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1. INTRODUCTION. The study of knots and links begins with simple intuitive 
problems but quickly leads to sophisticated mathematics. This paper will provide the 
reader with an accessible route that begins with basic knot theory and leads into in- 
teresting realms of moder research. The specific topic of the paper is the enhanced 
linking number, i, a new invariant of links that provides a simple tool to address some 
of the fundamental problems in the study of linking. 

The linked rings illustrated on the left in Figure 1 are clearly linked; when a magi- 
cian pulls such a link apart we know we have been tricked. A mathematical proof that 
this link is nontrivial depends on showing that its linking number is 1, where the linking 
number is the basic invariant of link theory, first described by Gauss two hundred years 
ago. With the link on the right the situation is less clear. If this link is built from rope 
or beads, then one quickly finds that unlinking the two is impossible. However, formu- 
lating a mathematical proof of this is more difficult; for instance, the linking number 
turns out to be of no help. The enhanced linking number reduces the proof that this 
link is nontrivial to a simple calculation. This article describes the enhanced linking 
number and shows how it can be applied to this basic problem of distinguishing links. 
It will also discuss the role of X in a variety of advanced topics, such as periodicity, 
symmetry, Brunnian linking, and the moder theory of finite type invariants. 

Figure 1. Two links. 

Traditionally, knot theory has focused on the study of knot invariants. In most cases 
a knot invariant is simply a function that assigns to each knot or link an integer. Re- 
cently there has been a shift in knot theory from studying knot invariants themselves 
to examining how the invariants change as the knot or link is changed. The situation is 
somewhat parallel to a move from studying real functions to the study of derivatives. 
In the case of a knot invariant, the notion of derivative is replaced by a crossing change 
formula. This new focus on crossing change formulas in knot theory will be demon- 
strated by our presentation of the enhanced linking number. The presentation begins 
with a description of the crossing change formula for X, and from this all the results of 
the article will follow. It will only be in section 8 in which the actual definition of X is 
presented. 

This article is largely self-contained. Other expository articles on knot theory that 
are related to this one include [2], [6], [9], [11], and [13] and books on the topic include 
[7] and [10]. The enhanced linking number was first described in a paper written by 
the author and Paul Kirk [8]. It generalized an invariant of linking number 0 links first 
described explicitly in [12] and now referred to as the Sato-Levine invariant. 
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2. KNOTS, LINKS, AND THE REIDEMEISTER MOVES. 

Definition of links. A link is a collection of disjoint closed curves in R3 without 
self-intersections. Figure 2 illustrates four links, each with two components. A link 
with one component is called a knot. The main focus in this article will be links of two 
components, which will be denoted as ordered pairs (K, J) of knots. This study will 
also be facilitated by considering oriented links, those for which a direction is assigned 
to each component, as indicated by the arrows in Figure 2. For later reference, three 
of the links in Figure 2 have standard names: U2 is the unlink, H is the positive Hopf 
link, and W is the Whitehead link. (These last two are named for the topologists Heinz 
Hopf and J. H. C. Whitehead.) 

J J 
K J K< J KX K X K 

U2 H T2 W 

Figure 2. Basic two-component links. 

Two different links with the same number of components are considered equivalent 
if one can be obtained from the other through a continuous deformation in which no 
component intersects another component or has a point of self-intersection. Figure 3 
illustrates some of the steps of a deformation of a slightly complicated looking link 
into the unlink U2. 

Figure 3. A deformation of a link to the unlink. 

In section 3 the concept of linking number will be used to prove, for example, that U2 
and H are not equivalent. 

Link diagrams. The illustrations of links in the previous figures are simply sche- 
matic pictures of links; these pictures reside on a flat, 2-dimensional, piece of paper 
and not in R3. The relationship between links and their pictures is made formal with 
the notion of a link diagram. 

A link itself sits in R3 and hence can be projected onto a plane in R3, for instance 
via the map that takes the triple (x, y, z) to the pair (x, y). The left diagram in Figure 4 
represents a projection of a knot. In general, it is impossible to reconstruct the original 
link from its projection: in forming the projection too much information has been lost. 
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A link diagram is an illustration of the projection of a link with small gaps placed in the 
illustration to indicate "over and under" information about the link. The diagram on the 
right in Figure 4 illustrates the diagram of a knot having the projection shown on the 
left. Since links are oriented, diagrams also require orientations, which are indicated 
by small arrows, as has been done with the right-hand figure here. 

Figure 4. A projection and diagram. 

Different links can have the same diagram. For instance, if the entire link is moved 
upward (in the z-direction), the diagram is unaltered. However, this upward shifting of 
a link is a deformation, and the new link is equivalent to the first. In general there is 
the following result, whose proof is a bit technical but not deep. 

Theorem 2.1. If two links have the same diagram, the links are equivalent. 

It is this theorem that makes formal the idea that links can be described using planar 
diagrams, as has been done beginning with Figure 1 in this paper. 

Reidemeister moves. Since links are determined by link diagrams, a question im- 
mediately arises: How are the diagrams of equivalent links related? To understand the 
issue, look back at Figure 3. This figure is a sequence of link diagrams showing steps 
in the conversion of a diagram for one link into the diagram for the unlink. Notice 
that in each step of the conversion of the diagrams fairly simple changes take place. In 
fact, only three basic types of alterations of link diagrams are required. Theorem 2.2 
states that, in fact, these simple moves, called the Reidemeister moves, are sufficient to 
convert any diagram of a link to any other diagram of any equivalent link. 

