UNIQUE FACTORIZATION
PIERRE SAMUEL, Institut Henri Poincaré, Paris

1. Introduction. It is well known that every ordinary integer is, in a unique
way, a product of prime numbers. With an eye to generalizations it is better to
state this unique factorization property in the 7ing Z of rational (i.e., >0 or <0)
integers. Thus, if we denote by P the set of all prime numbers, every nonzero
element x of Z may be written, in a unique way, as
) v =+ 1]] p»,

pEP

where the exponents »,(x) are positive integers, almost all 0 (i.e., equal to 0
except for a finite number of them) in order that formula (1) makes sense. The
somewhat abstract formulation given by (1), with its seemingly infinite product,
has the great advantage of indicating how the exponents »,(x) depend on x. If
we allow negative exponents, we see that (1) holds also for all nonzero rational
numbers x. Furthermore, for any pair x,y of nonzero rational numbers, we see
that we have

(2) vp(xy) = vp(%) + vp(3),  wle + y) = inf(v,(x), vu(y)).

Algebraists express formulae (2) by saying that the mapping »,: Q*—=Z is a
discrete valuation of the field of rational numbers.

More generally, we define a factorial ring (or a “unique factorization do-
main,” U.F.D.) to be an integral domain 4 for which there exists a subset P of
A such that every nonzero element x of 4 may be written, in a unique way, as
(1) = u I p»

pEP

where u is a unit (i.e., an invertible element) in 4, and where the exponents v, (x)
are positive integers, almost all 0. It can easily be proved that the subset P is
uniquely determined up to units; more precisely the set (4p),ep of principal
ideals is uniquely determined, and coincides with the set of all maximal principal
ideals distinct from 4. Let us notice that a principal ideal 4b of a domain 4 is
maximal (among principal ideals distinct from A4) iff every divisor d of b is either
a unit or is such that db~! is a unit; such an element b is called an irreducible
element of 4.

For a ring A4, factoriality is a very useful property. At least for multiplicative
questions, the arithmetic in a factorial ring 4 is as nice as in the ring Z of ordinary
integers. It may be recalled that, in the 19th century, arithmeticians like Kum-
mer and Dedekind noticed that some rings of algebraic integers failed to be
factorial; e.g., the formulae

23 =014+ V=501 —+=35), 33=K/10+1)(/10—1)
show that the rings Z[+/=5], Z[+/10] are not factorial; this led Kummer and
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Dedekind to introduce the important notion of an ideal, and to replace the
unique factorization of elements by the unique factorization of ideals, thus in-
augurating the theory of rings which we now call “Dedekind rings.” Lack of time
prevents me from talking more about this important and beautiful theory.

The interest of factorial rings does not come only from arithmetical reasons.
Factoriality has also a very simple geometric interpretation. In geometry, more
precisely in the study of algebraic, analytic or formal varieties, a ring 4 occurs
as a ring of functions (algebraic or analytic, as the case may be) on some variety
V, or in the neighborhood of some point of V. To say that 4 is a domain means
that V is irreducible. Denoting by » the dimension of V, the factoriality of 4
then means, roughly speaking, that every subvariety of W of dimension #—1 of
V may be defined by a single equation; more precisely the functions f& A4 which
vanish on W form an ideal p(W) in A4, and factoriality means that these ideals
(W) (for dim W =x—1) are principal.

2. How to prove factoriality. We have just seen that factoriality is a desir-
able property for a ring. On the other hand proving that a ring is factorial is
rarely trivial, so it is useful to have at hand as many characterizations of fac-
torial rings as possible.

As we have seen in Section 1, factoriality of 4 means that every nonzero
element of 4 admits a decomposition as a product of irreducible ones, and that
this decomposition is unique up to units. The existence of such a decomposition
is usually easy to check; it follows from this “chain condition” for principal ideals
(valid in any factorial ring):

(3) Ewvery strictly increasing sequence of principal ideals of A is finite, which
is itself equivalent to the “maximal condition”:

(3") Every nonempty family of principal ideals of A admits a maximal element.

For example (3) (or (3’)) holds when the ring 4 is noetherian, and most rings
that are encountered in arithmetic or in geometry are noetherian. Furthermore,
with proper caution, property (3) may pass to the direct limits. We henceforth
assume that (3) holds.

As to unigueness, things are not so easy. Unique factorization in a ring 4
implies that any irreducible element p of 4 enjoys the stronger property that

(4) If p divides @ product ab, then it divides a or b.

