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One factor that has remained constant through all
the twists and turns of the history of physical
science is the decisive importance of the
mathematical imagination.
—Freeman J. Dyson

1. In January of 1684, the young astronomer Edmund Halley travelled from
Islington up to London for a meeting of the Royal Society. Later, perhaps over tea
and chocolate at a nearby coffee house, he chatted casually about natural philoso-
phy and other topics with Sir Christopher Wren and Robert Hooke. Talk soon
turned to celestial motions, and Halley later reconstructed the conversation [22,
p. 26]:

I, having from the consideration of the sesquialter proportion of Kepler
concluded that the centripetall force [to the Sun] decreased in the proportion
of the squares of the distances reciprocally, came one Wednesday to town,
where I met with S™ Christ. Wren and M™ Hook, and falling in discourse
about it, M" Hook affirmed that upon that principle all the Laws of the
celestiall motions were to be demonstrated, and that he himself had done it. I
declared the ill success of my attempts; and S* Christopher to encourage the
Inquiry said that he would give M Hook or me 2 months time to bring him a
convincing demonstration thereof, and besides the honour, he of us that did
it, should have from him a present of a book of 40 shillings. M" Hook then
said that he would conceale [his] for some time that other triing and failing,
might know how to value it, when he should make it publick. ...I remember
S™ Christopher was little satisfied that he could do it, and though M"™ Hook
then promised to show it him, I do not yet find that in that particular he has
been as good as his word.

The two month deadline passed. Wren and Halley waited through the summer, but
still the promised proof from Hooke never came. Finally, in August, Halley would
wait on Hooke no longer. He carried the question to Cambridge and the Lucasian
Professor of Mathematics, Isaac Newton.

Newton’s secretary and attendant has painted a portrait, daubed with colorful
and concrete detail, of the eccentric Cambridge professor Halley had finally
decided to approach [12, p. xiii—xiv]:

I cannot say, I ever saw him laugh, but once...I never knew him take any
Recreation or Pastime, either in Riding out to take y°® Air, Walking, Bowling

1997] NEWTON AND THE BIRTH OF CELESTIAL MECHANICS 1



or any other Exercise whatever, thinking all Hours lost, y* was not spent in
his Studyes, to wh he kept so close . ..so intent, so serious upon [them], y*
he eat very sparingly, nay, oft times he has forgot to eat at all, so y* going into
his Chamber I have found his Mess untouch’d, of w** when I have reminded
him, [he] would reply, Have I; & then making to y® Table, would eat a bit or
two standing, for I cannot say, I ever saw Him sit at Table by himself. .. He
very rarely went to Dine in y® Hall unless upon some Publick Dayes, & then,
if He has not been minded, would go very carelessly, w® Shooes down at
Heels, Stockins unty’d, Suplice on, & his Head scarcely comb’d... . At some
seldom Times when he design’d to dine in y© Hall [he] would turn to y© left
hand, & go out into y® street, where making a Stop, when he found his
mistake, [he] would hastily turn back & then sometimes instead of going into
y¢ Hall, would return to his Chamber again... .

...in his Garden, w** was never out of Order, ...he would, at some seldom
Times, take a short Walk or two, not enduring to see a Weed in it... . When
he has some Times taken a turn or two [he] has made a sudden Stand, turn’d
himself about, run up y® Stairs [&] like another Alr|chimides, with an
evpnka fall to write on his Desk standing, without giving himself the
Leasure to draw a Chair to sit down on... .

In a letter from 1727 [22, p. 27], Abraham de Moivre set the scene as Halley,
having arrived in Cambridge, posed the crucial question to the reclusive mathe-
matician:

...after they had been some time together, the D' asked [Newton] what he
thought the Curve would be that would be described by the Planets suppos-
ing the force of attraction towards the Sun to be reciprocal to the square of
their distance from it. S* Isaac replied immediately that it would be an
Ellipsis. The Doctor struck with joy and amazement asked him how he knew
it. Why saith he I have calculated it... .

Witness the birth of celestial mechanics: the embryonic question has been an-
swered—

every orbital motion subject to an inverse-square force lies on a conic having focus
at the force center

—not with a guess, but with a mathematical demonstration!

Semester after semester, at every college and university, we give our students
the same answer Newton gave to Halley, our demonstrations—so different from
Newton’s—blessed by the glories of vector calculus, and in this way we honor
Newton and celebrate the emergence of celestial dynamics. In the present article,
we honor Newton in the way of Abel, who counsels us to read the masters. We
shall place the original argument from Newton’s Principia next to a modern
counterpart, delighting in the stark contrasts. One delightful difference: Newton’s
argument requires that we first answer the converse to Halley’s question—

What force law maintains a conic motion orbiting about the focus?

—and again, reading the master, we shall juxtapose the Principia’s very geometric
proof of this reversal with its demonstration by vector calculus. In this mix of old
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and new, of geometry and analysis, some insights and surprises make their way to
the surface:

» The mathematics of the Principia is geometric analysis, both analysis in the
sense of ‘taking apart’ as well as analysis in the sense of calculus. Newton’s
geometry is calculus—limits, derivatives, integrals, acceleration, curvature—
masked as geometry.

e While less precise than their vector calculus descendants, the Principia’s
definitions have a concrete, visceral character that informs our geometric and
physical intuition.