Theorem 2.2. Two diagrams represent equivalent links if and only if the diagrams are 
related by a sequence of Reidemeister moves, as illustrated in Figure 5. 

)H )/X /XX 
Figure 5. The six Reidemeister moves. 

With this theorem it becomes possible to define a link invariant using a diagram 
for the link. To check that the invariant is well-defined, one needs to verify only that 
performing a Reidemeister move does not change the value of the invariant. This will 
be illustrated with the linking number in the next section. Further discussions of the 
Reidemeister moves can be found in such expository articles as [2], [6], or [11]. 
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For practice with the Reidemeister moves, the reader might find the sequence of 
moves that correspond to the deformation in Figure 3. (Calling the moves illustrated 
in Figure 5 R1, R2, and R3 in order from left to right, the answer to this problem is 
the sequence R1, R3, Ri, R2.) 

3. LINKING NUMBERS OF TWO-COMPONENT LINKS. The simplest and 
most intuitive invariant in knot theory is the linking number. This invariant assigns 
to each link of two components an integer that roughly measures how many times one 

component "passes through" the other. Before giving a precise description of the link- 
ing number, we use the four examples of Figure 2 to illustrate the concept. The linking 
numbers of the first three links (U2, H, and T2) in Figure 2 are 0, 1, and 2, respectively. 
The fourth link is the most interesting. It has linking number 0; J appears to "pass 
through" K twice, but because it goes through in opposite directions, in computing the 
linking number the total contribution is 0. In particular, the unlink and the Whitehead 
link both have linking number 0. The first application of the enhanced linking number 
will be to show that the Whitehead link is not the same as the unlink. More formally, 
W and U2 are not equivalent links. 

An explicit method for computing the linking number of a link (K, J) is given by 
computing the sign of each crossing in a diagram for the link, as now described. A 
crossing point in a link diagram is a point on the diagram that corresponds to a double 
point in the link projection. The diagram in Figure 6 has five crossing points, indicated 
by large "dots" in the figure. 

+ 

+ 

Figure 6. Crossing points and signs of crossings. 

A sign of the crossing is associated to each crossing point as follows. The portion 
of the link that projects into a small neighborhood of the crossing point in the plane 
consists of two short segments, one that passes over the other, such as in the portions of 
link diagrams in Figure 7. View the link from the perspective of someone sitting on the 
upper of the two segments, facing in the direction of that component of the link. The 
sign of the crossing is positive, and the crossing is right-handed, if the lower segment 
crosses under the upper one moving from right to left. Similarly, it is called negative 
or left-handed if the lower segment passes under from left to right. Figure 7 presents 

K J J K 

Figure 7. Right- and left-handed crossings. 
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"generic" pictures of right- and left-handed crossings. In Figure 6 the signs of each 
crossing are indicated with plus and minus signs. 

Definition 3.1. The linking number lk(K, J) of a link (K, J) is given by the sum of 
the signs of the crossing points of a diagram for (K, J) at which K crosses over J. In 
this sum, right-handed crossings are counted +1 and left-handed crossings are counted 
-1. Self-crossings of K and J are not included in the summation. 

The computation of the linking number of a link appears to depend on the link 

diagram. However, there is the following result and its immediate corollary. 

Theorem 3.2. If two link diagrams represent equivalent links, the linking numbers 
computedfrom the two diagrams are the same. 

Corollary 3.3. Equivalent links have the same linking number. 

The proof of Theorem 3.2 is an easy exercise using the Reidemeister moves. For in- 
stance, the first Reidemeister move introduces (or removes) two crossing points in the 
diagram. However, the signs of these crossings will be opposite, so they cancel in the 
sum used to compute the linking number. In the second Reidemeister move only one 
crossing point is introduced, but this is either a crossing point between K and itself 
or J and itself, so it doesn't contribute to the sum. The complete proof is left to the 
following exercises, included to assure that the concept of linking number is well un- 
derstood. 

Exercise 3.4. 

1. Check that performing any of the Reidemeister moves on a two-component link 
diagram does not change the count given in the forgoing algorithm for computing 
the linking number, and hence show that the linking number is well-defined, as 
claimed in Theorem 3.2. (Notice that for the third move there are many cases, 
depending upon the way in which the components of the link are involved in the 
Reidemeister move.) 

2. The sign of the linking number changes if the orientation of one component is 
reversed. 

3. The linking number is symmetric, lk(K, J) = lk(J, K). Hint: Deform the link 
by rotating it 180 degrees about the vertical axis in the plane of the page. This 
will switch overcrossings of K with overcrossings of J. 

The crossing change formula for the linking number. If a particular crossing point 
is selected in a link diagram, one can construct a new link diagram by making what is 
called a crossing change. On the left in Figure 8 a diagram of the Hopf link is drawn, 

Figure 8. Hopf link before and after crossing change. 
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with a small dotted circle drawn around one of the crossing points. On the right in 
Figure 8 the same diagram is drawn, only modified so that the portion of the link that 
went over (within the dotted circle) is now going under. In general, such a modification, 
at any crossing point in a diagram, is called a crossing change. 

