SOME REMARKS ON VARIATIONS AND DIFFERENTIALS
M. Z. NASHED, Georgia Institute of Technology

1. Introduction. The treatment of differential calculus for functions of sev-
eral variables is often dominated in undergraduate courses by computational
formulas for differentials, gradients, directional derivatives, etc. The n-
trinsic nature of calculus and the conceptual meaning of these notions are seldom
brought to light.

The calculus of functions of several variables is in many respects more subtel
than the calculus of one real variable. For example, different notions of differ-
entiability can be defined; the mean value theorem and Taylor’s formula can be
generalized in several ways and the theory of extrema is more involved.

It is generally recognized that the differential and integral calculus of several
variables can be best studied in the setting of modern differential geometry,
rather than in the traditional setting of real variable theory. For an interesting
discussion of the merits of this approach, see [12]. On the other hand, an ab-
stract formulation of some aspects of differential calculus can be given using
vector spaces and linear operators. The undergraduate student in mathematics
today is exposed to these notions in his study of linear algebra and analysis, and
can climb up to such levels of formulations.

This approach sheds light on the ideas and arguments of multivariate cal-
culus and the calculus of mapping on normed linear spaces, and unifies many
notions and methods in analysis related to integral equations, the calculus of
variations and numerical analysis. See, for instance, [1, 9, 11, 14, 16].

The purpose of this exposition is to discuss this approach for mappings whose
domain and range are in normed linear spaces over the field of real numbers.

2. Linear and multilinear operators. To make the discussion in the following
pages self-contained, we shall review in this section elementary properties of
linear and multilinear operators. More details and numerous examples may be
found, for instance, in the expository paper by Goffman in [2] and in [3, Chap-
ter 5].

Throughout this paper, let E be a vector space over the real numbers and let
6 denote the zero element in E. A norm on E is a mapping H H which assigns to
each element x a real number ||x|| and which satisfies the following axioms:

1) JCH =0; HxH =0 only if x=0,
(i1) )\xH = l)\] I xH for any scalar \,
(iif) [all [+l

A normed linear space is a vector space with a norm. Any normed linear space
is also a metric space with the distance function d(x, v) =Hx—y”. A complete
normed linear space is called a Banach space.

Let £ and Y be normed linear spaces. An operator L on E with range in ¥
is called
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(i) additive if L(x+y)=Lx+Ly for all x, y in £,

(i) homogeneous if L(A\x) =NLx for any scalar X\,

(iii) continuous at x in £ if HLx,L—Lx ]——>0 as Hxn—xH——>0,

(iv) bounded if there exists a nonnegative number M such that || Lx|| < M| x|
for all x in E.

L is called limear if it is additive and homogeneous. It is well-known that a
linear operator is continuous on the whole space if and only if it is continuous at
x =0, and that it is bounded if and only if it is continuous.

If L is a bounded linear operator, then the norm of L, denoted by HLH, is
defined as the greatest lower bound of all M satisfying the inequality in (iv).
If L and S are bounded linear operators on E to E, then their sum L+.S and
product LS are again linear operators and

S|l

1L+ S = Ll + sl and ([zs]] < (2]

The set of all bounded linear operators on E to ¥ forms a Banach space if ¥
is complete [3, p. 102]. Denote this space by £:. In particular, the Banach space
of all bounded linear transformations from a Banach space E into its field of
scalars is called the dual space of E and is denoted by E*. These transformations
are called linear functionals over E.

A bilinear operator L, on a normed linear space E is a bounded linear oper-
ator mapping E into £, i.e. Loy is in £; and therefore

L2x1(x2 + xz) = Lox1% + Low1x3

Lo(xy + x9)xs = Lowixs + Lowaxs,

and

IIA

[ Lwiwa]| < Mjcr] o]

Similarly we may consider an m-linear operator L,, on a normed linear space E,
mapping E into Y, as a bounded linear operator mapping E into £,_1, where
Lm_1 is the space of all (m —1)-linear operators in E. More generally, an m-linear
operator may be defined on different normed linear spaces.

DEFINITION 1. A mapping L, defined on the product space E1X - - + X E, of
m normed linear spaces E;, 1=1, - - -, m, with range in a normed linear space Y,
15 called multilinear if it 1s additive and continuous (hence homogeneous and
bounded) in each argument.

A basic notion associated with multilinear operators is the notion of sym-
metry.

