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1. Introduction. If 4 is an n-square matrix then the permanent of 4 is defined
by

(1.1) per A4 = Z H Qio(3)y

eES, =1

where the summation extends over .S,, the symmetric group of degree #. This
matrix function appears naturally in any combinatorial setting where a count
of the number of systems of distinct representatives of some configuration is
required [A 14]. In general the permanent is an appropriate invariant for matri-
ces that arise in combinatorial investigations where the problem is essentially
unaltered by a relabeling of the items under consideration. For example, the
total number of derangements (“le probléme des rencontres”) of # distinct items
is given by per (J—1I,), where J is the n-square matrix with every entry equal
to 1, and I, is the #-square identity matrix. The initial ordering of the items is
clearly immaterial. This is just a reflection of the more general fact that permu-
tations of the rows and columns leave the permanent unaltered. In factif Tis a
linear operator on the space of #-square matrices, #> 2, then per (7°(4)) =per 4
for all 4 if and only if either T'(4) =DPAQL or T(A) =DPATQL, where P and
Q are m-square permutation matrices, and D and L are n-square diagonal matri-
ces satisfying per (DL) =1. This theorem is a relatively recent discovery [B 18].

As we shall subsequently see, the permanent is related to other more familiar
matrix invariants, usually via inequalities. For example, Schur [B 51] proved
that per 4 2det 4 for any positive semi-definite hermitian matrix. However, as
Pélya observed [B 46], no uniform affixing of + signs to the elements of a ma-
trix can convert the permanent into the determinant. In fact, quite a general
result along these lines is known [B 19]. Namely, there is no linear operation on
matrices T: A—T(4) such that per T(4)=det 4 for all 4 (again except for
n=2). This result, of course, terminates further efforts at investigating the
permanent by relating it in some simple way to the more tractable determinant
function.

The name “permanent” seems to have originated in Cauchy’s memoir of 1812
[B 3]. Cauchy’s “fonctions symétriques permanentes” designate any symmetric
function. Some of these, however, were permanents in the sense of the definition
(1.1). Joachimstal [B 9] points out that the sum Y :fs... um “tantum a deter-
minante differt, quod omnes ejus termini sunt positivi.” Hammond [B 7] refers
to the function (1.1) as an “alternate determinant.” As far as we are aware the
name “permanent” as defined in (1.1) was introduced by Muir [B 38].

In the period 1855-1918 wvarious results involving permanents were an-
nounced (see references). Many of these are very special identities involving
permanents and determinants. Of these the one which apparently created the
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most interest is due to Borchardt [B1]: if 4=[a;], a;j=1/{;i—«;), and
B=[by], bsj=a}, then det B=det 4 per 4.

Another interesting and more general identity is due to Muir [B 40]. Let M
be the totality of (mn)!/(m!)"n! permutations ¢ €Sy, for which

am@ — 1) + 1) < o(mt + 1), t=1,---,n—1,
and
o(bkm + 1) < o(km + 7), E=0,:---,n—1, 1=2i<j=<m.

Let P, denote the mn-square permutation matrix corresponding to ¢. If X is
an mn-square matrix partitioned into #? m-square nonoverlapping submatrices
X; then define B(X) to be the n-square matrix whose (7, s) entry is det X,..
Then for any mn-square matrix 4

det A = Y e(s) det B(4P,)  if m is odd,
cEM
det A = Y (o) per B(AP,)  if m is even.

gEM

Much of the modern interest in the permanent stems from three results ob-
tained in this century: Pélya’s problem [B 46], Schur’s result [B 51], both
previously mentioned, and the unresolved conjecture due to van der Waerden
[B 55]. The current status of van der Waerden'’s conjecture is discussed in the
next section.

2. Properties of the permanent. In order to minimize the number of indices
we introduce some notation for sequence sets. Let » and # be positive integers.
The set T',,,, is the totality of #" sequences w= (w1, * - - , w,) for which 1 Sw;<n,
i=1, .-, r. If r<#u then Q,, will denote the subset of I, , consisting of those
(™ sequences w for which w; <ws < - + - <w,. Theset G, is the totality of (**7™7)
sequences in I'; , for which w; £w, < - - + Sw,. If 4 = [a,;]is an #-square matrix
and w, 7E€T,,, then 4 [w|7] is the r-square matrix whose (s, ) entry is gu,r. If
w, T€Q,,, then 4 [wlr) is the » X (#—r) submatrix lying in rows w and outside
columns 7 of 4. Similarly for 4 (w|7] and 4 (| 7). If WEG,, then u(w) will denote
the product of the factorials of the multiplicities of the distinct integers in w,
eg., u(2,4,4,4,5,5 7=3121L