Notice that performing this crossing change on the diagram resulted in a diagram 
of a new link that is not equivalent to the original one. Unlike Reidemeister moves, 
crossing changes do not correspond to deformations. In Figure 8 the crossing change 
converted the Hopf link into an unlink. There is a simple formula describing how 
the linking number of a link changes when a crossing change is performed on its 
diagram. If at the crossing point one component passes over itself, the linking number 
is unaltered. However, if at the crossing point one component passes over the other 
component, then the linking number does change. This change is encapsulated by the 
following equation, the crossing change formula for the linking number: 

lk(X)-lk(X) = 1. 

This equation uses very condensed notation. The symbol YX is a stand-in for an entire 

link diagram, with the >( representing only that portion of the diagram near a crossing 

point at which the crossing change is to be made. The slightly changed symbol < is 
a stand-in for a second link diagram, identical to the first except that the one crossing 
change has been made. Small dots are placed on segments in the illustrated portions 
of the link diagram. Placing one dot on one segment and two on the other is used 
to indicate that they come from different components of the link. Later there will be 
diagrams in which the two segments have the same number of dots, indicating that 
they come from the same component of the link. There will also be diagrams with no 
dots, in which case it is irrelevant which components the segments correspond to. As 
an illustration of the use of the crossing change formula, consider the Hopf link H on 
the left in Figure 8. In this case the diagram has been changed in that a right-handed 
crossing between the two components has been replaced by a left-handed crossing. 
The crossing change formula then tells us that the difference of the linking number of 
the Hopf link and the unlink is 1. In particular, these are different links. Of course, in 
this case computing the linking numbers is a triviality and the crossing change formula 
is not really needed. 

The truth of the crossing change formula for the linking number is almost self- 
evident. If exactly one crossing change is made and it involves both components of 
the link, then the count that gives the linking number will change by ?1, the sign 
depending on the sign of the crossing. 

We have introduced the crossing change formula here not so much for its own use- 
fulness, but to illustrate the general notion of crossing changes and crossing change 
formulas, and also to introduce the compact notation that is essential in this work. 

The Fundamental Theorem. The following result will be the basis of the use of 
a crossing change formula in developing properties and computing the value of the 
enhanced linking number. 

Theorem 3.5. If links L1 and L2 have the same linking number, then there is a se- 
quence of Reidemeister moves and crossing changes that converts the diagram of LI 
into the diagram of L2, where none of the crossing changes in the sequence is between 
different components of the link. 
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Proof The argument is a bit technical to present in detail, but the ideas are straightfor- 
ward and easily carried out in practice. The proof consists in showing that each Li can 
be converted, using crossing changes and deformations, into a standard form. The first 
step of the proof is based on the observation that by changing crossings in one of the 
components it can be arranged that this component is unknotted, meaning that it can 
be deformed to a standard circle having no self-crossing points. After making these 
crossing changes and performing such a deformation, a link such as the one illustrated 
in Figure 9 results, in which one of the two components is obviously unknotted. 

Figure 9. The link after unknotting one component. 

It is now possible to make crossing changes in the second component so that it 
winds "monotonically" about the unknotted component. We can clarify this notion 
using the diagrams in Figures 9 and 10. In Figure 9 the curve, on the plane of the paper, 
has four maximum points with respect to the vertical, y-axis. The linking number for 
this link is 1. However, in the diagram in Figure 10 the curve representing the second 
component (the more complicated looking of the two components) has five maxima, 
and the link also has linking number five. In general, we say that the second component 
winds monotonically about the first, unknotted, component if the number of maximum 
points on the diagram equals the absolute value of the linking number. So in Figure 9 
one component does not wind monotonically about the other, but changing the crossing 
marked with the dot and performing a sequence of Reidemeister moves changes it 
into a link diagram for which the second component does wind monotonically around 
the first. As a final step one shows that a further sequence of crossing changes and 
Reidemeister moves results in a link diagram in the "standard" form of Tn, n > 0, 
illustrated in Figure 10 for n = 5. The general Tn is analogous to this. i 

Figure 10. Standard form T,, n = 5. 
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4. THE ENHANCED LINKING NUMBER. The linking number is a very useful, 
but also very simple invariant. The challenge and interest in studying linking becomes 
much greater when one takes on the problem of working with links of the same linking 
number. In this section the enhanced linking number, denoted i, is introduced. 

The formal definition of i., along with an algorithm for its computation, will be 
delayed until section 8. For this reason we want to be very clear now: X is an integer- 
valued function of two-component links. That is, for each two-component link (K, J) 
the invariant X returns an integer, denoted .(K, J). Also, the value of X will ultimately 
be seen to be the same for equivalent links. That is, if (K', J') is obtained by deforming 
(K, J), then h(K', J') = X(K, J). The reader might at first be disappointed that much 
of this paper is based on the theory of an invariant whose definition and computation 
is a mystery. But this is one point of the article. To apply X to both computational and 
theoretical problems in link theory, one needs to know only a crossing change formula 
satisfied by X.-its precise value need not be known. This crossing change formula is 
our next topic. 