« The first ten sections of the Principia (apart from the statement of the Third
Law) contain no physics, only mathematics. Newton may write of ‘forces,” but
he calculates accelerations. His concentration on acceleration and shape
reminds us that force and mass take no part in the mathematics of the
one-body problem, which occupies the leading sections of the Principia.

 In contrast to force, curvature is deeply involved with the Principia’s orbital
dynamics, yet apart from rare oblique sightings, the dependence on curvature
remains hidden.

e Asked who should receive credit for answering Halley’s question with a
demonstration ratheér than a guess, historians of science bow to Newton.
Asked for evidence to back up their claim, the historians open the Principia
and point to a two-sentence argument. We confirm that Newton’s little sketch,
given air and sun, blossoms into a cogent proof.

¢ Reading the masters—Archimedes, Newton, Euler, Gauss, Riemann,...
—can mean entering a foreign paradigm, an unfamiliar mathematical world
where alien values, language, definitions, tools, strategies, and assumptions
frustrate our attempts to understand. And so it is with the Principia. But with
persistence and prayer, even the Principia sends up her secrets. As we slowly
learn to navigate in Newton’s world, we deepen our understanding of the
Principia’s paradigm as well as our own.

It may seem odd to have placed our conclusions here in the introduction, but with
these closing remarks now out of the way, we can read on unburdened by the
western need to fret and fuss about the point of it all. As the Taoist philosopher
Chuang Tzu suggests [19, p. 126], we can now lean back and float with the current,
“going under with the swirls and coming out with the eddies, following along the
way the water goes, and never thinking... .”

2. We begin with Newton’s generalized answer to Halley—that every orbit pro-
duced by an inverse-square force must lie on a conic—in this section giving a
contemporary proof and in the next exploring the Principia’s original argument.
But we should first agree on some technical vocabulary, so that we can be more
precise. Any smooth map r = r(¢) from an open interval J into euclidean 3-space
is a motion. Every motion r has a velocity v = f and an acceleration a = v. For the
magnitude of a vector, we choose the same letter in nonbold italic: thus, for
example, r = Ir|, v = Iv|, and a = la]. (We tacitly assume that r and v (the speed)
never vanish.) We say the motion r has an inverse-square acceleration provided for
some nonzero A,

for all ¢ in J. Here U stands for the unit direction vector r/r. More generally,
whenever the cross-product r X a vanishes identically, we call r an orbital motion.
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If the origin S has some significance—it might be the focus of a conic or the pole
of a spiral, for instance—an orbital motion may be labelled a motion about S. A
sentence that would be typical of the Principia, “A body is urged by a centripetal
force continually directed toward an immovable center S,” becomes briefer in our
language: “Given a motion about S.”

Assuming that Mars traversed an ellipse with its position vector sweeping out
equal areas in equal times, Kepler made predictions in his Astronomica nova of
1609 that matched the careful observations of Tycho Brahe. In Propositions I and
IT (Section II, Book I) of the Principia, Newton uses this area principle to
characterize orbital motions in general [11, p. 40 and 42]:

PROPOSITION I THEOREM I
The areas which revolving bodies describe by radii drawn to an immouvable centre
of force do lie in the same immouvable planes, and are proportional to the times in
which they are described.

PROPOSITION II THEOREM II
Every body that moves in any curved line described in a plane, and by a radius
drawn to a point either. immouvable, or moving forwards with an uniform
rectilinear motion, describes about that point areas proportional to the times, is
urged by a centripetal force directed to that point.

Today of course we translate these propositions into the language of vectors:

NEWTON’S AREA THEOREM For any motion r = x(t), the following are equiva-
lent:

(a) r is orbital

(b) the (massless) angular momentum h = r X v is constant

(c) r is planar and sweeps out area at a constant rate

The proof is simple, especially once we agree that the area swept out is
I,
> [’ 0|r x vldt,

the only slippery step being to show r is planar when h vanishes everywhere, but in
this case the derivative U vanishes everywhere (recall U = r/r), indicating that the
motion lies on a fixed ray from the origin. That U remains zero follows from a
simple fact:

. hXr

U= 3 (1)

r

Halley’s question and Newton’s answer involve the relationship between the
acceleration of the motion and the shape of the orbit. Moving from acceleration to
shape, we define the trajectory of a motion r = r(¢) to mean the subset {r(¢): t € J}
of 3-space. An orbit is then just the trajectory of an orbital motion. If a trajectory
lies on a conic, say, or a spiral, we would have a conic or spiral motion. The
Principian sentence, “A body, urged by a centripetal force continually directed
toward an immovable center S, moves in a conic section with focus at S,” now turns
into “Consider a conic motion about S.” Of course conics hold some special
interest for us here, and we recall the following definition: a conic is the locus of
points whose distance from a given point S (the focus) is some positive constant e
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(the eccentricity) times the distance from a given line (the directrix). Perhaps we
should put this definition in vector dress, so it will feel more comfortable when
vector calculus comes to call. If we let r be the position vector from the focus, d
the distance from the directrix to the focus, and e (the eccentricity vector) a vector
of length e which points perpendicularly toward the directrix, then the definition

tells us that
e
r= e(d -r- —),
e

and with the notation U = r/r and [/ = de, this formula turns into the vector conic
equation:
r-(e+U)=1 (2)

The constant [ is called the semi-latus rectum of the conic. Given a positive
constant / and a nonzero vector e, the vector conic equation defines a conic with
semi-latus rectum /, eccentricity e = le|, axis along e, and focus at the origin. When
e = 0, then (2) describes a circle of radius / about the origin, and if / = 0, we have
a ray from the origin.