Permanents do possess some properties analogous to those of determinants:

(a) the permanent is a multilineas function of the rows and columns;
(b) per A*=per 4;
(c) if P and Q are permutation matrices then per PAQ=per 4;
(d) if D and G are diagonal matrices then per DAG =per D per A4 per G;
(e) (Laplace expansion theorem)

perd= Y, perdA[l,---,r|w]per Ar+1,---,n|w);

wEQ, n
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(f) (Cauchy-Binet theorem) if 4 is m X#n and B is n Xm, m <n,

perA[l,- . -,mI*y]perB['yI 1, - ,m]

per AB= Y,
YECm n M ‘Y)

Properties (a)-(e) are immediate consequences of the definition (1.1). The
proof of property (f) is somewhat more involved. The most useful property that
determinants have is invariance under addition of a multiple of a row to another
row. This property is conspicuous by its absence from the above list. Its failure
makes the computation of any particular permanent difficult. The following
formula due to Riyser [A 14] makes the evaluation of certain permanents feasi-
ble by high speed computing devices. Let 4 be an n-square matrix and let 4,
denote a matrix obtained from A by replacing some 7 columns of 4 by zeros.
Let S(X) be the product of the row sums of the matrix X. Then

(2.1) per 4 = S(4) — D5(4) + DS(Aa) — « - - + (= 1)1 T S(Ao,

where Y S(4,) denotes the sum over all (*) replacements of # of the columns
of 4 by zeros. Formula (2.1) was used by Nikolai [B 45] for computing per-
manents of incidence matrices for certain (v, &, \)-configurations.

Let % be a set of v distinct items %1, + + - , x, and suppose Uy, + -+, A, are
subsets of 9. We define the v-square incidence matrix’' A = [a,;] for this configura-
tion by a;;=1if x,EN; and a,;;=0 if x;EA;. A system of distinct representatives
is an ordered v-tuple (x,q1y, * * * 4 Xo(n), Xoy E A, 0 E.S,. Hence per 4 is just the
number of such systems. In case each ¥; contains exactly kitems and ;N\, 7547,
contains A items, 0 <\ <k <v, thenwe have what is called a (v, &, \)-configuration.
The matrix 4 then satisfies AAT=ATA4 = (k—N)I,+\NJ and it can be shown that

(2.2) | det 4| = k(k — 2) =12,

From (2.2) it is seen that |det Al depends only on the parameters v, & and \
and not on the configuration. The question posed and answered in the negative
by Nikolai [B 45] is whether per 4 similarly depends only on the parameters
v, By N\,

In answer to Montmort’s “probléme des rencontres” [A 14] mentioned in
section 1 we can compute

1 1 1
—_ = 9! R —_—— e .. — 1) —
per (J —I,) v.(l 1!+2! + (=1 'v!).
In fact,

v zi‘
per (zI, +J) = v! D, i

=0 V.

The matrix J—I, is one of the few (0, 1)-circulants [B 35] for which an explicit
formula for the permanent is available. We describe a few other examples of
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permanents that can be directly computed. Let P, be the v-square permutation
matrix with ones in the first superdiagonal. Then of course per P,=1. Also,
per (P,+P}) =2 and [B 35]

per (P, + Pa+ Pi) = per (Pos 4 Py_y+ Poy) 4 per (Pos + Pyy + Pisy) — 2
1 5\ 1 — 4/5\
( +2\/ ) +( 2\/ ) +2

tr (C) + 2,

C_(o 1)
Y \1 1)

per (P, + P, + P} + P) = per (Po_y + Pos + Poy + Pa_y)
+ per (Po—s + Pas + Pos + Py_s) + per (Pa_s+ Pog+ Poy+ Piy) — 4
= 2(tr (C3) + 1),

where

i

where

Moreover,

010
C;:=]0 0 1].
1 11

It is known that unfortunately no analogous recurrence formula for
per ( D_F_, P%), k>4, exists [B 35]. It is possible to show that if such a recurrence
were to hold for 2> 5 then the van der Waerden conjecture would fail.