The crossing change formula for A. The following theorem states a number of 
facts. First it asserts the existence of the function X (a fact that will be proved in sec- 
tion 8) with domain the set of all two-component links and range the set of integers. 
In particular, though we will initially be working with link diagrams, implicit in this 
is that the value of X will be the same on equivalent links. The theorem also asserts 
that X satisfies a particular crossing change formula. This formula is stated in a fairly 
condensed form that will be explained in detail following the statement of the formula. 
Hopefully, working with the notation of the crossing change formula for the linking 
number will have prepared the reader for this more complicated set-up. 

Theorem 4.1. There is an integer-valued invariant X of two-component links satisfy- 
ing the crossing change formula given in Definition 4.2. 

Definition 4.2. The crossing change formula for X is given by: 

A ( /, ) _-A (jx, J = -l )k (<, J). (1) 

Figure 11 will help explain this notation. If one begins with a knot diagram K and 
focuses on a particular right-handed crossing, the resulting diagram has been abbre- 
viated ,~. If the V in that diagram is replaced with a "X, a crossing change has 

been made. Another option is to replace the >K with > K, in which case a link of two 
components is constructed. This link is illustrated in the third diagram of Figure 11. 

Figure 11 Smoothing a crossing. 
Figure 11. Smoothing a crossing. 
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The process of replacing >X with > < is sometimes called smoothing the link at 
the crossing. Since the smoothed link has two components, the two components are 
abbreviated in the formula by > and <. The order will be seen not to matter. 

With the notation explained, it is best to illustrate the crossing change formula for 
X with a series of examples, the first of which concerns the Whitehead link W in Fig- 
ure 2. The application of the crossing change formula results in equation (2). Observe 
the essential feature in this equation that in each case A is being applied to a two- 

component link. In this example the crossing change and smoothing are taking place 
near the crossing marked with the dot. 

=lk lk (-1)(1)=-1. (2) 

Notice that the second diagram in this difference is a diagram for the unlink U2. 
Hence, since the value of X on the unlink and the Whitehead link are different, the 
Whitehead link cannot be deformed into the unlink. The reader is encouraged to check 
the details of this calculation. 

The following offers another example, working at the dotted crossing. 

= lk ( X- -) lk= ) =-1. 

Adding this to the difference given in (2) yields 

A xf 
Qfiv)Z-xA(Q) Q()?=-2. 
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Repeating this process, one then finds that 

X1 c(i\%JCc%/?J Ax(Q Q)=-3. 

Generalizing this example provides an infinite family of distinct links, all with linking 
number 0, distinguished by the value of A. Notice that at this point we have been able to 
use X to distinguish an infinite family of links, all with linking number 0, without ever 
computing the value of X explicitly, or even knowing the definition of A. All that has 
been used is the knowledge that the function X exists and that it satisfies the crossing 
change formula. A few exercises might help the reader at this point. 

Exercise 4.3. 

1. Show that the crossing change formula can be written as 

X (X J)- (XX ) = 
J k 

(>, J) (n-lk (>,J)), 

where n = lk(K, J). 
2. Suppose that links (K, J) and (K', J') have the same linking number and that 

X(K, J) - X(K', J') = n. New links can be formed by reversing the orien- 
tations of K and K', call them (Kr, J) and (K', J'). Show that A(K,, J)- 

r(K', J') = n. 

3. From a given link (K, J) a new link can be formed as the mirror image: change 
all the right-handed crossings into left-handed crossings, and conversely. Denote 
the new link by (K, J). (Observe that this changes the sign of the linking num- 
ber.) Use the crossing change formula to show that if a diagram for (K, J) can 
be converted into a diagram for (K', J') by making crossing changes at self- 

crossing points, then X(K, J) - X(K', J') = -(X(K, J) - X(K', J')). 

Basic examples: the links Tn. A somewhat more complicated application of the 
crossing change formula for X is presented in the following computation. The two 
links that appear in it will be useful in later sections. The one on the right is Ts, as 
introduced in Figure 10; the one on the left will be denoted T5. (It turns out that T5 is 
the more important of the two; in Theorem 8.8 it will be seen that X(Ts) = 0.) 

X X I -A (4 =1 4+2 3+3. 2+4.1 =20. 

To understand this, we momentarily denote T5 by Lo. To change T5 into Ts, four 
crossing changes are required; in the diagram these are at four self-crossings of the 
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second component of Ts. Each crossing change creates a new link; let's denote them 
L1, L2, L3, and L4 = T5. We now have that 

L(Lo) - h(L4) = [X(Lo) - X(L1)] + [.(L1) - X(L2)] 

+ [X(L2) - X(L3)] + [X(L3) - ,(L4)]. 

The crossing change formula is now used to compute each of these summands. For 
instance, the first crossing change, say the lower left one, changes X by 1 ? 4. Perform- 
ing the next changes X by 2 3. Performing the last two produces changes of 3 ? 2 and 
4 1, respectively. The total of these changes is 20. 

