ARE MANY 1-1-FUNCTIONS ON THE POSITIVE INTEGERS ONTO?
MARCEL F. NEUTS, Purdue University

Introduction. A simple “paradox” relating to the enumeration of the ele-
ments in a countable set may be described in the following way.

Every second a genie throws ten balls into an urn. The balls are numbered
1, 2, - - - and at every throw he adds the next ten numbers to the urn so that
at the nth throw the balls numbered 10n—9, 10z —8, 10n(z=1) are added.
This goes on forever.

Another genie removes one ball from the urn after each addition, but he
must guarantee that every ball will eventually be thrown out. If he can see the
balls, there is of course no problem. He can remove the balls 1, 2, 3, - - - suc-
cessively and for any natural number &, he knows when it enters the urn and
when it is removed. It enters the urn at the [£/10]+1st throw and is removed
after the kth throw. Though the number of balls in the urn tends to infinity, any
given ball is eventually thrown out. No ball stays in the urn forever. This is one
of the paradoxes of infinity, stated by Georg Cantor and discussed as the
“Tristam Shandy paradox” by Russell [7].

For every k, the length of time T spent in the urn by the ball % is given by

k
T,,=k—1—[—:|, E=1,2,- -
10

There are, of course, many more rules which will guarantee the eventual removal
of every given ball. Clearly, there are also rules which will leave one or more,
even infinitely many balls in the urn. Thus if he removed successively the balls
10, 20, 30, - - - all numbers which are not multiples of ten would stay in forever.

To compound the sad fate of the second genie, we assume next that he cannot
see the numbers on the balls and that the balls are, in fact, completely indis-
tinguishable. The problem is now, whether or not there is a way in which the
second genie can remove every ball from the urn. Or, to state the “paradox”:
does the ability of the second genie to enumerate all the balls depend on the
enumeration already given?”

We must still describe a rule, but one that does not depend on the numbering
of the balls at all. The first such procedure that comes to mind is to draw at each
removal the ball at random from among those still in the urn. This rule is appeal-
ing, because every ball in the urn at every drawing is given the same chance of
being removed. Before the nth removal there are 9z4-1 balls in the urn. We
assume, that, independent of the past, any one of these balls has a probability
(972+-1)~1 of being taken out.

This rule will be satisfactory for Genie II, if we can show that, with proba-
bility one, every given ball is eventually removed from the urn.

Since the balls are completely indistinguishable, the genie must rely on
chance and a chance procedure with the stated property is the best one can
wish for.

We will prove below that “random removal” has this property but first we
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leave the world of fairy tales and formulate a more general mathematical
problem.

Mathematical formulation. Let a;<a:< - - - be a strictly increasing se-
quence of positive integers and let § be the family of all functions from the posi-
tive integers into the positive integers which satisfy

f(n) = an, nzl,
fn) # f(), v #n

On the class of all subsets of &, we can define probabilities satisfying

(1

1
P{f(1) =k} = —, 1Sk2a

a
@ =0, k> a
and, forall z>1,
@ Pl = B D, - -, S = D} = ————
a —n+1
12kZ2an, b=f(p) v=1,---,n—1,

and zero elsewhere.

This assignment of probabilities corresponds to the following scheme: for
every #=1, the value of f(»n) is chosen at random from among the numbers
1, 2, -+ +, @, which have not been chosen previously. That the requirements
(2) and (3) determine a unique probability measure on the class of all subsets of
§ may be proved from first principles or by appealing to the general theorem
8.3.A, p. 137 in Lodve [3]. The uniqueness of the probability measure P also
follows from property 1 below and the classical extension theorem for measures.

This assignment of probabilities corresponds to the requirement which,
loosely stated, says that all functions in § are “equally probable.” To see this
we prove

PropPERTY 1.
4 Pif(1) = ay, -+, f(m) = am} = [a(as — 1) -+ - (@ — m + 1],
is ;=a,, for ¢=1, - - -, m and no two «,'s are equal. For all other m-tuples
(ou, * + +, am), this probability is zero.

Proof. Use the chain rule of conditional probability; then
P{f(1)=a1""a (M)=Ofm} =
P{(1) = aa} P{f(2) = eu| f(1) = e} -
s Pifm) = an| f(1) = ar, -+, flm = 1) = e},

which yields (4) upon substitution.
Remarks. The space of functions § with the probability assignment P(-)
may be identified with the following urn scheme. Suppose that the urn contains
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initially a, balls, numbered 1, - - -, a;. One ball is drawn out and new balls,
numbered a;41, - - -, a, are added. Again a ball is drawn out at random and
removed, and balls, numbered a;+1, - - -, a3 are added and so on. If we denote
by X, the number of the nth ball drawn, then the sequence {Xi, X3, « « - }
defines a function in F. We see that the sequence a4, a2, + - - characterizes the set
& and the probability assignment P(-). The scheme, discussed in the Introduc-
tion, corresponds to a, =10n.

