H(x). The following results were proved by Eshel [9], (see Karlin [23]
for improvements and extensions).

THEOREM 1. Assume Fy< oo (i.e., the initial fitness distribution in the population
is bounded). Suppose that G < oo, that is the maximal possible mutation change
is bounded. Then
(7.3) lim (E,,, — E,)=G.

= w0
The rate of evolution (= the rate of change of the average fitness in the population)
approaches G.

A more refined result pertains to the changes in the centered fitness distribution
F(x—E)ast— .

TueoreM II. Under the assumptions of Theorem I Fy(x — E,) tends to a limit
distribution F(x) whose variance is finite.

In particular the proportion of types compared to the mean fitness in any given
region tends to a positive value. We state as a consequence of Theorem II: If G =0
(i.e., all mutations are deleterious or neutral), then it follows that F/(x) approaches
a limiting mutation selection balance with distribution of types F(x) iff G(x) has
a positive jump at 0.

The results cited above hinge strongly on the assumptions of (7.2). To what
extent are corresponding conclusions valid for other choices of the selection functions
y(x) not of exponential growth 1*? Cases where y(x) is bell-shaped (e.g., y(x) = e
or 1/(1 + x?)) would be of interest in treating the evolution of quantitative traits
where the optimum type has an intermediate value.
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2. Another model of a polygenic trait. Another model of a polygenic trait involving
a selection balance and the mating process proposed by Haldane has the following
structure.

The set of all possible phenotypes are again identified with the real line. Let the
proportion of the population exhibiting phenotype in an interval 4 in generation ¢ be

(7.4) mi(4) = L pi(x) dx.

(For ease of exposition we have assumed the existence of a density p, for the frequency
measure m,(dx).) The basic assumption for this model is that the distribution of the
type of the offspring depends on the type of each parent, through the conditional
probability (segregation function) L(x; x;,x,)dx equal to the probability that the
offspring is of type x to x + dx given the parental types are x; and x,. Clearly,

j L(x; x{,%x,)dx = 1.

In theory, L could be determined from careful analysis of breeding experiments.
Assuming random union of types the density of phenotypes in the next generation
would ordinarily be calculated by the formula

(1.5) Bror(x) = f f L(x; x4, %2)pe)pi(x)dx s dx;

before selection has acted. The action of selection is determined as in Model 1 by a
function y(x) which is the relative survival probability for individuals of type x.
Taking account of selection, the density p,(x) is altered to

P(X)pi(x)

ﬁt(x) = © .
f_ PN(x) dx

Subject to random mating, segregation (described by L(x; x;,x,)) and selection
(measured in relative terms by y(x)) we obtain the non-linear transformation law

f f PPV V3 LOS; %1, ;) dx g,
( [ Zp,(é)v(é)dé)z

For certain choices of L(x; x;,x,) for a large class of bell-shaped functions y(x) we
can deduce the fact that m,(x) converges to a limiting stable frequency distribution.

Other models for polygenic traits were studied by Kimura (see Crow and Kimura |
[7], pages 294-296, Slatkin [31], Haldane [14], among others).

Per1(x) =
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VIIL. SOME SELECTION MODELS FOR TWO LOCUS MARKERS

Consider a diploid population of a character determined by two loci with possible
alleles A, a and B, b at the first and second locus respectively. There are therefore
four types of chromosomes (or referred to as gametes):

(8.1) AB Ab aB ab
and 10 genotypes

AB AB AB AB Ab Ab Ab aB aB ab
AB’ Ab’ aB’ ab’ Ab’ aB ’ ab ’ aB ’ab ’ ab

where the symbol AB/aB, for example, means that the alleles A and B sit on one of
the chromosomes while the alleles a and B are found on the other. Let
M = || my;||#;-1 denote the fitness matrix, where m; is the fitness of the genotype
composed from the i and j type chromosomes.

Let x,,x,, x5 and x, be the frequencies of the four gamete types in the order of
(8.1). Assuming random union of gametes (= random mating) and recalling the
nature of Mendelian segregation involving recombination frequency r (refer here
back to Section I), it is easy to check Table 11.