At this point, we have the vocabulary and background to explore a contempo-
rary version of Newton’s answer to Halley. Suppose we have a motion r = r(¢) with
an inverse-square acceleration, so that for some nonzero number A,

—-A
a(r) = —U(1)

for all ¢ in some open interval J. Crossing with the angular momentum h = r X v,
we have

—A
axh-= —2U X h
r
A rxh
= =
which becomes, using (1),
axh=AU.

Now antidifferentiate, remembering that h is constant because r is orbital:
vXh=AU+¢
= MU + e)
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for some constant vectors ¢ and e = %c. If we dot with r, we find
1
—):r‘(v X h) =r-(e +U),

and then permuting the entries in the scalar triple product uncovers the vector
conic equation (2):

h2
— =r-(e+ U).
=t (e+ )
When the constant vector h vanishes, this reduces to U = —e, and the motion

must then lie on a fixed ray from the origin. If h does not vanish, but e does, we
conclude r = h%/A, so the orbit lies on a circle centered at the origin. Supposing
neither h nor e vanishes, we have seen that the vector conic equation (2) defines a
conic with focus at the origin. And that seals it:

NEWTON’S SHAPE THEOREM. Apart from motion on a ray from the center, every
motion with an inverse-square acceleration must be a conic motion about the focus.

A second proof of the Shape Theorem is quick but sly. Assume again that

—A
a(r) = —U(1)

Then of course h remains constant, but (surprise!) so does the vector L =
1v X h — U. To check, compute the derivative:
hXr 1(-A hXxU
x —

. 1
L=—aXh-———=—-—0U
A r’ Al 2 r?

Now just dot r with L + U,
1 2
r (L+U)=—-r-(vxXh)=—,
(L+U)=r-(vxh) = —
and we recognize the vector conic equation (2). That’s all there is to it.
The sly part of this proof is (un)clear: why would one expect the vector
+v X h — U to be constant? The secret lies in a formula for the eccentricity vector
e. Given any conic motion r = r(¢), if we differentiate the vector conic equation,

r-(e+U) =1,
and solve for the (constant) eccentricity vector e, we obtain the

ECCENTRICITY FORMULA. For any motion r = t) satisfying the vector conic
equation (2),

e= %v X h-U. (3)
Of course we began with an inverse-square motion, not a conic motion, but if we
had had a conic motion, then the vector (//A*)v X h — U, representing as it does
the eccentricity vector, would have been a priori constant. Knowing that A turns
out to be A%/l (see our first proof), it seems natural then to suspect that
L = (1/A)v X h — U should be constant in the case of inverse-square acceleration.
If you do not like this sneaky proof of the Shape Theorem, blame Laplace. The
vector L, sometimes called the Laplace-Runge-Lenz vector, has the history of its
rediscoveries etched in its name.
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Now that we have seen two contemporary proofs, let us drift back in time, back
to the 1680s, to examine Newton’s original argument for the Shape Theorem in the
Principia.

3. Only with some nervousness, do we open Newton’s monumental work
Philosophiae Naturalis Principia Mathematica. It had a reputation in 1687; it has a
reputation still—a reputation for being impenetrable. In the latter half of the
eighteenth century and on into the nineteenth, this reputation fed a cottage
industry of writing notes and commentaries devoted entirely to ‘understanding’ the
Principia. (The industry may have declined, but it still produces excellent commen-
taries from time to time: witness [5] and [6], just out in 1995.) Always formal, terse,
and crabbed in his scholarly work, Newton took these stylistic tendencies to their
limit in the Principia. Why? A decade earlier, his theory of colors had been
attacked by Leibniz, Hooke, Linus, Lucas, as well as others, and Newton had
detested the controversy. In a shrill letter to Henry Oldenburg, who was then
Secretary of the Royal Society, Newton despairs, “I see I have made myself a slave
to Philosophy, but if I get free of Mr. Linus’s business I will resolutely bid adew to
it eternally, excepting what I do for my private satisfaction or leave to come out
after me. For I see a man must either resolve to put out nothing new or become a
slave to defend it.” [7, p. 198] Of course, Newton did not “leave [the Principia] to
come out after [him],” but he did choose to limit his readership and therefore his
potential critics by composing in an icy, mathematical style, ultimately producing
500 pages of dense Latin text—definitions, axioms, lemmas, theorems, proposi-
tions, demonstrations, scholia, and figures, all fixed in place, a massive ordered
regiment of abstract formality. According to a close friend of Newton’s [2, p. 168],
controversy of any kind

made sr Is[aac] very uneasy; who abhorred all Contests...And for this
reason, mainly to avoid being baited by little Smatterers in Mathematicks, he
told me, he designedly made his Principia abstruse; but yet so as to be
understood by able Mathematicians, who he imagined, by comprehending his
Demonstrations, would concurr with him in his Theory.