Conversely, assuming (3), a well-known proof copied from elementary
number-theory shows that (4) implies the uniqueness of the decomposition into
irreducible factors. An element $ which enjoys property (4) is called a prime
element of 4; this means that the principal ideal 4p is a prime ideal (abE A4 p
=aEAp or bEAP), or, equivalently, that the factor ring A/Ap is a domain. As
shown in elementary number-theory, property (4) is equivalent to

(4") Any two elements of A admit a greatest common divisor, and also to:
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4"") Any two elements of A admit a least common multiple.
A rather handy form of (4”) is
(4"") The intersection of any two principal ideals of A is a principal ideal.

If we deal with a noetherian domain 4, it can be proved that every nonunit in
4 is contained in a prime ideal of height 1 (i.e., a prime ideal which is minimal
among nonzero prime ideals). From this one easily deduces that a noetherian
domain 4 is factorial iff

(5) Every prime ideal of height 1 of A is principal.

This condition has already been met at the end of Section 1, when we dis-
cussed the geometric meaning of factoriality.

More technical characterizations of factorial rings may be given in the frame-
work of the theory of Krull rings, for which we refer to Bourbaki, “Algdbre
Commutative,” Chap. VII, “Diviseurs” [4]. Let us only say that the class of
Krull rings contains the class of factorial rings and is more stable under various
ring-theoretic operations. Furthermore, it is in general easy to test whether a
given ring is a Krull ring or not. The problem is therefore to test whether a givén
Krull ring is factorial, and, if not, to measure its “nonfactoriality.”

3. Properties stronger than factoriality. For proving that Z is factorial, one
usually first proves that Z is principal (i.e., that every ideal of Z is principal).
Then the chain condition (3) is very easy, and condition (4’"") is obvious. The
example of a polynomial ring in several variables over a field shows that being
principal is a stronger property than being factorial; thus it could seem to be
dangerous to concentrate on this stronger property for proving factoriality.
However, we have a reliable touchstone for telling us whether the danger exists
or not. In fact the commutative algebraists have developed an extensive theory
of the dimension of a ring, and many methods for computing the dimension of a
ring are available. Moreover the principal rings are characterized as being the
factorial rings of dimension 0 or 1. Thus the dimension of the ring 4 we are
studying will tell us whether it is reasonable to attempt to prove that A is prin-
cipal.

In most geometric cases, principality is proved by proving separately fac-
toriality and one-dimensionality. But, in algebraic number theory, there are
methods for proving directly that a ring is principal. For instance, let K be a
number-field of finite degree # over the rationals, let 4 be the ring of algebraic
integers of K, d the absolute discriminant of 4, and 27, the number of nonreal
conjugates of K in C. Then, by using Minkowski’s theory of lattice points in
convex sets, one can prove that every nonzero ideal % of 4 may be written as
A =xb, where x is an element of K* and where b is an ideal in 4 for which

4N\ n!
©) card(4/8) < (:> %(le).
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Now the right hand side of (6) can be computed by standard methods, whereas
the ideals b for which A /b has a given cardinal ¢ are finite in number, and are
easy to determine if ¢ is not too large. Thus, if it happens that all the ideals b
for which (6) is satisfied are principal, then the ring A4 is principal. The reader
may apply the method to the ring 4 =Z[i] of Gaussian integers (here =2,
ro=1, Idl =4, whence the right hand side of (6) is <2, and (6) thus implies
b=A); he may then feel that this is a very sophisticated method for proving
that Z[7] is principal! In fact the usual proof for Z[i], as well as for Z or for a
polynomial ring k[X ] over a field %, uses the fact that these rings are cuclidean.
Let us recall that an integral domain 4 is said to be euclidean if there exists a
mapping ¢: A—N (the positive integers) such that, for every nonzero b in 4,
every class modulo 45 admits a representative 7 such that ¢(r) <¢ () (i.e., every
a in A may be written a =bg+7 with ¢(r) <¢(b)). A euclidean ring A4 is principal
for, given a nonzero ideal b in 4, we choose a nonzero element x of » for which
¢(x) is minimal, and see that x generates b. For this proof, it is not necessary to
assume that ¢ takes its values in V; any well ordered set W would work as well.
A mapping ¢: A—W satisfying the above property is called an algorithm on 4.
If we consider a given ring 4 and a large-enough well ordered set W (e.g., such
that card (W)>card (4)), the theory of well ordered sets shows that every
algorithm on A is isomorphic (in an obvious sense) with an algorithm with
values in W. Furthermore, if ¢,: A—W is a family of algorithins on 4, then
¢ =inf.¢, is also an algorithm, so that 4 (if euclidean) admits a smallest algc-
rithm. If the residue fields of A are finite, this smallest algorithm ¢, actually
takes its values in IV (the general case is still open). But it is not necessarily the
usual algorithm: in the case of Z, ¢o(n) is the number of binary digits of the
integer | nl (nEZ); however, for polynomials in X over a field &, ¢o(P (X)) is the
degree of the polynomial P(X).