A remarkable result for (0, 1)-circulants was recently obtained by Tinsley
[B 54]. Let 4 be a (0, 1)-circulant with % ones, =3, in each row and column.
Then

per 4 = |detA|,

with equality if and only if after suitable permutations of the rows and columns
A can be reduced to a direct sum of 7-square (0, 1)-circulants of the form
I;+P;+P3. Then

per A = | det 4| = 2411

A doubly stochastic n-square matrix 4 = [a;;] is one with nonnegative entries
each of whose row sums and column sums is 1. Thus J,=(1/n)J is doubly
stochastic. These matrices appear in a wide variety of contexts ranging from
probability theory to the theory of eigenvalue inequalities. The results on doubly
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stochastic matrices are discussed extensively in [A 7; B 11; B 20; B 37]. Notice
that the above (0, 1)-circulants are all multiples of doubly stochastic matrices
as are the incidence matrices for the (v, k2, N\)-configurations. There is not much
known about upper and lower bounds for the permanent of a general doubly
stochastic matrix. The following bounds were recently obtained and constitute
examples of results relating the permanent with the more familiar matrix in-
variants.
If 4 is an n-square doubly stochastic matrix then

(2.3) per 4 = (%?2)1/2,

where p(4) is the rank of 4. Equality holds in (2.3) if and only if 4 is a permu-
tation matrix [B 22]. If 4 happens to be normal as well then (2.3) can be im-
proved to

(2.4) per 4 = 227,
n
where the inequality is strict unless 4 is a permutation matrix or =2 and
A=1T, [B22].
Once again if 4 is doubly stochastic with % eigenvalues of modulus 1 then
[B 23]

1
2.5 A= .
(2.5) per 4 = (n — h + 1)n—r+

If 4 is also indecomposable then

(2.6) per 4 = (ﬁ)

n

Equality holds in (2.5) or (2.6) if and only if 4 is a permutation matrix.
The best known conjecture on the lower bound for the permanent of an
n-square doubly stochastic matrix is the van der Waerden conjecture:

nl
2.7 per 4 = —

nﬂ
with equality if and only if 4 =J,. We list six results that represent all that is
currently known about (2.7). Let @, denote the set of doubly stochastic #-square
matrices and let Z, be the subset of Q, consisting of those matrices with strictly
positive entries.

I. If per A =mingeq, per S then A*& Z, for some k [B 26].
II. If per A =mingeq, per A then per A(i|§) =per 4 if a;;>0 and per A (i|j)
=per A+Bif a;;=0, where B=0 is independent of i and j [B 26].
II1. If per A =mingeq, per S and AEZ, then A=J, [B 26].
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IV. If A% J, and A is in a sufficiently small neighborhood of J, then [B 26]
per 4 > per J,.

V. For n =<3, mingeq, per S=n!/n"and the minimum is assumed uniquely for
S=J, [B26].
VL. If AEQ, is positive semi-definite symmetric then [B 28; B 29; B 33; B 22]

n!l
per 4 = —
nn

with equality if and only if A =J,.

To conclude we quote a recently obtained upper bound for the permanent

of a general (0, 1)-matrix. If 4 is a (0, 1)-matrix with row sums ry, - - - , 7, then
[B 34]
frit1
per 4 < J] < > )
t=1

with equality if and only if 4 is a permutation matrix.

3. Recent developments. In this section we describe a relatively new ap-
proach to the permanent function. The central idea is to represent the per-
manent as an inner product on the symmetry class of completely symmetric
tensors. At the outset this may seem like an unnecessarily sophisticated ap-
proach to a matrix function which does not appear much more complicated than
the determinant. In order that the reader may appreciate the difficulties in-
volved we list a number of results recently obtained by these techniques. It
seems unlikely that a frontal attack on any of these inequalities would succeed.

THEOREM 1. If A is an n-square positive semi-definite hermitian matrix with

rOW SUMS 1y, + +  , 1y and if =Y 1~ 7;7%0 then
3.1 per A = n![] | ri|2/rm.
t=1

Equality holds in (3.1) if and only if (i) A has a zero row or (ii) p(4) =1, [B 22].
Notice that as a direct corollary to Theorem 1 we obtain the result VI at

the end of section 2.