DEFINITION 2. A multilinear operator is said to be symmetric if Fy=FE,= - + -
=F, and L,(x1, - - -, %) remains invariant under all permutations of the ele-
ments Xi, * * *, Xm.
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3. Bibliographical comments on differential calculus in normed spaces. In
building up necessary tools for studying a nonlinear functional in the neighbor-
hood of a fixed element of a normed linear space, it is natural to seek a general-
ization of either the gradient or the differential as defined in the classical analysis
of three-dimensional Euclidean spaces. To include mappings (as well as func-
tionals) it turns out to be more expedient to first generalize the concepts of the
differential and the directional derivative. These generalizations were first un-
dertaken by Fréchet [4] and Gateaux [5], respectively. Other definitions of
differentials were given later by Michal, Zorn, Hyers (see [8] for references).
Several generalizations of the differential to topological vector spaces, which
are not necessarily normed, have been introduced by these and other authors.
Such extensions have found useful applications in general differential geometry,
dynamics and continuous group theory.

The most useful generalizations of the differential are those which preserve
a fundamental idea in calculus, namely the “local” approximation of functions
by linear functions. A differential D/ (x; %) of a mapping F: X—YV, where X is
an open subset of £, K and ¥V are normed linear spaces, is then a mapping
DIF: X XE—Y, where for each x in X, DF(x; &) is assumed—in most definitions
—to be linear and continuous in /. The basic difference in the various definitions
of a differential is the sense in which D F(x; h) approximates /7(x+h) — I'(x).

Rolle’s theorem does not hold for arbitrary sets in normed linear spaces of
dimension greater than one. For such spaces, there are several forms of the
mean-value theorem, Taylor’'s formula and theorem, and each form holds only
in a certain sense. The validity of these extensions was established by Graves
and Hildebrandt [6, 7], who also generalized the implicit function theorem,
Kerner [10], Kantorovich [9], Vainberg [16] and others. The proofs used are
different in most cases from the proof used in the case of a function of a real
variable and as expected a slight strengthening of the hypotheses is required.
Kerner considered integrability conditions of abstract vector fields and gener-
alized Stoke’s theorem. Rothe [15] studied topological properties of gradient
mappings, which are generalizations of the idea of a conservative “force field”
to abstract vector spaces.

4. Variations. We shall first discuss the Géteaux variation, which is a gen-
eralization of the directional derivative in classical calculus and of the notion of
the first variation arising in the calculus of variations.

Let ¥ be a Banach space and let ({1, £2) be an open interval of the real line.
The first derivative ®'(¢) of ®@: (41, t)— Y, at £y in (#1, £,) is defined by

60 — i TO M0
11, t— 1o
if the limit exists, where the limit is taken in the sense of the norm of V. We
note that this derivative is unique and that if ® has a first derivative at a point
to, then @ is continuous at #. Higher order derivatives are defined inductively
as in classical analysis.
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DEFINITION 3. Let I be a mapping from an open subset X of E into V, where
E and YV are normed linear spaces. Let xq be a point in X and h an arbitrary nonzero
fixed element in E. Then xo-+th is in X for |t| < e(xo; h). Let

7 = sup {e ]t’ < e=w + thin X}.
Then F(xo+1th) is defined for |t| <. If

d
o F(xo + th) |t=0

exists, it 1s called the Gateaux variation (or the weak differential) of F at x, with
increment h and 1s denoted by §F(xo; h). If F has a Gateaux variation, hereafter
called G-variation, at every point x in X, then F is said to have a first variation on X.

Similarly, F has an nth variation §"F(x¢; k) at a point x¢ if the function
F(xo+th) has an nth derivative with respect to ¢ at {=0.

It follows from the definition, that the first variation is homogeneous in % of
degree one, i.e. if 6F(x; k) exists, then for any scalar N\, 6 F(x; M) exists and is
equal to N6 F(x; k). Similarly, 6*F(x; Nb) =N"6F(x; k).

It should be emphasized, however, that the weak differential is not neces-
sarily linear nor continuous in %, as may be seen from the following:

Example 1.

2
X1%9

’
2 2
x1+x2

f(@y, %2) = (x1, 22) # (0,0);  f(0,0) = 0.

For each h=(hi, hs), the G-variation exists and is equal to kiha(h24-h3)~",
but the mapping (h1, hs) —hika(h+h3)~" is not linear in A.