If one considers the analogs Tn and Tn of linking number n instead of the specific 
case of n = 5 just presented, a straightforward algebraic calculation yields the formula 

n-l 3 

(Tn)- Tn) = j (n - j) (3) 
j=1 

The reader is invited to carry out the calculation, recalling the formulas 

N 
N(N + 1) N2 N(N + 1)(2N + 1) 

EJ= 2 ' E 6 j=l j=1 

5. SYMMETRY. Consider the unoriented links illustrated in Figure 12. The second 
of the two links is formed by taking the mirror image of the first, that is, by changing 
every crossing in the diagram. It turns out that the second link is a deformation of 
the first. To see this, consider the two step deformation illustrated schematically in 
Figure 13. In this figure the complicated portion of the diagram is represented by a 
box labeled R in order to simplify the diagram and indicate that the deformation can 
be carried out in more general situations. The portion of the diagram contained in the 
box is called a tangle. In the first of the steps, R is unmoved while each of the vertical 
strands on the right is lifted up and over R and laid down to the left. In the second step 
the entire diagram is rotated 180 degrees about the center point of the diagram. 

An unoriented link with the property that changing all the crossings yields the same 
link is called amphicheiral. (It is important here to ignore orientations, since taking the 
mirror image changes the linking number: unless the linking number is 0, an oriented 
link cannot be equivalent to its mirror image.) 

Figure 12. Amphicheiral link. 
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Figure 13. A two step deformation. 

Other examples of amphicheiral links include the unoriented unlink and the Hopf link, 
depicted as U2 and H in Figure 2. 

For an example of a link that is not amphicheiral, consider the Whitehead link and 
its mirror image W, as represented in Figure 14. If, as unoriented links, these were 
equivalent, then clearly for some choice of orientation the links would be equivalent 
as oriented links. For the orientations illustrated in the figure, the difference '(W) - 

X(U2) = -1, whereas XA(W) - X(U2) = 1. Hence X(W) - h(W) = 2, so with these 
orientations the Whitehead link and its mirror image are not equivalent. A similar 
calculation applies for any other choice of orientations, showing that the Whitehead 
link is not amphicheiral. 

Figure 14. Right- and left-handed Whitehead links. 

With the examples of the unlink, the Hopf link, and the link of Figure 12, particular 
links of linking number 0, 1, and 5 are seen to be amphicheiral. Given the example 
with linking number 5, the reader should have no trouble constructing amphicheiral 
links of arbitrary odd linking number. How to construct amphicheiral links of even 
linking number is less clear. Here is an unexpected result, the proof of which follows 
easily using the enhanced linking number. 

Theorem 5.1. If an unoriented link L is amphicheiral, then (for any choice of orien- 
tation) its linking number n is not congruent to 2 modulo 4. 

Proof. Choose an orientation for L, and let L denote the link that results by changing 
all the crossings of L. If L is amphicheiral, then for some choice of orientation of L the 
(now oriented) links L and L will be equivalent. In particular, X(L) - X(L) = 0. Since 
the link L is unknown, it will be helpful to rewrite the equation X(L) - 3A(L) = 0 in 
terms of a specific, perhaps inequivalent, link Tn: 

(X(L) - X(Tn)) + (X(Tn) - X(Tn)) + (X(Tn) - X(L)) = 0. 
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Of course, since the relationship between L and Tn is unknown, the difference 
A(L) - X(Tn) cannot be computed exactly. However, whatever sequence of crossing 
changes converts L to Tn translates into a sequence of crossing changes that converts 
L into Tn; the roles of right- and left-handed crossing changes are switched. Taking 
into account the resulting sign changes, and other sign changes coming from the choice 
of orientation, yields 

((L) - )(Tn)) = (X(Tn) - X(L)). 

Combining this with the explicit value of X(Tn) - X(Tn) given in equation (3) yields: 

n3 - n 
X(L)- )(Tn) . 

12 

A small calculation using the factorization n3 - n = (n - l)n(n + 1) shows that 
(n3 - n)/12 is not an integer in the case that n = 2 mod(4), thus completing the proof. 

The question remains as to what linking numbers can occur for amphicheiral links. 
All that is left to determine is the case of linking numbers congruent to 0 modulo 4. 
The unlink is amphicheiral of linking number 0, and the link illustrated in Figure 15 is 
amphicheiral with linking number 4. (Notice that in this example the deformation that 
converts the link into the link with all crossings changed has the effect of interchanging 
the two components. This is the first example of an amphicheiral link presented here 
for which such an interchange is required.) Similar examples can be found with linking 
number k2, but beyond this no examples are presently known. 

Figure 15. Amphicheiral link with linking number 4. 

Open problems. Find an amphicheiral link of linking number 4k for each positive 
integer k. Also, find an amphicheiral link of linking number 4, and more generally 
of linking number 4k, in which it is not necessary to switch the two components in 
relating L and L, as is required for the link in Figure 15. 

6. BRUNNIAN LINKS. 

The Borromean link. That X can be used to distinguish two-component links is to be 
expected, given that it is an invariant of such links. That it is effective in working with 
three-component links comes as a surprise. There is no better place to demonstrate 
this than with the Borromean link, labelled B in Figure 16. This link has always held 
fascination for knot theorists. If any one of the three components is removed, the unlink 
U2 results. Yet, as will be shown, B itself is not trivial; that is, it is distinct from U3, 
the unlink of three components. (See the article [11] for another approach to studying 
this link.) The application of X to prove that the Borromean link is nontrivial begins 
with a study of the banding of links. 
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B 

Figure 16. The Borromean link and unlink. 