TreEOREM 2 (Permanent analogue of the Hadamard determinant theorem
[B 21; B 14; B 15]). If A is an n-square positive semi-definite hermitian matrix
then

(3.2) per 4 = ] ai:

=1

with equality if and only if A is a diagonal matrix or A has a zero row.
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TureorEM 3 (Schur [B 51]). If A is an n-square positive semi-definite hermi-
tian matrix then

(3.3) per 4 = det 4
with equality if and only if A is diagonal or A has a zero row.

THEOREM 4. If A is an n-square normal matrix with eigenvalues oy, - + + , oty
then [B 22]

1 n
(3.4) | per 4| g;E | i,

=1
THEOREM 5. If A is an m Xn matrix and B is an n Xm matrix then
3.9) | per AB|? < per 44* per B*B.

Equality holds in (3.5) if and only if either (i) A has a zero row or (ii) B has a
zero column or (iii) A = DPB*, where D is a diagonal matrix and P is a permuta-
tion matrix [B 29].

We introduce the preliminary material on tensor spaces that will suffice to
exhibit the technique of proof used in establishing these results.

Let V be an n-dimensional unitary space with inner product (x, y). We let
V@ denote the space of m-contravariant tensors [A 8, Chap. 16]. This is most
easily defined as follows. Let M, (V) be the space of m-multilinear functionals
on V, i.e., the space of complex valued functions ¢(x1, : + +, %m), %:EV,
i=1, - -+, m, linear in each «x; separately. For example, if V is the space of
complex n-tuples and m=n, x;= (x4, « * - , ¥:n), then the multilinear functional
¢ defined by ¢(xy, « « « , %) =det (x;;) is in M, (V). The space V™ is now defined
as the dual space of M,.(V), i.e., V™ is the space of all complex-valued linear
functionals on M, (V). There are certain distinguished m-contravariant tensors,
the decomposable tensors, that arise from elements of V: if x; € V, then
f=%1® - Q% is the element of V¢ whose value on any ¢ & M,.(V) is given
by

f(¢’) = ¢(w1, * + - ’ Xm)-

The decomposable tensor f is called the tensor product of the x;, i=1, - - -, m.

It is easy to show thatif ey, - - -, e, is a basis of V then the #™ tensor products
€, ® - - - Qey,, W&, constitute a basis of V™. An inner product can be
introduced in V™ in terms of the inner product in V. The defining relation is
given in terms of its values on pairs of tensor products,

(3.6) @#1® @ hmy1® -+ - ® ym) = LI (s, 3.
1=1

Certain special operators P(c) on V), called permutation operators, are
defined in terms of elements ¢ & .S,,:
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3.7 P@x1® +++ @ &m = %ty ® * * * ® Koi(m).
The completely symmetric operator on V™ is now defined by
1
(3.8) m=— > P(o).
Mm: oSy

Thus T, maps V™ into a subspace of itself. The range of T, is denoted by
Vi and is called the symmetry class of completely symmetric tensors [A 4,
p. 217]. If x4, - + -, %, are in V we set

(3.9) ik ok k= Tu®1 Q@ + -+ ® ay);

Xy * -+ - - % %y s called the symmetric product of the x;, =1, - - -, m. It is clear
from the definition of the symmetric product that if ¢ ES,, then

P(o)x1% ¢+« %% = X1 %+ + + % Xy,

The operator T4, is hermitian with respect to the inner product (3.6) and is also

idempotent:
2 *

(3.10) Tp=Tpn="Th

We are now ready to bring the permanent into this picture. Let %, « - - , %m
and 1, - + +, ¥m be arbitrary vectors in V and set a;;= (%, y;). Then by (3.9),
(3.10), (3.6), and (1.1) in succession we compute

(@ e xmmy ke ek y) = (To21® - QUmy, Tw¥1 ® + * + ® Ym)
=(T:me1®~~~®xm,y1®~~~®ym)

(Tot1® ++ - @m, 51 ® *+ + @ Ym)

1

— 2 PO ® @ Umy )1® -+ ® Ym)

m! €Sy

I

1
= — Z Frr) ® - QXrttmy, 1 @ + + + @ Y)

m! oESy,

1 m
—_ Z H (%-1¢3y, ¥5)

m! e, =1

1 m
=— 2 II @ yo)

m! ses, =1

I

= — per 4.
m!