Yet even the most able mathematicians of the day struggled with the Principia.
The confident young mathematician Abraham de Moivre happened to be visiting
the Duke of Devonshire when Newton arrived to present the Duke with a copy of
the new work [21, p. 471}

[de Moivre] opened the book and deceived by its apparent simplicity per-
suaded himself that he was going to understand it without difficulty. But he
was surprised to find it beyond the range of his knowledge and to see himself
obliged to admit that what he had taken for mathematics was merely the
beginning of a long and difficult course that he had yet to undertake. He
purchased the book, however; and since the lessons he had to give forced him
to travel about continually, he tore out the pages in order to carry them in his
pocket and to study them during his free time.

Prepared by its scary reputation, we cannot conjure up the initial poise of de
Moivre as we open the Principia, but prepared for some hard work, let us take a
look at Newton’s argument for the Shape Theorem. Actually, to do this in the
proper order, we should close the Principia for the moment and begin nearer the
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beginning, returning to Halley’s call on Newton in 1684. Earlier we have read de
Moivre’s description of their meeting [22, p. 27]:

...after they had been some time together, the D' asked him what he
thought the Curve would be that would be described by the Planets suppos-
ing the force of attraction towards the Sun to be reciprocal to the square of
their distance from it. S* Isaac replied immediately that it would be an
Ellipsis. The Doctor struck with joy and amazement asked him how he knew
it. Why saith he I have calculated it... .

But stopping here is a rude interruption, for de Moivre continues [7, p. 283],

...whereupon D’ Halley asked him for his calculation without any farther
delay, S" Isaac looked among his papers but could not find it, but he
promised him to renew it, & sent it.

It would be three months before Newton made good his promise, but idleness had
not caused the delay, for he not only renewed his calculation for the ellipse, but
embedded that calculation in a nine-page tract, “De motu Corporum in gyrum”
(““On the Motion of Bodies in Orbit”), which Halley received in November.

It is in “De motu” then that we should look for Newton’s original demonstration
of the Shape Theorem, that an inverse-square force implies conic orbits. Thumbing
through its pages, we pass a line of definitions, hypotheses, theorems, corollaries,
and problems until we stop at a familiar-looking claim [12, VI p. 49]:

Scholium The major planets orbit, therefore, in ellipses having a focus at the
centre of the Sun . .. exactly as Kepler supposed.

The Shape Theorem (at least for ellipses)! Eagerly we anticipate the proof—
hunched over the scholium, eyes narrowed, pencil poised—but then the adrenaline
seeps away as we scan down the page to find...nothing. Newton has left the
Shape Theorem, his answer to Halley, as a bald claim, completely unsupported!
Because the scholium directly follows

Problem 3 A body orbits in an ellipse: there is required the law of centripetal
force tending to a focus of the ellipse.

we would guess that Newton must have viewed the Shape Theorem as a trivial
corollary of his solution to Problem 3, or, more generally, of what we shall call

NEWTON’S ACCELERATION THEOREM. Every conic motion about the focus has
an inverse-square acceleration.

Not understanding how the Shape Theorem would follow trivially from the
Acceleration Theorem, we turn from “De motu” to the Principia, expecting the
fuller development there to enlighten us.

Halley’s question in August of 1684 had reseeded Newton’s interest in celestial
mechanics, and “De motu” was just the first little sprout. In January of 1685, he
wrote Flamsteed, the Astronomer Royal, “Now that I am upon this subject, I
would gladly know ye bottom of it before I publish my papers.” [7, p. 286] What
understatement: between November of 1684 and April of 1687, Newton came to
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“know ye bottom of it,” and the nine-page treatise exploded into a five hundred
page masterpiece.

Now remember that “De motu” had left the Shape Theorem unproved. And the
1687 Principia? No better! In Section III of Book I, Newton demonstrates Proposi-
tions XI-XIII, which, taken together, establish the Acceleration Theorem and
then follows with the Shape Theorem dressed as a corollary [11, p. 61] to this trio
of propositions:

Cor. 1 From the three last Propositions it follows, that if a body P goes from
place P with any velocity in the direction of any right line PR, and at the same
time is urged by the action of a centripetal force that is inversely proportional to
the square of the distance of the places from the center, the body will move in one
of the conic sections, having its focus in the center of force ... .

But again, no proof. Worse yet, no one complained—not Halley, not Leibniz, not
Huygens, not de Moivre—until, in October of 1710, twenty-three years after the
publication of the Principia, Johann Bernoulli finally pointed out the obvious:
Corollary I needed a demonstration. By this time, however, perhaps getting an
early wind of Bernoulli’s criticism, Newton had already decided to fill the gap,
instructing his editor, in a letter dated 11 October 1709, to slip the following
argument [13, p. 5-6] into the second edition (1713) of the Principia:

Nam datis umbilico et puncto contactus & positione tangentis, describi potest
Sectio conica quae curvaturam datam ad punctum illud habebit. Datur autem
curvatura ex data vi centripeta: et Orbes duo se mutuo tangentes eadem vi describi
non possunt.