The reader may contrast this remark and the next few results with proper-
ties of differentials and variations in complex normed spaces, where a different
situation prevails [8, 11].

Note that if F has a GAteaux variation at xo, then F is continuous in the
direction £, i.e.

Lim ||F(xo + th) — F(xo)]| = 0 (h is fixed)
t—0

but is not necessarily continuous at x,.

Example 2. Let E be the space of all functions y=y(x) which have a con-
tinuous first derivative on [a, b]. Define a norm on E by

[3]] = max | y(x)| 4 max [y'@)],

where the maximum is taken over [a, b]. Let f(x, v, 2) be a function which is
defined and has continuous partial derivatives for all finite z and for ¢ Sx =0,
Py (x) <y =Py(x) for some prescribed functions &, and &,. Let
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0= [ 1o 9@, v @) ax

Then a simple computation shows the G-variation of J at y, corresponding to
the increment & =h(x) is

0y 1 = [ @G35 + K@ 3,5 d

a
which is the usual first variation.

5. Gateaux differential. From the above remarks it is clear that the Gateaux
variation does not possess many of the important properties of total differen-
tials for functions of several variables. This motivates the definitions of the
Gateaux and Fréchet differentials, hereafter called G- and F-differentials respec-
tively, which will then enable us to study more effectively a functional or a non-
linear operator in the neighborhood of a fixed element in the space.

DEFINITION 4. If 8 F(xo; h) [Definition 3] is linear and bounded in h, it is
called the Géteaux differential of I at x, with increment h and 1s denoted by D F(xq; h).

The G-differential provides in some sense a local approximation property.
More precisely, we have

TuroRrREM 1. Let X be an open subset of I£ and let I be a nonlinear operator from
X to Y. A necessary and sufficient condition for I to be G-differentiable at x, is that
the following representation holds:

(5.1) F(xo + 1) — F(xo) = L(xo; k) + R(xo; h)

for every h in I for which xo+h 15 in X, where L(xo; h) 1s linear and continious

m h and
oo R G )|

(5.2) Lim ———— =10 for each h.
70 T

Proof. We first remark that if such a representation exists, then it is unique.
For if another representation exists with L’ and R’, then
L(xo; k) — L'(xo; k) = lim 77 [L(wo; 7h) — L' (wo; 7h)]

70

= lim 7[R’ (wo; 7h) — R(xo; 7h)] = 0.

70
Now if the representation (5.1) holds, then

Gt k) lim 7 [F (o + 1) — F(ao)]

dT =0 70

L(xo; h) 4 Hm 77'R(x0; 7h) = L(x0; k).
70
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Thus the G-variation exists and is linear and continuous in £. Conversely, if the
G-differential exists, then

7 F (v + 7k) — F(x)] = DF (xo; k) + e(xo; TR),

where e(xo; 7k)—0 as 7—0. Letting 7k=4h, we get the representation (5.1),
where R(x¢; h) =7e(xo; k) and thus (5.2) holds.

This theorem brings us closer to our objectives and a strengthening of con-
dition (5.2) leads to the definition of the Fréchet differential in Section 6. In the
rest of this section, we shall discuss other conditions for a G-variation to be a
G-differential.

THEOREM 2. A necessary and suflicient condition for §I'(xo; 1) to be linear and
continuous in h is that F satisfies the following two conditions:
(a) To each h corresponds a 6(h) such that

| t] =6 implies ||F(xo 4 th) — F(xo)|| = M|[ih],

where M does not depend on h.

(b) Azml,zMF(xo) = o(t) where
Ailr’WF(xO) = F(xo + b1 4 he) — Fxo + h1) — F(xo + hy) + F(w0).

The proof of the theorem is straight-forward and is given for instance in
[16, p. 39].

It was noted that § F(x; &) is not necessarily linear nor continuous in % or x.
It turns out, however, that if 6F(x; k) is continuous in x at x,, then it is linear
in k. More precisely we state:

TuEOREM 3. (See, for instance [16, p. 37].) If F has a G-variation in an open
set U such that 0F(x; h) is continuous in x at some xoin U, then 0F(x; k) is additive
1 hy 1.e. 61 (xo; h+k) exists and is equal to §F(xo; h) +0F(xo; k).