We have then
1
(3.11) (x1*~~*xm,y1*~'~*ym)=—7pefz4,
m!
where 4 = (a;;) = (x4, ¥;))-
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To illustrate the use of the identity (3.11) we prove Theorem 1. Set m=u#.
Since A4 is positive semi-definite hermitian it is a Gram matrix based on some set
of vectors x1, * * +, Xn: @s;= (%4, x;). From (3.11) and the Cauchy-Schwarz in-
equality applied to the inner product in V™ we have

(xl*. . .*xn,”—::”->

where # is any nonzero vector in V@, Let v= D, x; so that

2

H

1
(3.12) —;‘perA = (g ko ok Ly, Xy k-t k) =

n

(v, 0) = E (%, %) = Zn: ai; = 1.

%, j=1 1,5=1

Since 770, 950 and in fact ||2]|2=7>0. We set u=v * - - - x v and compute, by
(3.11), that

Hu“2 = (v %D Uk - *D) = — per B,
n!
where bij=r,4,j=1, - - -, n. Hence ||u4||2=r". Returning to (3.12) we have
1 1
—'perA = l (CTE I X E -*‘v)lz/r" = I—Iper (x5, v)) |2/r”.
n! n!

Now (xi, 9) = (%i, Dy %) = Dy (%3, %;) = D=y @s;=rs. Hence per ((x:, v))
=n!]]%, 7; and therefore

Lperd 2 TT | nle/m,

n! =1
the inequality (3.1). The discussion of the cases of equality is a bit involved and
we omit it. Notice that if 4 is doubly stochastic then 7= : - - =r,=1, r=un,
and (3.1) implies VI in section 2.

We refer the reader to [B 29] in which a very similar argument is used to
prove Theorem 5. We illustrate the use of (3.5) in proving (3.3). Since 4 is
positive semi-definite hermitian it can be factored, 4 =T77T%*, in which T is
upper triangular. Notice that, for such a T, per T'=det 7. Thus

det 4 = det TT* = det T det T*
= per T per T*
< | per 77, || ver I,7*|
=< +/per TT*+/per TT* = per 4.

The inequality (3.3) could have been obtained from (3.2) and the Hadamard
determinant theorem. However the proof of (3.2) is quite involved [B 14; B 15]
and will be omitted.
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4. Conjectures and problems. In this section we list several conjectures and
problems that involve the permanent function. The conjectures in this field,
that have been announced at various times, seem to separate into two quite
unsatisfactory classes. In the first class are those statements that sound plausi-
ble but appear at present beyond reach. In the second class are those conjectures
that seemed for a time undeniably true and for which counterexamples were
eventually discovered. We list some conjectures that are as yet unclassified.

ConJecTURE 1 (van der Waerden). If A is an n-square doubly stochastic
matrix then

n!
per 4 = —
nﬁ

with equality if and only if A=J, [B 55; B 26; B 28; B 33].
ConjecTUrE 2 (H. J. Ryser). If A is an n-square doubly stochastic matrix then
“.1) per AAT £ per A.
Until just recently it was conjectured [A 14; p. 59] that
4.2) per AB < min {per 4, per B}

when both A and B are n-square doubly stochastic matrices. We are indebted
to the referee for making available to us a surprising counter-example to (4.2)
discovered by W. B. Jurkat of Syracuse University:

s 8 Lo

4==—[13 11 0|, B=—[1 1 0],
24 2

0 8 16 00 2

243 per A = 3808, 243 per AB = 3840.

Of course, if (4.1) were known then Conjecture 1 would follow immediately
from VI in section 2. (Morris Newman recently communicated to us a counter-
example to Conjector 2.)

ConjectUrE 3 (H. J. RYSER). If A is an mk-square (0, 1)-matrix with k ones
in each row and column then

(4.3) perd =37,
1

where Y - J denotes the direct sum of J taken m times and J is k-square [A 14].
ConNjeECTURE 4 (H. Minc). If A is an n-square (0, 1)-matrix with row sums
tii=1,++ <, n, then

(4.4) perd = fI (ril)tirs.

=1
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Clearly (4.4) implies (4.3) [B 34].

ConjyecTURE 5 (H. J. Ryser). If the totality of v-square (0,1)-matrices with k
ones in each row and column contains incidence matrices of (v, k, \)-configurations
then the permanent is minimal tn this totality for one of these incidence matrices.

CoNjECTURE 6 (H. Minc). Let Ry denote the class of all v-square (0, 1)-
matrices with k ones in each row and column. Then for a fixed v

1
min per (— A)
A€ERy k
is monotone decreasing in k.