For the third edition (1726), Newton added to this shockingly brief sketch the word
‘velocity’ in two places, resulting in [11, p. 61]

NEWTON’S ARGUMENT FOR THE SHAPE THEOREM
For the focus, the point of contact, and the position of the tangent, being given, a

conic section may be described, which at that point shall have a given curvature.
But the curvature is given from the centripetal force and velocity of the body being
given; and two orbits, touching one the other, cannot be described by the same
centripetal force and the same velocity.

Brevity may be the soul of wit, but it may be the seed of confusion as well. No
one laughs when a fundamental proposition of celestial mechanics is followed by a
two-sentence sketch which fails to persuade. At least Newton’s plan, although
strikingly different from what we saw in Section 2, seems both familiar and
clear—to prove that every solution to a given initial-value problem has a particular
form, we exhibit a solution of that form and then invoke a uniqueness
principle—but connecting all the dots in the outline may be another story,
especially when some of the dots themselves are missing.

Expanding Newton’s sketch in a natural way, we arrive at what we take as his
intended strategy:

NEWTON’S STRATEGY FOR PROVING THE SHAPE THEOREM

1. Suppose given any motion T = i(¢) with an inverse-square acceleration. At
some time f;, note the position r,, velocity v,, and curvature «, of the
motion T.
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2. Construct a conic %, having focus at the origin, that passes through the tip
of r, with tangent parallel to v, and curvature «,.

3. On the conic &, put a motion r = r(¢) about the focus that leaves the tip of
r, with velocity v,. (Newton never mentions this step, which involves making
sure the position vector sweeps out area at a uniform rate, but it’s a simple
matter, and one that he probably took for granted.)

4. From Propositions XI-XIII (the Acceleration Theorem), infer that r = r(z),
a conic motion about the focus, must have an inverse-square acceleration.

5. Thus both r and F have inverse-square accelerations, but even better, the
matching of position, velocity, and curvature is steps (2) and (3) forces r and
I to share the same proportionality constant.

6. Finally, noting that r and T now both solve the same initial-value problem,
invoke a uniqueness principle to conclude that r = F, proving that our given
inverse-square motion F must be a conic motion about the focus as desired.

As we begin to check whether this six-step strategy unfolds further into a
convincing proof, we can see already that step (2) will block us, unless we know a
little about the curvature of conics. For a motion r = r(¢), the curvature « is |T|/v
and the radius of curvature p is 1/«, where T is the unit tangent v/v. From the
velocity and the acceleration, we can easily find the curvature from a well-known
formula:

1)3

T laxv]

4

To calculate the radius of curvature for a conic, we start with any motion
r = r(¢) satisfying the vector conic equation (2),

r-(e+U) =1

p

differentiate twice to get

hXr
a-(e+U)+v- P =0,

and insert our formula (3) for the eccentricity vector e to see that

1 hXxr
Fa—(vxh) +v- 3 =0
Sliding the entries in the scalar triple products gives back
1(hY?
laXVF=—(—),
I\r

which leads to
03

rUS
= =l— ,
P~ laxvl (h)

or, rephrasing, to the

CONIC CURVATURE LEMMA. For any conic motion with semi-latus rectum I,
1

p_WXTP

)

Newton cast this lemma more elegantly [12, III p. 159]: If the line perpendicular
to the conic at P meets the focal axis at N, then p varies as PN>. (The equivalence to
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our lemma follows from a geometric fact about conics: the projection of PN onto
SP is the semi-latus rectum.) This lovely property is just one of several striking
results on curvature obtained by Newton in his 1671 tract on series and fluxions.
“The problem [of curvature],” he wrote in this tract, “has the mark of exceptional
elegance and of being pre-eminently useful in the science of curves.”[12, III p. 151]
From an insight in his Waste Book made around December of 1664 (over twenty
years before the Principia), we have evidence that Newton also recognized the
fundamental place of curvature in the study of orbital motions: “If the body b
moved in an Ellipsis, then its force in each point (if its motion in that point bee
given) may be found by a tangent circle of equall crookedness [read curvature] with
that point of the Ellipsis.” [22, p. 14] It is perhaps surprising then that curvature
plays no role in the 1687 Principia. However, in the 1690s Newton made radical
plans for revising the first edition, plans that would have made curvature the
centerpiece of his celestial mechanics. Sadly, this radical revision never made it
into print, and in the end Newton contented himself with relatively minor changes,
squeezing some curvature methods into the second (1713) and third (1726) editions
as tacked on corollaries. For more on the role of curvature in Newton’s celestial
mechanics, see [3, 4, 10, and 17].

Now that we know something about the curvature of conics, we can begin to
connect all the dots in a proof of the Shape Theorem inspired by Newton’s
two-sentence argument in the Principia. We follow the six-step strategy above, for
it seems to be the only plausible interpretation of what Newton had in mind.