Combining this result with the well-known property of linear operators
stated in Section 2, we arrive at

THEOREM 4. Let the G-variation of the operator F exist in some neighborhood of
the point xo and let §F(x; h) be continuous in x at xo. Furthermore, assume that
01°(x0; h) is continuwous in b at h==0. Then §F(xo; h) is a G-differential.

6. Fréchet differential.

bEFINITION 5. The operator F is said to be Fréchet (strongly, totally) differenti-
able at xo if the representation (5.1) holds, where L(xo; h) is linear and continuous
n h and moreover
[ RGo; )|

(6.1) Lim — — % =
e ||7]
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The uniqueness of the Fréchet differential is a special case of the uniqueness
ot Gateaux differential, in view of Theorem 5.

We write L(xo; h) =dF(xo; h) = I"; h and call it the F-differential of F at x,
with increment k. The mapping dF(xy; -)=F; (-) which is a bounded linear
operator is called the Fréchet derivative of F at x,. It may be noted that the
F-derivative is an element in the space £; (see Section 2), while the F-differential
dF(x; h) is an element in Y. This fact is obscured in the calculus of one real
variable, where the derivative at a point is defined as a number, by the one-to-
one correspondence that exists in this case between numbers and linear opera-
tors.

It is easy to show that if F is F-differentiable at x,, then it is continuous
at that point; this is not necessarily true, however, if F is G-differentiable.
Furthermore, if 7 is continuous at x, then the requirement of continuity of
dF(x0; k) in k in Definition 5 is redundant. This follows from the inequality

HdF(xo;h)H =< HF(M + 1) — F(xo) — dF (x; lz)” -+ ”F(mo + i) — F(xo)H,

which shows that dF(x,; %) is continuous at k=60 and hence continuous every-
where.

REMARK 1. The norm || -||” is said to be equivalent to the norm ||| if there
exist positive numbers m and M such that

mifal] < all" = 24

for all x in E. This is clearly an equivalence relation. The definitions of the
differentials in the representations (5.1), (5.2), and (6.1) are given in terms of the
norms on X and Y. However, it is easy to check that two equivalent norms lead
to the same definitions of differentiability, i.e. (5.2) and (6.1) still hold if the
norms are replaced by equivalent norms. In the case of a finite-dimensional
space all norms are equivalent, so that the differentiability of a mapping 7 on
E into Y is independent of the norms on E and Y, in addition to being inde-
pendent of the coordinates.

Equivalent norms define the same “topology” so that differentiability de-
pends only on the topologies of X and 7V, in infinite-dimensional spaces.

Thus it is possible to extend the definitions of the F- and G-differentials to
certain topological vector spaces. It may also be observed in view of (5.2) that
G-differentiability is meaningful if £ is a linear space and ¥ a topological linear
space.

J

Example 3. Let F: E"—[Lm™, where £" is the Euclidean n-space. That is,
yi=F(x1, - -+, %), 2=1, 2, - - -, m. Assume that [ has an F-differential at
a=(ay, + + -, @n). Then it is not hard to show that the partial derivatives
J0F;/0x; exist at a, and that the F-derivative is the linear transformation whose
matrix is [ F,;/dx,]. Conversely, assume that there exists an » >0 such that for
X in Hx——a” <v, 0F;/0x; exist, and are continuous at x=a, then F has an
F-differential at x =a. See, {or instance, Advanced Calculus, by R. C. Buck.
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Example 4. Let K(s, t) be a continuous real function for 0<s, t<1, and as-
sume that K is symmetric, i.e. K(s, t) =K(¢, s). The functional

Jx] = ﬁle(t)dt — )xflflK(s, Ha(s)x(t)dsdt

is defined on the space of all continuous real functions on [0, 1] with norm ||«
=MmaXp<:<1 ]x(t) ) . From a simple computation it follows that

dii][x-l— Th] 1m0 = 2flat(t)lz(t) dt — zxfolfolK(s, Da(s)h() dids

0

which is linear and continuous in /4. Condition (6.1) is also satisfied, so that the
last expression is the F-differential of J.

7. Gradients. The definitions and properties given in the preceding sections
are for mappings between normed linear spaces. Thus, they hold in particular
for a functional f defined on a subset X of a normed linear space E and mapping
each x in X into a real number f(x). By Definitions 4 and 5, if f is differentiable
on X then there exists a mapping df on X X £ into the reals, which is linear and
continuous in % in E. Another way of looking at df is to consider df(x,; k) as a
continuous linear functional for each fixed xo, and denote it by f; k. Then f;
is an element of the dual space E* of E. As x, varies over X, a mapping f/ (+): X
—E* is thus obtained, which Rothe [15] called the gradient mapping of f.