Much work has been done by arithmeticians for determining the number
fields for which the ring 4 of integers is euclidean; most of them studied the
more restricted problem of finding out whether the usual “norm-function” (i.e.,
¢ (x) =card (4/Ax) for x5£0) is an algorithm or not. For imaginary quadratic
fields, the five fields Q (v/—d) ford =1, 2, 3, 7, 11 are the only ones for which the
norm is an algorithm, and are also the only euclidean ones. But there are four
principal noneuclidean rings of integers in imaginary quadratic fields for d =19,
47, 67 and 163 (the problematic existence of a fifth one has recently been dis-
proved). As to real quadratic fields Q (v/m) (m>0), the list of those which are
euclidean for the norm is known:

m=12,3,56,7, 11,13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Many others are known to be principal, but we do not know whether their num-
ber is finite or not. Also we do not know whether some of them might not be
euclidean for another algorithm than the norm; a bit of evidence induces the
writer to think that Q(+/14) deserves to be studied in this respect (see [5], [6]).
Suminarizing, one might say that the theory of euclidean rings hasa quite differ-
ent flavor from that of factoriality.
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4. Nagata’s Theorem. Masayoshi Nagata has proved a theorem which is very
useful for showing that a ring is factorial. We recall that, if 4 is an integral
domain with quotient field K and if S is a multiplicatively closed subset of
A(0&.S), then the fractions ¢/s with ¢ €4 and s&.S form a subring of K, de-
noted by S—14, and called the ring of guotients of A with respect to .S. Now sup-
pose that 4 satisfies the finiteness condition (3) (see Section 2), that S is gener-
ated by prime elements (Section 2), and that S~!4 is factorial; then Nagata’'s
theorem states that A4 itself is factorial. If S is generated by a finite number of
prime elements, one can dispense with condition (3). A very easy converse of
Nagata’s theorem is that any ring of quotients of a factorial ring is factorial.

Gauss’s lemma about polynomial rings is an easy consequence of Nagata's
theorem. In fact let R be a factorial ring, L its quotient field, and S=R—{0}.
Since a prime element p of R remains prime in the polynomial ring 4 = R[X]
(for A/pA =(R/pR)[X] is a domain), S is generated by prime elements of 4.
But S—14 =L[X] is a polynomial ring in one variable over a field, whence is
euclidean and factorial. Hence 4 = R|[X ] is factorial by Nagata. By induction
the same holds [or polynomial rings in several variables over a factorial ring.

Let us sketch three other examples of application of Nagata’'s theorem (com-
plete proofs are left to the reader):

(a) Let kB be an algebraically closed field of characteristic 2, and
F(Xy, - -+, X.) a nondegenerate quadratic form over %, with #=5. Then 4
=k[Xy, - -+, X.|/(F) is factorial. (By a change of variables, write F
=X1Xo+G(Xs, - - - ,Xa); denote by x; the image of X; in A4; then x; is prime
since G is irreducible (for #=5); taking S= {1, X1, v, Xpd, e },we see that
S=14 =k[xy, %3, - - -, %a][1/x1] is factorial as a ring of quotients of a polynomial
ring.)

(b) Let k be a field in which —1 is not a square, and 4 =k[X, ¥, Z]/
(X2+Y2+422—1) (“the ring of the 2-sphere”); then A4 is factorial. (Denote by
%, v, z the images of X, ¥, Z in 4; then x2+y%=(1+42)(1 —2); take S generated
by 1 —g, which is prime; now S—'4 is factorial asin (a).)

(c) Let & be a field and A =k[X, ¥, Z]/(X*+ Ys+Z*) where the exponents
7, s, t are pairwise relatively prime; then 4 is factorial. (Denote by #, ¥, 2 the
images of X, ¥, Z in 4, so that gt = — (x"4»*); suppose first that { =1 (mod rs),
i.e., t=1-4drs; take S generated by z (which is prime), and set x’' =x/2%, ¥’
=y/2%: then 2= — (x'7+4'%) and S—14 =k[x’, ¥ ] [1/2] is factorial; in the general
case, one chooses an integer j such that jt =1 (iod rs), and replaces z by some
jth root w of z.)

5. Further Results. The theory of factorial rings is nowadays much more
developed than has been sketched above. For example, in [2] of the bibliogra-
phy, we find about 80 pages of lecture notes entirely devoted to factoriality
with sizeable prerequisites from commutative and homological algebra; more-
over these notes did not contain everything known on the subject when they
were written (1963), and the theory has progressed since that time. We will thus
briefly sketch some highlights of this theory, without defining some of the terms
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we use; for detailed definitions, proofs and connected results, we refer the reader
to the bibliography.