Step 1: We give ourselves any motion F = i(¢) with an inverse-square acceleration:
for some nonzero A, suppose T solves the initial-value problem

Ho) = S0, £(6) =0, H(t0) = v

on the open interval J. If r; X v, = 0, then the motion lies on a fixed ray through
the origin, but apart from this special case, we need to prove that  is a conic
motion about the focus. Since T is an orbital motion, the orbit lies in a fixed plane
and the angular momentum remains fixed at h, = ry X v,,.

Step 2: In this fixed plane, we now construct a conic that “fits” the orbit of ¥. Let
po be the radius of curvature of r at ¥(¢,) = r,. Put

I = polUp X Tyl
l
e = ZEVO X ho - UO
0
where Uy = ry/ry, Ty = vo/0y, and hy = ry X v,. (As r, and v, are not parallel,
h, # 0 and e is well-defined.) The vector-conic equation (2)
r-(e+U) =1/
now defines a particular conic . One easily checks that @ has a focus at the

origin, and that & passes through the tip of r; with its tangent parallel to v, and
its radius of curvature equal to p,,.

Step 3: At this point, we would like to apply Newton’s Acceleration Theorem to our

constructed conic, but the Acceleration Theorem applies only to conic motions,
indeed only to conic motions about the focus, not to mere conic loci. Therefore, on
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the conic locus & we now place a motion about the focus. (To put it differently, we
must parameterize the conic locus & in a way that keeps the acceleration vector
pointed at the focus.) By the Area Theorem, to make a motion about the focus, we
need only make a motion whose position vector from the focus sweeps out area at
a constant rate, and intuitively we can do this by arranging for the area swept out
to be our parameter. More precisely: Using arc-length measured from the tip of r,
let r; = r,(s) be the unit-speed motion on % having initial velocity T,. The real
function

s 1
a(s) =t, + jo h—0|r1(s) X F,(s)| ds

is smooth and strictly increasing. (Note that &, = Ir, X vyl # 0 and [r,(s) X £ (s)|
# 0 for all s, because tangents to % never pass through the focus.) Take the
(smooth) inverse a~! = a~'(¢), and use it to define a motion r = 1(¢) on & by

r(1) = rifa”'(1)].

This constructed conic motion r is also a motion about the focus S, for it has
constant angular momentum h, = r, X v,. Moreover, r(t,) = r, and i¢,) = v,.

We haven’t done anything here, by the way, that Newton couldn’t do. You can
find him geometrically constructing motions about the focus, on given conic loci, in
the Principia, Book I, Section VI [11, p. 109-116]). Such constructions are even
implicit in Newton’s proof of the Area Theorem in Propositions I and II, at the
very beginning of the Principia. In his two-sentence argument for the Shape
Theorem, Newton fails to mention the problem of putting an orbital motion on his
constructed conic, but at the Principia’s level of rigor, this is a trivial omission.
Refer to [15 and 16] for some discussion of this point.

Step 4: We apply the Acceleration Theorem (Propositions XI-XIII, Section III,
Book I) to r = r(¢), our newly minted conic motion about the focus, and conclude
that r has an inverse-square acceleration: for some nonzero wu,

.. I
(1) = ;EU(t)
for all ¢.

Step 5: To prove that u = A, we return to the curvature matching we did in Step 2.
By design, both our constructed motion r and our given motion r share the same
radius of curvature at the tip of r,, namely p,. For the conic motion r, by (4),

U v kg
a, Yo _2U0 X v [-LlUO X TO|
To
Similarly, for the given motion r,
2
LM
O AU X T,

It follows that u = A.

Step 6: We now have mwo solutions, the constructed conic motion r and the given
inverse-square motion T, to the initial-value problem

Ho) = S0, 1) = r0, H(t0) =
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on the interval J. By standard uniqueness theorems (equivalent to Propositions
XLI and XLII, Section VIII, Book I, Principia) for differential equations, we
conclude that r = F on J, and it follows that our given inverse-square motion must
be a conic motion about the focus, as expected.

This completes a “Newtonian” proof of the Shape Theorem—that every motion
having an inverse-square acceleration is a conic motion about the focus—a proof
springing from Newton’s two-sentence argument in the Principia. Is this proof the
contemporary version of what Newton had in mind? Probably, but the sheer
brevity of his sketch leaves room for other views. On this issue, read [15, 16, 20,
and 23].

Of course, our “completed” Newtonian demonstration is really anything but
complete, since in step four, to ensure that our constructed conic motion had an
inverse-square acceleration, we called on the unproved reversal of the Shape
Theorem:

NEWTON’S ACCELERATION THEOREM. Every conic motion about the focus has
an inverse-square acceleration.

We now intend to study the original argument for the Acceleration Theorem and
then contrast the original with what we might do today, but as we return with this
intention to the Principia (and specifically to Propositions XI, XII, and XIII in
Book I), we must first page back to Proposition VI in order to understand how
Newton measures orbital acceleration.

4. In May of 1686, just one month after the Principia was presented to the Royal
Society, Halley sent news to Newton of the plans for printing and publication, but
his cheerful letter ended with a sour lemon [21, p. 446]: “There is one thing more I
ought to informe you of,” he wrote,

that M" Hook has some pretensions upon the invention of y® rule of the
decrease of Gravity, being reciprocally as the squares of the distances from
the Center. He sais you had the notion from him... how much of this is so,
you know best, as likewise what you have to do in this matter, only M" Hook
seems to expect you should make some mention of him, in the preface... .