Starting with the unlink of three components, a two-component link can be formed 
by banding together two of the components, as indicated in Figure 17 (ignore the arrow 
in the figure for the moment). The following theorem states that the value of X on this 
link is the same as its value on the unlink U2, regardless of the choice of band. It will 
be seen that banding two of the components of the Borromean link together results in 
a link for which the value of X differs from that of the unlink. Hence, the Borromean 
link cannot be trivial. 

K, 

K2 

Figure 17. The banding operation. 

Theorem 6.1. If the link (K, J) isformedfrom the unlink U3 by banding together two 
components, then X)(K, J) - X(U2) = 0. 

Proof. Suppose that the band joins components K1 and K2 of the unlink. In Figure 
17 the band joining K1 and K2 passes under K2 at the point marked with the arrow. It 
should be clear that if the band never passed under K2, then the resulting link would 
be the trivial link U2. In the illustrated example, if two crossing changes were made 
at the arrow, then where the band now passes under K2 it would instead pass over it. 
In general, a series of pairs of crossing changes will lead to a band that does not pass 
under K2. 

To prove the theorem it thus suffices to show that each pair of crossing changes has 
no effect on the value of X. The crossing changes are of opposite sign, so it remains 
to check only that the value of lk(>, J)lk(<, J) in the crossing change formula is 
the same for each pair. Each of the terms in this product can be identified as follows. 
If the band is cut (at the point of the arrow in the illustrated example), it splits into 
two pieces. In Figure 18 the cut has been made, and the band has split into two long 
"fingers," one extending from K1 and one from K2. A careful calculation shows that 
in the crossing change formula the two terms of the product are given as (plus and 
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minus) the number of times the finger extending from K2 "passes through" J. (To be 
more precise, the number of times the band passes through J is computed as follows. 
The band itself is first given an orientation. This orients each of the two fingers. One 
then computes the number of times the finger from K2 passes under J moving from 
right to left, minus the number of times this finger passes under J moving from left 
to right.) This is independent of which of the two crossings are smoothed. The result 
follows since the two crossing changes are of opposite sign. U 

K, 

K2 

~\\ ~J 

Figure 18. The banding operation. 

In Figure 19 a two-component link formed from the Borromean link by banding to- 
gether two of the components is shown. A single crossing change results in the unlink, 
and an application of the crossing change formula determines that the value of X on 
this link differs from that of the unlink by -1. By Theorem 6.1, if the Borromean link 
were trivial, then this difference would not occur. Accordingly, the Borromean link is 
nontrivial. 

Figure 19. Banding the Borromean link. 

More Brunnian examples. The Borromean link is an example of a Brunnian link, 
named after the nineteenth-century mathematician H. Brunn who first studied gener- 
alizations of the Borromean link. Brunnian links are links that become unlinked when 
any one component is removed. In general, distinguishing Brunnian links is difficult: 
linking numbers will not suffice, and considering sublinks is also unhelpful. Here we 
expand on the example of the Borromean link. The proof of the following theorem 
mimics the proof of Theorem 6.1. 

Theorem 6.2. If a two-component link is formed from a three-component Brunnian 
link (J1, J2, J3) by banding together two components, the value of X for the link is 
independent of the choice of band joining those two components. 

Consider now the Brunnian link B2 on the left in Figure 20. 
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Figure 20. Brunnian link B2, before and after banding. 

Banding two of the components together along the dotted band in the figure results 
in the link drawn on the right of Figure 20. The value of X on this link differs from 
that of X(U2) by 4. (Change the crossing indicated by the dot to get to the unlink.) It 
takes a little more manipulation to see that banding together any of the other pairs of 
components also yields a two-component link with A-value differing from ;(U2) by 4. 
In the case of the Borromean link, after banding the difference was -1. Consequently, 
B2 is different from both U2 and B. 

Exercise 6.3. Describe Brunnian links Bn so that, whichever two components are 
banded together to form a link B', one has A(B') - X(U2) = n2, and hence construct 
an infinite family of distinct Brunnian links. 

7. PERIODICITY. Consider the two knots pictured in Figure 21. The one on the left 
is said to have period five since if the diagram is rotated through an angle of 27r /5 about 
the origin, marked with the black dot, it is unchanged. Similarly the diagram on the 
right represents a knot of period three. The sort of question of interest here is whether 
it is possible to deform the first knot so that it reveals a period three periodicity, where 
the deformation should never cross the black dot. 

0 S 

Figure 21. Periodic knots. 

Such problems can be placed in the context of linking by broadening the notion 
of link. If the plane of the paper is viewed as the (x, y)-plane in R3, then the z-axis, 
denoted Z, would be perpendicular to the plane of the paper, appearing as a central 
point in the diagram. The notion of link can be expanded to include pairs (K, Z), 
where K is a knot disjoint from the z-axis. The diagram of such a link consists of a 
diagram for K along with the origin in the plane, the projection of Z, indicated by a 
large dot. 

The theory of linking numbers and enhanced linking numbers goes through as be- 
fore, though now only crossing changes in K, not in Z, are considered. The linking 
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number lk(K, Z) is computed by counting the number of times the projection of K 
crosses the positive x-axis, (or any other ray emanating from the origin) counting 1 if 
it is moving counterclockwise and -1 if it is moving clockwise. Both of the previous 
examples have linking number 2. 