Reading off from the table we find that the frequency x] of 4B in the next genera-
tion is proportional to

2
X~ XiMyy +2X, X, Myp $4+2%,X3my3F + 22X x4myq (1 — 1) + 2x,x57%
= x1m1 - rD,

where m; = Zj‘:l m;ix;, D=XXgmis — XpX3M;3. Similqr expressions result for
x5, X3 and x;. The recursion relations connecting frequencies over successive
generations become

(8.2) x;=i‘ﬂ'—fwf‘—r———, P=12.3.4,

4 4
Where &y = 83 = - 81 = - 84 = 1, mi = Zj=»'l mijxj', W = 2i,f=1 mijxix]‘.

1. No selection differences. The special case where m;; = 1 (no selection differen-
ces) is the most classical case treated. Then (8.2) reduces to

(8.3) X;=X; + &rD, i=1,2,3,4.

It is convenient to introduce the gene frequency variables
(8.4) 21 = X; + x, = (frequency of A), p, = x; + x3 = (frequency of B),
D = x;x4 — x,x5 (linkage disequilibrium function).

We can obviously recapture the gamete frequency according to
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Mating

type Frequency Viability Segregation
AB 5
-IE xl mi AB
AB
n;b- 2x1 X2 miz %AB + %ab
AB
— 2x1 X3 m3 }4B + 1aB
AB
e 2X1 X4 mia (1 — r)(34B + Lab) + r(3A4b + Lab)
Ab )
i & a2 »
Ab :
2B 2x2 X3 ma3 (1 — r)(34b + 1aB) + r(34B + Lab)
Ab
p 2X3 X4 mo4 %Ab + %ab
aB
—? x% ms3 aB
a
aB
— 2X3 X4 mag 3aB + %ab
ab 2
oy X4 Maq ab
TasLE 11
(8.5) Xy = pip2+D, x, = p(1 —p))—D,

x3 = (1=p)p2—D, x4 = (1—=p)(—p)+D.
On the basis of (8.3) and (8.4) we obtain
(8.6) pi =D, P2 =Dy D'=(1—r)D

and therefore D™ = (1 — r)"D® - 0 provided r > 0. Combining (8.6) with (8.5)
we see that

x{" = pip, + D™ > p;p, asn— o0

x; = pi(1 = p,), etc.
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Letting p°(4) (p°(B)) denote the initial frequency of the 4 gene (B gene) etc. we can
express the limiting frequencies in the form limit frequency of

F2(AB) = x{ = pp% = pO(4)p(B)
&.7) £7(4b) = p°(Ap°b),  f(aB) = p@)p°(B)
f*@ab) = p°(@)p°(b)

so that the two loci act in the limit independently. provided, recombination is positive.

i

2. Additive viabilities. This is the case where the fitness of a genotype is determin-
ed as the additive effects of the fitness contributed by each locus separately.
Specifically, suppose 04, 0,, 05 denote the relative fitnesses of A4, Aa, aa respectively
and sy, s,, 53 represent the relative fitnesses of BB, Bb and bb respectively. Then m,
the fitness of AB/AB is o, + s, the sum of the fitnesses of A4 and BB. Similarly,
mq4 for ABJab is o, + s, and m,, of Ab/ab is o, + s3, etc.

In the case of additive fitnesses and heterozygote advantage at each locus, i.e.,
6, > max(6,06;) and s, > max(s;,s;3), it can be proved that the limiting gamete
frequencies are

(8.8) lim x{=p,p,, lim x{” =p,(1 - p,) etc.,
n— o0 n— o
where
L 0,—03 L S3— 83
pl 262_61_63 ’ pZ 252—S1—S3

valid for any initial frequency vector (x,x2,x3,x3) provided x?x3x3x3 > 0.

Other examples of viability arrays that can be mostly analyzed include the cases
of multiplicative viabilities and the symmetric viability model (e.g., see Bodmer and
Felsenstein [3], Kojima and Lewontin [27] and Karlin and Feldman [19]).

Work supported in part by the National Institute of Health Grant USPRS 10452-09.
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