“Now is not this very fine?” sneered back Newton [21, p. 448],

Mathematicians that find out, settle & do all the business must content
themselves with being nothing but dry calculators & drudges & another that
does nothing but pretend & grasp at all things must carry away all the
invention . . . And why should I record a man for an Invention who founds his
claim upon an error therein & on that score gives me trouble? He imagines
he obliged me by telling me his Theory, but I thought myself disobliged by
being upon his own mistake corrected magisterially & taught a Theory weh
every body knew & I had a truer notion of then himself.

In his fury at Hooke’s pretensions, Newton struck back with his pen, literally
striking out almost every reference to Hooke in the entire Principia.

Even so, Hooke did in fact make one significant contribution to the Principia,
for he was the first to see orbital motions as the geometric signature of a central
attraction that pulls the orbiting body away from its linear inertial path. In
November of 1679, as the new Secretary of the Royal Society, Hooke had asked
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Newton to [22, p. 22] “please ... continue your former favors to the Society by
communicating what shall occur to you that is Philosophicall,” and he added,

for my own part I shall take it as a great favor. .. if you will let me know your
thoughts of [my hypothesis] of compounding the celestiall motions of the
planets of a direct [straight] motion by the tangent & an attractive motion
towards the centrall body.

Hooke had this hypothesis as early as 1670, a time when Newton’s eyes were still
clouded by thoughts of “outward endeavor” and “Cartesian vortices.” Still, Hooke’s
physical insight could take him only so far. In his hands, the hypothesis remained
just that: a guess, a guess rooted in physical intuition and mechanical experiment,
yet still a guess. But in Newton’s hands, the hands of a soaring mathematical
imagination, Hooke’s hypothesis rose to an aerie of definitions, lemmas, and
propositions. Look, for example, at the figure Newton draws to illustrate his proof
of Propositions I and II (Section II, Book I), where we see, for the very first time,

the mathematical equivalence of central attraction and the area law, and you
behold, in its central attraction and deviations from the tangent, the risen form of
Hooke’s hypothesis.

Later, in Proposition VI, Newton fashions from Hooke’s inward deviation a
formula for measuring the acceleration of an orbital motion. (In the Principia,
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accelerations for general motions are never even defined.) If a particle in orbital
motion falls freely toward the acceleration center S, Newton may have reasoned
that the particle could be thought of as instantaneously in free fall from the
tangent down to its position on the orbit. In a given time ¢, suppose a particle
moves along its orbit from P to Q. If there had been no acceleration during this
time interval, the particle would have proceeded instead along the tangent at
constant speed v to a location L. The deviation QL, nearly parallel to SP, would be
like the “distance fallen toward S,” which we would expect to be approximately
sat?, where a gives the acceleration at P. This suggests

QL 1
-_ > —a

t? 2

as ¢t — 0. Sanding top and bottom, Newton could now have shaped the measure
QL/¢? to fit squarely into his geometric approach. First nudge L just a bit along
the tangent to the position R, making the deviation QR exactly parallel to SP.

Because time varies as the area in orbital motions, replace ¢ by the area of the
“sector” PSQ, and the sector in turn by the approximating triangle PSQ, in the
process turning ¢ into the product SP - QT—no need to keep tabs on constant
factors, such as the missing 1/2 here, for Newton works with proportions, not
equations—and the measure QL/¢? into QR /(SP - QT)2. The limit of this ratio,
as Q — P, gauges the acceleration at P. In the Principia, this measure of accelera-
tion appears as Corollary I to Proposition VI (Section II, Book D) [11, p. 48]. With
this-corollary, Newton later derives acceleration laws from orbit shapes.

Cor 1. If a body P revolving about the center S describes a curved line APQ,
which a right line ZPR touches in any point P; and from any other point Q of
the curve, QR is drawn parallel to the distance SP, meeting the tangent in R; and
QT is drawn perpendicular to the distance SP; the centripetal force will be
inversely as the solid SP? - QT?/QR, if the solid be taken of that magnitude
which it ultimately acquires when the points P and Q coincide.
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Before we leave the topic of acceleration, we should take a moment to discuss
the role of force and mass in the early sections of the Principia. The word ‘force’
appears, as it does above in Corollary I, in many of the definitions, axioms,
corollaries, and propositions of the Principia, but in the first ten sections, where
Newton attends to the one-body problem, force, and mass as well, exist literally in
name only, playing no part in the mathematics. He may talk of ‘force,” but Newton
calculates accelerations. The Cartesians, Huygens and Leibniz among them,
claimed that Newton, by introducing gravity, and therefore action at a distance,
brought Aristotelian ‘occult qualities’ back into physics. But he should plead
innocent to this charge. In the Principia’s work on orbital motions, ‘force’ and
‘gravity’ become merely convenient words, as Newton stresses the relations and
laws, with no comment on causes. The cause of gravity comes up only in a General
Scholium on the final pages of the Principia (11, p. 547]: “But hitherto I have not
been able to discover the cause of those properties of gravity from phenomena,”
wrote Newton,

and I frame no hypotheses; for whatever is not deduced is to be called an
hypothesis; and hypotheses, whether metaphysical or physical, whether of
occult qualities or mechanical, have no place in experimental philosophy.
...And to us it is enough that gravity does really exist, and act according to
the laws which we have explained, and abundantly serves to account for all
the motions of the celestial bodies, and of our sea.