(1) Power Series. In Section 4 we have stated Gauss’s lemma about poly-
nomial rings. It is a particular instance of the “transfer” of some property from
a ring 4 to the polynomial ring 4 [X]. Many similar transfers are known, and
also transfers of properties from a ring 4 to the formal power series ring 4 [[X]].
Thus it was reasonable to conjecture that, if 4 is factorial, so is 4 [[X]]. This
conjecture has been disproved (see [7]). In the first counter-examples given, the
ground ring 4 was a noncomplete local ring, and taking formal power series over
a noncomplete local ring could be deemed, by some mathematicians, to be an
unnatural (or even immoral) operation. Doubts were settled very recently by
P. Salmon [13], who constructed a complete local factorial ring 4 such that
A[[X]] is not factorial.

(2) Regular Rings. The notion of a regular ring is defined in commutative
algebra; in the geometric case, it corresponds to the notion of a nonsingular
variety. In 1957, M. Auslander and D. Buchsbaum proved, by homological
methods, that any regular local ring is factorial. Their proof has been stream-
lined by I. Kaplansky [1], [2], and by N. Bourbaki [4].

On the other hand, if 4 is a regular and factorial ring (not necessarily local),
then both A4 [X] and 4 [[X]] are factorial.

(3) Galoisian going-down. Let A be a factorial ring, and G a finite group of
automorphisms of 4 ; the elements of 4 which are invariant by G form a subring
of 4, traditionally denoted by 4 ¢. Let A* be the multiplicative group of units
A. Then if the cohomology group H!(G, A*) vanishes, the ring 4 ¢ is factorial
([2], [3], [17D).

Here the writer cannot resist giving an amusing example. We take for 4 a
polynomial ring 4 =k[Xy, - - +, X,] (k: a field, #=35), and for G the alternating
group A,, acting on 4 by permutations of the variables. Here the ring of invari-
ants 4 ¢ is generated over k by the elementary symmetric functions sy, = -« , s,
and by the “discriminant” d = Il;«; (X;—X);itis known thatd?=P(sy, - * -, Sa)
where P is a polynomial over k. Furthermore 4* =Fk* is trivially operated by G,
so that HY(G, A*) =Hom(G, k*) (classical formula in the cohomology of groups).
Since G=4, is a simple group (#=5) and since k* is commutative, we have
Hom(G, k*) =0 and A ¢ is factorial.

The same method has given an example of a factorial ring which is not a
Macaulay ring [18]. Notice that P. Murthy has proved that a factorial Macau-
lay ring is necessarily a Gorenstein ring.

In characteristic p#0, there is a parallel theory in which automorphisms
are replaced by derivatives ([2], [9], [16]). As above the proofs of factoriality
are partly computational, and (especially in characteristic 2) the complete per-
formance of these computations is sometimes more accessible than in the case
of automorphisms.

(4) Complete Intersections. A local ring 4 is called a “complete intersection”
if it is isomorphic to some R/I, where R is a regular local ring and I an ideal
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generated by a regular R-sequence (this means that I may be generated by
dim(R) —dim(R/I) elements). By using powerful methods of his theory of
schemes (the latest version of algebraic geometry), A. Grothendieck proved that
a complete intersection 4, such that A4, is factorial whenever dim(4,) <3, is
itself factorial ([19]). This generalizes older geometric theorems of F. Severi,
S. Lefshetz and A. Andreotti. No purely ring-theoretic proof of Grothendieck’s
theorem is known.

(5) Two-dimensional Factorial Rings. We have already said that the factorial
rings of dimension one are the principal rings; among them, the local ones are
the discrete valuation rings and are considered as well known. In dimension 2,
we have already seen a good number of examples of factorial rings: e.g., the rings
of the surfaces x?+y7++2*=0 (4, 7, k pairwise relatively prime) and of the sphere
x24y2+4-22—1=0; localizing the first ones at the origin, we obtain many non-
regular local factorial rings of dimension 2. These local rings are not complete
and, moreover, the factoriality of their completions C=K[[x, ¥, 2]] was in
doubt. First G. Scheja and D. Mumford proved that the complete ring C of the
surface x2-44*+25=0 is factorial. Then P. Salmon, for the counterexample
alluded toin (1), proved the same for the surface x2+43+4126=0 over a field K of
the form K =k(¢) with ¢ transcendental over k.