Let the event that X,=Fk be denoted by {X,=Fk}; then Uy, {X.=%} =B,
is the event that for some # the number % is drawn at the nth drawing. Since
the events { X, =k} are disjoint, we have

®) P(By) = 2, P{X, = k}.
n=1
We are interested in conditions on the sequence {a,,} under which

(6) VE: P(By) = 1.

TueOREM 1. (a) If P(Bs,) =1 for some ko= 1, then (6) holds. (b) Property (6)
holds if and only if

i 1

7 —_— = ©,
M E an —n+1
Proof. Let kg be a positive integer and #* =min { n: Qy gko} ; then
c * ad 1
® P(By,) = P!: n X=k)|=11 (1 =-———m—
n=n¥* n=n* an — N + 1 )

so that P(Bg,) =0 if and only if the infinite product diverges, or equivalently
if the sum (7) does.

However, the divergence of this sum is independent of the value of &y, which
proves part (a).

COROLLARY. If (7) holds, then for any nonvoid set of indices {kl, ke, ¢ - }
we have
) P{ n Bk,.} -1
i1
Proof.

P{ﬁo Bk,.} = 1—P{lj BZ,.}
=1 =1

ogp{lj BZ,} <3 P(BL) =0

=1 =1

but

by Theorem 1.
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Remark. The corollary says that, with probability 1, all positive integers
appear in an infinite sequence of drawings in an urn corresponding to a sequence
{a.} which satisfies (7). We can therefore say that if and only if condition (7)
is satisfied “almost all functions in the class F are onto.”

An example of a class of functions which do not satisfy condition (7). It is,
of course, easy to give examples of such classes of functions, just by choosing @,
a fast growing sequence. The following example is of some particular interest as
it relates to a familiar proof of the countability of the set of all rational numbers.

Let E, be the set of all rational numbers in (0, 1) which can be written as
irreducible fractions with denominator at most equal to #. The number of ele-
ments in E, is given by:

(10) =3 e0)nz2
y=2

Set a1=1. ¢(v) is Euler’s ¢-function, i.e., ¢(¥) is the number of integers a, with
1 <a =v which are relatively prime to ».
Therefore, for n=2, we have

(11) — =[S -w-n]"

@ —n+1 y—2

However, it is known that

1 2 3
(12) im — 2 ¢() = — -
n—o n2 y=1 7|'2
[See 1, Vol. 3, p. 172, formula (32).]
Therefore
1 1 =2
(13) _  ~——

~y
G —n+1 n? 3
so that the series in (7) converges.

Remark. An interesting problem is to find an expression for the probability
that a function in & is onto if condition (7) is not satisfied.

Functions of at most linear growth. The class & of functions corresponding to
(14) w=a+bn—1 ae=1,b=1,n21,

is of particular interest.

Since a,—n+1=a+ (b—1)(n—1), the series in (7) diverges. Consider any
ball in the urn just before the nth drawing and let T be the additional number
of drawings required before this ball is removed, then:

P{T>u}=ﬁ[1 ! ]

axl e B—Da—1)
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 fa — b a—b—+1 -t
_g<b—1+a><71—1“+“>

a—2b e — b+ 1
I‘( +n+v+1)I‘<————+n>

b—1 b—1
(15) =
a—b a—b+1
EETI W CET S
b— 1 b— 1
B[a_b+ b1, ]
b1 Ty

= s b>1. v=20
B l:a —b " 1 :l
n, ——
b—1 b—1
in terms of Euler’s gamma and beta functions [1]. The case =1 is trivial and

leads to a geometric distribution for 7. The expected value of the random vari-
able T is given by (b>1)

E(T) =iP[T>u] = !

»=0 B[d—b_l_ 1 ]
n,
b—1 b—1

(16) :

[ 1
(a—b/b=D)+n+ty (1 —_ 14) A=D1
0

y=0

1 1
= f u(a—blb—1)+n (1 —_— ’ll») (llb—l)—Zdu
0

a—5b 1
B [ +n, ]
b—1 b—1
since the integral on the right diverges.

This leads to the observation that though the ball in the urn at time # will
be drawn out eventually with probability 1, the expecied number of drawings
required is infinite.

To illustrate the enormous growth of waiting times in terms of %, we consider
an extremely simple case of (14) and appeal to some results which were proved in
the theory of record observations.

Let a =2 and b =2 so that the number of balls in the urn at the #th drawing
isnt+1 (n=x1).