ConjJectUrRE 7 (M. Marcus and M. Newman). If 4 is n-square doubly sto-
chastic then

per (I, — 4) = 0.
This is known to be true in case 4 is symmetric as well [B 29]. (R. A.

Brualdi and Morris Newman announced the affirmative resolution of Con-
jecture 7.)

ConJeECTURE 8 (M. Marcus and M. Newman). If 4 is positive semi-definite
n-square hermitian and 1 <k =n then

per 4 = per A[1, -+ -, k{1, - -+, k]lperAlk+ 1, -+, n|k+1,---, nl

This is known for k=1 [B 14, B 15].

CoNJECTURE 9 (M. Marcus). Let A be an mk-square positive semi-definite
hermitian matrix partitioned as follows:

All A12 c vt Alm

Auy Ay A
tn which each A is k-square. Let B be the m-square matrix whose (1, j) entry is
per A Then
4.5) per 4 = per B.
If A is positive definite then equality holds in (4.5) if and only if A= ™ Au.

Note that Conjecture 9 implies Conjecture 8. For suppose (4.5) holds. As-
sume without loss of generality in Conjecture 8 that k<n—%. Let C be the
2(n—k)-square matrix: C=1I,_gp+A. Partition C as follows:

[In—Zk + 4x Cu ]
?

C =
C21 An—k
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where Ay=A[1, - - k|1, - - kland Aup=A[k+1, - - -, n]k+1, - - -, n].
Clearly C is poritive semi-definite hermitian and (4.5) implies
er (I,— A4 C
per 4 =percgper|:p (Zn—a + Ai) per Cyq ]
per Ca per A,
= per A, per A, + | per Cis |2
= per Ay per A, .

CoNJECTURE 10 (M. Marcus). Let A = [a;;] and a;;>0, 4, j=1, - - -, n. If
the n! terms 1[0_1 @iocsy 0 the expansion of per A take on at most r different values
then p(4) =r.

This conjecture is known to be true for <5 [unpublished results of H.
Minc and R. Westwick].

ConJecTURE 11 (M. Marcus and M. Newman). Let A EQ,. There exists no
positive number B, independent of i, §, such that

per A(i | §) = per 4, a; #0

and
perA(in)=perA + 6, aij = 0.

(See section 2, I1.)

ConyECTURE 12 (M. Marcus). Let A, be the group of n-square nonsingular
matrices of the form PD, where P is a permutation matrix and D is a diagonal
matrix. Show that Ay, is a maximal group on which the permanent is multiplicative.
In other words, A, cannot be a proper subgroup of a group G in which per AB
=per 4 per B for all A, BEG.

CoNyECTURE 13 (M. Marcus). If 4 is doubly stochastic and f(z) = per (2I,—A)
then the zeros of f(2) lie in or on the boundary of the unit disc lz, =<1.

PRrROBLEM 1. Find the maximum value of f(U)=per (U*AU) as U runs over
all n-square unitary matrices. Here A is a fixed n-square positive semi-definite
hermitian matrix [B 29].

It is known [B 22] that f(U) <tr (4")/n, but in general this bound is not
achievable.

PrOBLEM 2. Let H be a subgroup of S, and let x be a character of degree 1 of H.
Under what conditions on x and H will the inequality

> x() IT @i = per 4

cEH 1=1

hold for all positive semi-definite hermitian A? [B 51].
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THE CONSTRUCTION OF ORTHOGONAL AND
QUASI-ORTHOGONAL NUMBER SETS

H. W. GOULD, West Virginia University

1. Introduction. There has always been great interest in the discovery of
inversion relations for series and associated orthogonality relations. The refer-
ences at the end of this paper will give some idea of current activity in this field
and each bears an intimate relationship to our work here. The reader will find it
of interest to compare some of our results with the relations in Riordan’s recent
paper [6]. Several results of Riordan were influenced by the orthogonality rela-
tions found by the writer [2]. Theorem 3 below is in turn based on an extension
of ideas in |2] which are not unlike some new results found by Carlitz [1].

We shall distinguish between orthogonality and quasi-orthogonality. Such a
distinction has been made by S. Tauber [9] and we shall follow his nomencla-
ture. Associated with two number sets 4} and B} are the polynomials

(1.1) Au(x) = 2 Ane',  Bu(x) = Y Bix,
k=0 k=0
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