In this last example the ground field K is not algebraically closed. Now
E. Brieskorn, by using techniques from algebraic geometry, has proved that,
among the complete two-dimensional local rings over an algebraically closed
field K, only two are factorial: the regular ring K [[X, V]] (formal power series),
and the ring K [[x, ¥, 2] | with x24+93425=0 (cf. [13]). It can be noted that the
latter is the ring of invariants of an icosahedral group acting on the former [1].

A bibliography of factorial rings

An elementary exposition can be found in:

1. P. Samuel, Anneaux Factoriels (red. A. Micali), Bol. Soc. Mat., Siao Paulo, 1964.

More complete results in:

2. P. Samuel, Lectures on unique factorization domains, (notes by Pavman Murthy) Tata
Institute for Fundamental Research lectures, No. 30, Bombay, 1964.

3. , Lectures in commutative algebra (notes by M. Bridger), mimeographed by Bran-
deis University, Waltham, Mass., 1964-65 (write to Brandeis).

For a treatment of factorial rings, in the framework of Krull rings, see:

4. N. Bourbaki, Algebre Commutative, Chap. VII “Diviseurs,” Hermann, Paris, 1966.

For the case of number-fields, see:

5. Hardy-Wright, An introduction to the theory of numbers, Clarendon, Oxford, 1960, and
also the tables in

6. Borovit-Safarevig, Théorie des nombres, Gauthier-Villars, Paris, 1966. (German and
English translations also available.)

Most results, up to 1964, about factorial rings are given in [1], [2], [3]. For the reader’s
convenience, we however quote:

7. P. Samuel, On unique factorization domains, Ill. J. Math., 5 (1961) 1-17.

8. , Sur les anneaux factoriels, Bull. SMF, 89 (1961) 155-173.

9. , Classes de diviseurs et dérivées logarithmiques, Topology, 3, Supp. 1 (1964) 81-96.

10. ———, Modules réflexifs et anneaux factoriels, In Colloque International de Clermont-
Ferrand, ed. CNRS, Paris, 1965.
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11. P. Samuel, Sur les séries formelles restreintes, C.R. Acad. Sci., Paris, 1962.

The ring of the surface x?4y3-+25=0 is studied in

12. T*. Klein, Lectures on the icosahedron, Dover, New York, 1956, Chap. 2, Sections 12 and
13.

13. E. Brieskorn, Local rings which are UFD’s, (preprint, MIT, Oct. 1966), and in articles of
G. Scheja (Math. Ann., 1965), and D. Mumford (Publ. . H.EE.S., 9 (1961)).

The first example of a complete local ring A for which 4 [[t]] is not factorial was given in:

14, P. Salmon, Sulla non-factorialita . . . , Rend. Lincei, June 1966.

A further discussion of this example is in:

15. N. Zinn-Justin, Dérivations des corps et anneaux de caractéristique p, (These Paris 1967);
in print in Mémoires Soc. Math. France, 1967.

For the theory of the “purely inseparable going-down,” see:

16. N. Hallier, Utilisation des groupes de cohomologie dans la théorie de la descente p-
radicielle, C.R. Acad. Sci. Paris, 261 (1965) 39223924, and also [15]. (NB: Hallier is the maiden-
name of Mrs. Zinn-Justin.)

For examples of “galoisian going-down,” see:

17. M. J. Dumas, Sous anneaux d’invariants d’anneaux de polyndmes, C.R. Acad. Sci. Paris,
260 (1965) 5655-5658.

18. M. J. Bertin, Sous groupes cycliques d’ordre p» - « -, C.R. Acad. Sci. Paris, April 1967.
(NB: Dumas is the maiden-name of Mrs. Bertin.)

A proof of Grothendieck's theorem on the factoriality of some complete intersections is in

19. A. Grothendieck, Séminaire de Géometrie Algébrique 1961-1962, exposé XI, mimeo-
graphed by the Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 92-Bures sur Yvette.
France.

SOME GENERALIZED “ISOMOMENT” EQUATIONS AND THEIR
GENERAL SOLUTIONS

J. ACZEL, University of Waterloo, Ontario, Canada, and P. FISCHER,
Automatizildsi Kutaté Intézet, Budapest, Hungary

1. Introduction. In a previous paper [3] one of us has proved that all real
solutions of the “isomoment” (terminology of S. Kotz [8]) functional equation

® HOED R VE
k=1 k=1
satisfied for all
(2) a = 0
(k=1,2, - - -, n) and for fixed integers n>>1, m>1 are continuous and given by
(32 f®) =0,
(39 f@) =1, f@) =
in case of any integer m>1, and further
(30) f@=-1, f@=—x«

in case of odd m>1.
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