Consider the following process. Before the first drawing, mark one of the two
balls and continue drawing until the marked ball is drawn. When this happens,
mark one of the balls in the urn just before the next drawing and continue draw-
ing until this ball is drawn. When this happens, mark again one of the balls in
the urn and so on.

It is easy to see that by this procedure, we generate a sequence of inde-
pendent Bernoulli trials in which the probability of success at the nth trial is
1/(n+1). Success is defined as the drawing of a previously .marked ball.
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Suppose now that we define the random variable L,, as the total number of
drawings required until the mth marked ball is drawn out. Equivalently L,, is
the number of trials until the mth success in a sequence of independent Bernoulli
trials in which the probability of success at the nth trial is p,=1/(z41).

The random variable Z,, was studied by Foster and Stuart [4] and by Alfred
Rényi [6] in connection with the study of recordbreaking observations. They
proved among other things that

7 (Lm)tm—e
with probability 1 and that
du

t
(18) P{log Lo, =<m-+ t\/;;[} _)f_:_w/z\/Z_W_ ,

so that the limiting distribution of (log L.,,—m)/A/m is a unit normal distribu-
tion.

However if we set Ap=Lp—Lp1, m=1, Ly=0, then Neuts [5] has shown
that

(19) (An) V™ — ¢ in probability
and
_ £, du
(20) P{log An Em+ tm} ——>f et —,
o V2T
so that the limiting behavior of L, =A;+A,+ - - - +A, is practically the same

as that of the last term A,,. This shows that for large m, the waitingtime between
the last two successes completely overshadows even the sum of all the previous
waitingtimes.

M. N. Tata [7] has investigated the sequence L., m=1, 2, - - - further and
has shown, in particular, that the limiting distribution of (Lm+1)/(Lm) exists for
m— o, but even it has an infinite expected value. This shows that the penalty
paid for making the balls indistinguishable is in the waitingtimes involved.

To end this discussion in the world of fairy tales, where it started, we may
say that the Genie II will exhibit the kth ball, less than k& drawings after it was
placed in the urn, provided he knows the numbering on the balls. If he has to go
by chance, he can still be certain to draw out any given ball eventually, but the
number of drawings involved in each case will be large with considerable proba-
ability. Since the genies were doomed to this activity for an infinite length of
time, anyway, it probably does not matter to them whether they are guided by
knowledge or by chance!
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WEAK SUFFICIENT CONDITIONS FOR FATOU'S LEMMA AND
LEBESGUE’S DOMINATED CONVERGENCE THEOREM

H. R. VAN DER VAART, North Carolina State University and ELIZABETH H. YEN,
Columbia University

0. Introduction. In many expositions the Lebesgue-Stieltjes integral,
Jf(x)u(dx) = [fdu, or briefly [f, of a measurable function f is defined as the limit
of a sequence of integrals [s,du, where the s, are simple functions which in some
sense tend to f as #— . So, when we are interested in the limit of a sequence
Jf»du where all f, are measurable (rather than simple) functions, we have to deal
with a double limit process. The monotone convergence theorem (MCT), Fatou's
Lemma, and Lebesgue’s Dominated Convergence Theorem (DCT) belong in this
category. In the literature these results are discussed under a variety of mostly
too restrictive conditions (cf. Section 2 below), which we have found tend to
obscure their true nature in the mind of many students. The aim of this note
is to present Fatou’s Lemma as a special case of the MCT, and the DCT as a
special case of Fatou’s Lemma, being as general as possible as to conditions of
boundedness and finiteness and also to indicate a method by which to construct
the dominating function in the DCT. Of these objectives the last one seems to
have some novelty. However, our main concern is pedagogical.

1. Notations and terminology. All functions discussed are assumed to be
defined on a totally o-finite measure space (X, ¥, u) into the extended real num-
ber system R*. (For the properties of R* see for instance [4], p. 2). All functions
discussed will be measurable (i.e., if B is { + } , { — }, or a Borel subset of the
real line R, then f~1(B)&ENA). Given ¢: X—R*, the symbols ¢+ and ¢~ have the
usual meaning: ¢+=%(¢>+{¢>l), ¢‘=%(—¢+{¢|), so that ¢ =¢+—¢~. Integra-
tion is always over some set 4 belonging to the g-algebra 3. For our purposes the
choice of A4 is irrelevant (all properties stated concerning integrands are to hold
on A), and we shall omit all reference to it. Whenever we write [¢, or [odu,
or [¢(x)u(dx), we imply that the sntegral is defined, either as a finite number, or
as 4+ o, or as — «, and we shall call such a ¢ integrable. In fact, we shall say
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