Wouldn’t Newton, that lover of geometry and curvature, have been delighted with
Einstein’s view that geometry, indeed the curvature of spacetime, is the very cause
of gravity?

After this interlude on Newton’s measure of acceleration, we remain in the past,
looking for the original proof of the Acceleration Theorem in the Principia.

5. Wasting no time after Corollary I to Proposition VI, Newton attacks a series of
problems with his new measure of acceleration. In Propositions VII through XIII,
he calculates the acceleration law for circular motions about any given point,
semicircular motions about a point infinitely remote, spiral motions about the pole,
elliptical motions about the center, and then, in a stately section all their own,
elliptical, hyperbolic, and parabolic motions about the focus. Taken together, this
final triumphant trio of propositions (XI, XII, and XIII) establishes the Accelera-
tion Theorem: Every conic motion about the focus has an inverse-square acceleration.

Newton could have proved the Acceleration Theorem in a single proposition
covering general conic motions, but “. .. because of the dignity of the Problem...,”
he writes, “I shall confirm the...cases by particular demonstrations.” [11, p. 57]
These “particular demonstrations” naturally offer the same argument with minor
variafions, so we may safely choose one of the propositions to represent all three.
Turn then to the most celebrated page of the Principia and to Newton’s analysis for
Proposition XI:

PROPOSITION XI PROBLEM VI

If a body revolves in an ellipse; it is required to find the law of the centripetal force
tending to the focus of the ellipse.
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In the ellipse, Newton draws conjugate diameters DK and PG, with DK parallel
to the tangent RPZ. (The midpoints of parallel chords in an ellipse lie on a line,
called a diameter of the ellipse, and the parallel chords are then called the
ordinates of the diameter. Two diameters with the property that each bisects every
chord parallel to the other are said to be conjugate diameters.) From Q he drops
three lines: QR parallel to the focal radius SP, QT perpendicular to SP, and Qx
completing the parallelogram QxPR. He then extends Qx until it meets PG at v
and draws PF perpendicular to DK.

Newton’s analysis requires the services of three lemmas, one of his own and two
well known to Apollonius of Perga. (For the two Apollonian lemmas, see [1, I p. 15
and VII p. 31] or [18, p. 151 and p. 169].)

NEWTON’S LEMMA. PE = AC

LEMMA 1. All parallelograms circumscribed about any conjugate diameters of an
ellipse have equal area.

LEMMA 2. In an ellipse, the squares of the ordinates of any conjugate diameter are
proportional to the rectangles under the segments which they make on the diameter.

As we have seen in the previous section, Newton measures the acceleration of
an orbital motion by computing the limit of the ratio

QR
(SP- QT)
as Q — P. To infer an inverse-square acceleration for this case of elliptical motion
about the focus, he must therefore prove that QR /QT? has a limit independent of

P. In fact, as we now show, Newton’s argument reveals that QT?/QR tends to the
latus rectum of the ellipse.
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Because QR is Px and (by Newton’s Lemma) PE is AC, the similarity of the
triangles PxV and PEC implies
Pv-AC
- PC
On the other hand, Newton’s Lemma (again) and the similarity of the triangles
QxT and PEF give

T Qx-PF Qx-BC
~ AC  CD

where the second equality follows from Lemma 1, which assures us that PF - CD =
BC- AC. We infer

QT? Qx*-BC? PC 1 L Qx*-PC
QR  CD*> Pu-AC 2 Pu-CD?’
where we have replaced 2BC?/AC by L. (Following Apollonius, Newton calls

2BC?/AC the latus rectum.) If now Q — P, this last expression has the same limit
as

1 vG

27pC’
for Qu/Qx tends to one and Lemma 2 implies
Qv? CD*
Pv-vG  PC*’
But vG — 2PC, so that 11.(vG /PC), and thus also QT?/QR, must tend to L. This
completes Newton’s analysis for Proposition XI: Every elliptical motion about the
focus has an inverse-square acceleration.

6. We have been “going under with the swirls and coming out with the eddies,
following along the way the water goes,” but now just one quick swirl remains: to
return from the Principia to the present, from Newton’s original work on the
Acceleration Theorem to the delightful contrast of a contemporary argument.

Any conic motion r = r(¢) about the focus must satisfy the vector-conic equa-
tion (2),

r-(e+U) =1,

for some positive constant / and constant vector e. Since r is an orbital motion,
h = r X v is a constant vector. Since r is a conic motion,

[
L=FVXh—U

is a second constant vector (equal to the eccentricity vector e by (3)). Differentiat-
ing L yields

l hXr
0= Fa X h — P
and taking lengths we uncover an inverse-square acceleration,
h? 1
a = 7 R

proving again

NEWTON’S ACCELERATION THEOREM. Every conic motion about the focus has
an inverse-square acceleration.
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