Definition 7.1. A link (K, Z) is called periodic of period p if K can be deformed in 
the complement of the z-axis into a knot that is transformed to itself by a rotation of 
R3 about the z-axis through an angle 2n/p. 

Theorem 7.2. If links (K1, Z) and (K2, Z) both have the same linking number and 
are of period p, then the difference X(K1, Z) - X(K2, Z) is divisible by p. 

Proof If (K, Z) is of period p, there is a quotient link (K, Z), with the same link- 
ing number. Figure 22 illustrates the formation of a quotient knot from the periodic 
diagram of a knot, working with the diagram on the right in Figure 21. The quotients 
of the links in Figure 21, under the period five and period three symmetries are then 
illustrated in Figure 23. 

Figure 22. Building a quotient knot. 

Figure 23. Quotient knots. 

Now, if (K1, Z) and (K2, Z) have the same linking number, then consider the quo- 
tients (K1, Z) and (K2, Z). Since they have the same linking number, a series of cross- 

ing changes in K1 will change it into K2. Each of these crossing changes determines p 
crossing changes in K1. Hence, the total set of crossing changes that converts K1 into 
K2 will split into sets of p crossing changes, where the elements of each set lead to the 
same change in the value of X. Thus, the total change in the value of X will be divisible 
by p. X 

Example. The reader should check that the difference of X for the two links (K1, Z) 
and (K2, Z) arising from Figure 21 is 1. (Three crossing changes at the points marked 
with dots are needed to eliminate the kinks in L2, yielding a link L' = (K', Z); these 
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don't change X. A crossing change in L1 converts it into L'.) Since 1 is divisible by 
neither 3 nor by 5, the first link in the figure is not of period 3 and the second is not of 
period 5. 

This represents the application of the difference formula for X to shed light on a 
particular pair of links. Here is a much deeper application. 

Theorem 7.3. If a link (K, Z) has linking number 2, then it has at most afinite number 
of periods. 

Proof. The period 5 link in Figure 21 will henceforth be denoted Ls. There is an analog 
Lk of period k and linking number 2 whenever k is odd. 

If (K, Z) has period n, then it has period pe for each prime power divisor pe of n. 
Thus it suffices to show that (K, Z) has at most finitely many periods that are prime 
powers. Suppose that (K, Z) has period pe for some prime p and positive integer e. 
Suppose that it also has period qf, where q is a prime not necessarily distinct from p. 
By Theorem 7.2 there are integers a and b for which the following equations hold: 

(K, Z) - (Lpe) = ape, ( (K, Z) - X(Lqf) = bqf 

Subtracting the equation on the left from the equation on the right yields 

X(Lpe)- X(Lqf) = bqf - ape 

If pe > qf, then Lpe can be converted into Lqf using (pe - qf)/2 crossing changes. 
Hence X(Lpe) - X(Lqf) = (pe - qf)/2. In the case that qf > pe identical reasoning 
shows that X(Lqf) - X(Lpe) = (qf - pe)/2. In either case we have 

pe _ qf 
e 

-q = bqf -ape 
2 

or 

(1 + 2a)pe = ( + 2b)qf. (4) 

Suppose first that there is an infinite set of primes qi with powers among the periods 
of (K, Z). Then there would be an infinite set of equalities (4): (1 + 2a)pe = (1 + 
2bi)(qi)fi. This implies that 1 + 2a is divisible by an infinite set of primes, which is 
impossible since it is odd and thus nonzero. 

Accordingly, at most finitely many primes have powers that turn up among the 
periods of (K, Z). Suppose that for some prime p arbitrarily large powers of p, say pei, 
appear among the periods. Let one of those periods be denoted simply pe. An infinite 
set of equalities (1 + 2a)pe = (1 + 2bi)pei with ei arbitrarily large would arise. But 
this would imply that 1 + 2a is divisible by arbitrarily large powers of p, which is 
again impossible because it is nonzero. i 

Note. An argument similar to the proof of Theorem 7.3 can be carried out for an 
arbitrary linking number n. There are a fair number of delicate issues that arise, but 
the following counterpart of (4) surfaces: 

(n3n +2a (n-n+ 2b f 

6 
+ -2a\p= 

2)f 
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Since (n3 - n)/6 is odd if n = 2 mod(4), an argument like the earlier one shows that 
for these linking numbers there are no links with an infinite number of periods. (For 
n = 1 there is a link with an infinite number of periods, but for all other linking num- 
bers this situation cannot occur. We do not know a purely algebraic proof of this fact 
analogous to the one just given for n = 2.) 

8. DEFINING A: THE CONWAY POLYNOMIAL. There is an obvious gap in this 
article up to this point, namely, the proof of Theorem 4.1. Basically it has been seen 
that, if there is an invariant X satisfying the crossing change formula given in Defini- 
tion 4.2, then the subsequent results of the article hold. We have yet to establish the 
existence of such a ,. This gap will now be filled. The definition of X depends on 
the use of knot polynomials-in particular, the Conway polynomial-so the discus- 
sion begins with this invariant. It should be mentioned that the original definition of 
A given in [8] was based not on polynomial invariants, but rather on a subtle invariant 
of 3-manifolds called the Casson-Walker invariant. The connection with polynomials 
developed from the work of Kanenobu, Miyzawa, and Tani [5]. 