For example if f is a differentiable function of three real variables, then the
differential of f at x= (x1, %, x5), with increment = (hy, hs, hs) is given by

- 8. of . " .
(7.1) df(x; h) = 2, P h; = T'(x)-h, where T'(x) = grad f(x).

=1 3

Thus I'(x) assigns to each x in E a continuous linear functional df. In this exam-
ple df is the inner product of grad f and 4.

Similarly, if E is a complete inner product space H, ([2, p. 103] or [3,
p. 111]) then the gradient mapping may be considered as a mapping from H
into itself since the dual space may be indentified with H. Furthermore, df(xo; %),
being a continuous linear functional in %, can be uniquely represented as an inner
product [3, p. 117], i.e. there exists a unique I'(x¢) in H such that

(7.2) df(wo; h) = (T'(wo), h),

where the parentheses denote inner product. I'(x,), defined by (7.2) is called the
gradient of the functional f at x, and is denoted by grad f(xo).

For instance it follows from Example 4, under the usual inner product
Sl (t)y(t)dt, that

L grad J[x] = a(t) — AflK(s, Hx(s) ds.
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The concept of gradient in abstract spaces was first introduced by M. Golomb
in his study of nonlinear integral equations.

If in (7.2), we use the GAteaux differential, then we obtain the definition of
the weak gradient grad,, of f at x, i.e.

(7.3) Df(xo; k) = (grady f(x0), k).

REMARK 2. The gradient depends on the inner product. For instance if P is a
positive operator, i.e. (Px, x) >0 unless x =0, then we may define a new inner
product [x, y] by

(7.4) 2, v] = (Px, 9).

Let grad f and grad? f denote the gradient of f with respect to the original and
new inner products respectively. Then by definition of gradient,

(7.5) df(w; h) = [gradf f, k] = (grad f, i).
But from (7.4)
(7.6) [grad? £, ] = (P grad f, k).

From (7.5) and (7.6) we get for all i, (grad f, k) = (P gradf f, k). Hence,
grad f = P grad f.
For example, if in £3 we define “distance” by
n 1/2
1,9) = { gty — w0 —mf = (Pl =), v =)
i1

where P = [p;,] is a positive definite matrix, then the gradient of f with respect
to this metric is related to the gradient of f with respect to the usual Euclidean
distance by

grad? f = [py] = grad 1.

8. Implication relationships between /- and G-differentiability. The only
difference between the Fréchet and Gateaux differentials is in the relations (5.2)
and (6.1). We now show that (6.1) implies (5.2) but not conversely. This result
is included in the following interesting characterization of the F-differential.

TrEOREM 5. The operator I' is F-differentiable at x, tf and only if the repre-
sentation (5.1) holds, where L(xq; h) is continwous and linear in h and

(8.1) lim 71| R(xo; 7h)|| = 0
70

uniformly with respect to h on each set || ]| = constant.

Proof. Without any loss of generality, we may prove this for the set HhH =1.
If Fis Fréchet differentiable at x,, then
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| Rxo; )| _

oo I

Letting h=r7k, where % has a unit norm, we get lim, T—lllR(xo; *rk)H =0 uni-
formly on Hk“ =1.

Conversely, if (8.1) holds uniformly on each bounded set, then, in view of
Theorem 1, F has a G-differential DF(xo; k) at xo. Thus for any given €>0,
there exists a § >0 such that

I [# (o + ) = F(x9)] = DF(o; B)| < e,
whenever | 7| <8. That is,

F(xo ++ 7h) — F(xo) = DF(x0;7h) -+ R(xo; 7h),
where for || <8,

(| R(x0; 7h)|
W <o (lH = ).
o] Izl
Letting k=7h, we get F(xo+k) — F(xo) = DF(x¢; k) +R(x0: k), where
oIRGB
im-———" =
|

Hence, DF(xo; k) =dF(xo; k).
Thus if F is F-differentiable at x,, then F is G-differentiable (and conse-
quently 1t has a G-variation) at x,. Furthermore

dF (%05 ) = DF(xo; h) = 0F (x0; k).

The converse holds if Fis a function of one real variable, but does not neces-
sarily hold in higher dimensions as may be seen from the following:

Example 5. Let x = (x1, x5) where x; and x, are real variables and consider
X1 2 2
f(x) = — (%1 4+ x9), xy # 0; f(x1, 0) = 0,
Ko

and let ||xf] = (| 21|24+ |22 /2. Then f has a G-variation atx= (0, 0), which is
(trivially) continuous and linear in %. In this case,

h
R(0; 1) = }Tl (s + h3), s # 0 RO, 1) = 0 if s =0,
2
and hence (5.2) holds. However, the F-differential does not exist at (0, 0). For
if we let h,=(n"12, =) then h,—0 while
|R(; )]

W=\/1+1/—n—>1, asn — o,
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REMARK 3. Neither the G-differential Df(xy; k) nor the F-differential df(xo; k)
of a functional f is required to be continuous in x at xy; and hence neither the
gradient nor the weak gradient of f. It can be shown, however, that if grad,, f(x)

exists and is continuous in x on an open set €2, then it coincides with grad f(x).
This then implies that f is F-differentiable and df(x; k) = Df(x; h).

REMARK 4. The requirement of continuity of grad f is related to the notion
of uniform ¥Fréchet differentials. [7is said to have a locally uniform [-differential
dF(x; h) on an open set Q if F has an F-differential on @ and the remainder
R(xo; k) is locally uniformly bounded, i.e. for each €>0 and an arbitrary x, in
Q, there exists a 6(xo; €) and n(xo; €) such that

[R@; I = dlaf] it (7] =6 and [lo — aff =
It turns out that a necessary and sufficient condition for grad f(x) to be con-
tinuous in the sphere .S: Hx <a is that df(x; k) have a locally uniform remainder
and grad f(x) be locally bounded. We leave the discussion of the interesting im-
plications of these remarks and proofs in the case of a function of several real
variables to the reader, (see Example 3).

9. Higher order differentials. The first order differential dF(x; &) is a func-
tion of two variables. Thus, several notions for a second order differential may
be defined. The most natural notion, which we will discuss here, is based on the
observation that F)(-Y=dF(x; -) which is an element of the space £y, is also
an operator sending X into the space £;. If this operator is [I-differentiable, its
derivative is called the second order Fréchet derivative of F and is denoted by
F{"(-5+). Thus the second order derivative is an element of the space £, of all
continuous linear operators from £ into £, i.e. it is a bilinear operator from £
to V; it also has the representation

dF (x 4+ k; h) — dF (x; k) = Fi'hk + R(x; hy k),
where
[ R@; , 1)
im ———— =
e |
Fl'hk=d*F(x; h, k) is called the second order Fréchet differential of F.
The F-differential of the nth order may be defined inductively as follows:

- DEFINITION 6. Let E and Y be normed linear spaces over the field of real numbers
and X be an open subset of E. Suppose that for some integer m =2, the m-th order
F-differential dmF(xo; hy - -+ hw) of the mapping F: X—Y, has been defined for all

(m—+1)-tuples (xo, h1, + + =, hn) of elements of E such that xo-+ p "\ hi is in X.
Then F is said to have an F-differential of order m1, if for all (m+2)-tuples of
elements (xo, h1, + + + , By1) of E such that xo-+ 2 0 by is in X, the following rep-

resentation holds:
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d™F (%o 4 fomyr; - 0 oy Bw) — dPF(x0; By, 0 0, Bm)
= d" TV (xo; by, - oy By Bwg1) + R(xo; By <y Bmgr),
where the mapping d"F(x; by, - - -, hwy1) 15 linear and continuous in M1 and

Hm || 7| R0 oy -+ By By )] = 0.

| Ihm—rl |]—0

If such a representation exists, it is unique and d™ ' /' (xo; By, - -+, Banyr) 18
called the (m—+1)-th F-differential of F at x,. The operator d"t'F(x,; - - - ) is
called the (m-1)-th Fréchet derivative. An inductive argument shows that
A"t F(xo; By - 0 0y Bwga) 18 (m41)-linear in Ay, - - -, Apga (Definition 1), Sym-
metry of the mth F-differential in Ay, - - -, h,, may therefore be defined (Defini-
tion 2). An interesting result, which is a generalization of the sufficient condition
that makes immaterial the order of mixed partial differentiation for real {func-
tions of several variables, may be stated as follows: a sufficient condition for

dmF(x; by, - - -, hy) to be symmetric in by, -+ - -, h, at x=x, is that d"F(x;
hi, -+ -, hn) be continuous in x for all x in some neighborhood of x, (Theorem 8
in [6]).

The Gateaux differential of order m may be defined similarly; implication
relationships similar to those established in Section 8§ may be stated. For
example, if /" has an F-differential of the mth order at xy, then the mth order
variation of /' at that point exists and moreover

am m
arl(xo; hyy, + + 0, ) = —————— Flap + zfz/zl->
( ’ ' ) atl vt atm < ’ Z

i=1 fym= v =ty =0+

In particular, if ly= - - + =h,=h, then

m

d"F(xoshy + + o, h) = F(xo + th)

aim !t:(].

10. Remarks.

A. It should be noted that the notions presented in the preceding sections
are coordinate free and that the derivative is defined in an invariant form as a
linear transformation. This approach is useful in applied mathematics for for-
mulating simultaneous algebraic equations, integral equations and boundary-
value problems, etc., as operator equations, and for approximate and iterative
methods for solving these equations. See for instance the interesting expository
paper on Newton’s method and variations by R. H. Moore in [1] and [9, 14,
16 ]. The compactness of notation that results from this approach and the ab-
stractness of the notions are assets to the conceptual framework, unifying
diverse situations in analysis and approximation theory.

B. Some of the recent books in advanced calculus and real variables, treat
differentials of mapping from regions in E* to E™ in the spirit of linear trans-
formations. We refer specifically to the outstanding books on Advanced Calculus,
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by T. M. Apostol; R. C. Buck; W. Maak; H. K. Nickerson, D. C. Spencer, and
N. E. Steenrod; and to Principles of Mathemaiical Analysis (2nd edition) by
W. Rudin, The Elements of Real Analysis by R. G. Bartle and [3]. An elemen-
tary introduction is also given in Calculus of Vector Functions by R. H. Crowell
and R. E. Williamson. See also the recent books by W. H. Fleming and C. Goft-
man on functions of several variables.

C. Differentiation rules, chain rules, mean value theorems, Taylor's for-
mula, etc., can be developed for F- and G-differentials as in classical calculus.
Partial F- and G-diftferentials can also be defined paralleling the classical theory.

11. Some open questions. One mathematician remarked that a colloquium
lecture in mathematics should include at least one proof and one open problem.
We assume, without further discussion, that this also holds for an expository
article. We conclude therefore by mentioning some open questions which can
be stated within the framework of this paper.

A. The derivative dF(x; -) is not necessarily continuous in x. The question
then arises as when we can approximate a nonlinear operator by a continuous
Fréchet derivative or, more generally, by another nonlinear map with a con-
tinuous Fréchet derivative, in the case of infinite-dimensional spaces.

B. It is known that a real function of a real variable which satisfies a Lip-
schitz condition is differentiable almost everywhere. This follows from the fact
that if |f(x) —f(y)| <M|x—y| for all x and y in [a, b], then

2 | fwern) — fl2) | = M?_:, | %ipa — |,

for any partition ¢ £x; <x2 < - -+ <x,<b. Thus f is of bounded variation, and
hence being the difference of two monotonic functions is differentiable almost
everywhere. The questions that arise are:

(i) Does an operator which is Lipschitz continuous, i.e.

|F(x) — F)|| < M |lx — y|| for all x and y,

have any G- or F-differentiability properties almost everywhere?

(ii) What additional hypotheses are sufficient to imply G- or F-differenti-
ability for a Lipschitz continuous operator?

C. A functional defined on a linear space E (or on a convex subset of E) is
said to be comvex if for all x and y in the domain of f and for 0=<ae =1,
flax+({1—a)y] <af(x)+(1—a)f(y). A convex functional defined on an open
subset has a one-sided G-variation, i.e.

lim 1 f(x + th) — f(x)]

t—0
exists, ¢>0. Furthermore, if f is continuous and convex on the real interval
[a, b], then f has a right-hand and left-hand derivative at every point and the
subset on which f’ does not exist is countable. See, for instance, pages 195-196
in Analysis by E. Hille.
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We ask the same questions as in B for convex functionals, i.e., what hypoth-
eses imply G- or F-differentiability of a convex functional, which would not
imply the same for arbitrary functionals?

A similar question can be posed for monotone operators (see the paper by
Dolph and Minty in [1]).
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