The Alexander and Conway polynomials. In 1928 Alexander showed how to as- 
sociate with each diagram of a knot or link a polynomial. Unfortunately, Reidemeister 
moves change the resulting polynomial, so it is not an invariant of links. However, 
Alexander did prove that any two polynomials associated with the same knot or link 
would differ by multiplication by a power t, the name used for the variable in the 
Alexander polynomial. The proof is outlined in [10]. This polynomial is now referred 
to as the Alexander polynomial. In 1975 Conway [4] observed that by properly nor- 
malizing the Alexander polynomial of a link L one obtains a polynomial invariant of 
knots and links, now called the Conway polynomial and denoted C(L)(z). Here L rep- 
resents a knot or link and C(L) is a polynomial in a variable named z. (There is a 
choice of sign in defining the Conway polynomial and references are not all consis- 
tent.) By Alexander's work the Conway polynomial is well-defined. One of the main 
benefits of Conway's approach was that it presented a crossing change formula for the 
polynomial. Conway observed that this crossing change formula and the fact that the 
Conway polynomial of the unknot is 1 completely determine the polynomial for all 
links. Conway also noted that the crossing change formula gives a simple technique 
for computing the polynomial, much simpler than Alexander's determinant formula. 
Here are the essential formulas: 

C(X)-C(X)= zC ( ), (5) 

c (O)= i. 

Recall that the link represented as > < in (5) is called the smoothed link. 

Sample computations of the Conway polynomial. A basic application of the cross- 
ing formula is the following: 

c(CJQ)-c(GXD)=zc(QQ). 

Since the two knots appearing on the left side are the same (the unknot), it follows that 
the Conway polynomial of the unlink is 0. Similar computations give: 
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Theorem 8.1. C(Un) = Ofor all n > 2. 

As a more complicated example, consider the knot drawn in Figure 24. This knot is 
usually denoted 42 in tables of knots and is called the figure eight knot. 

Figure 24. The knot 42. 

Applying Conway's formula (5), rewritten as 

C(X) = C(X)+ZC(><), 

yields the following: 

c J= ) + zC(cD ) (6) 

The reader is encouraged to check that making the crossing change and the smoothing 
at the crossing marked with the dot results, after deformation, in the knot and link that 
appear on the right-hand side of (6). We again apply Conway's formula (5), written 
now as 

( ), 

to the Hopf link that appears in (6), working at either crossing point, to find that 

)) =( ) +z C ( o)-zc( 

Expanding this equation leads to 

C( ) (1 -Z2C(O +zc(Q)- 
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On the basis of Theorem 8.1 we finally arrive at 

C- =l1--Z2. 

Basic properties of the Conway polynomial. The individual coefficients of the 
Conway polynomial are link invariants in their own right. These coefficients, viewed 
as invariants ci (L) (i > 0) for a link L, are defined by the expansion 

C(L)(z) = ci(L)z'. 

Notice that smoothing a crossing changes the number of components of a link by 
one and that multiplication by z switches odd and even polynomials. (Here, by an 
even polynomial we mean a polynomial that represents an even function, a polynomial 
of the form E=0 a2i 2i; likewise for odd polynomials.) It then follows quickly from 
induction that a link with an even (respectively, odd) number of components has an 
odd (respectively, even) Conway polynomial. 

The Conway polynomial of a link can be computed by repeatedly smoothing and 
changing crossings until unlinks are achieved, as was done in the example of the figure 
eight knot. We have already seen that the Conway polynomial of an unlink with more 
than one component is 0, so contributions to the Conway polynomial arise only when 
the unlink has exactly one component, that is, when it is an unknot. It takes at least 
n - 1 smoothings to reduce an n-component link to an unknot. The following theorem 
then results. 

Theorem 8.2. For a link L of n components, ci (L) = Ofor i < n - 1. 

Here are three basic results concerning the first nontrivial coefficient of the Conway 
polynomial of links of one, two, and three components. 

Theorem 8.3. For a one-component link L, co(L) = 1. 

Theorem 8.4. For a two-component link L, cl (L) = lk(L). 

Theorem 8.5. For a three-component link L with pairwise linking numbers a, /3, and 
y, c2(L) = ao + py + ay. 

Proof In the case of a knot, one obtains from the crossing change formula the relation 

co (X) -o ( ) = - ( ) = o 

Hence, the value of co is independent of the knot, and since for the unknot co = 1, this 
is true for all knots. 

In the case of a link with two components, one has 

c 
(X)-C (X)=Co (<) 
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If the crossing change is between different components, then the smoothed link is a 
knot and the difference is 1. If the crossing change is between a component and itself, 
the smoothed link has three components and the difference is 0. As a result, changes in 
cl (L) exactly parallel changes in the linking number. Furthermore, cl (L) agrees with 
the linking number for the unlink, and hence must be the same as the linking number. 

The third theorem is the most technical to prove, and the proof won't be presented 
in detail here, although the ideas involved are not especially deep. One needs to check 

only that the two expressions c2(L) and afi + t3y + ay agree on the unlink of three 

components (both are 0) and that both behave the same way under crossing changes, 
which is a consequence of the Conway crossing change formula. 

The definition of A. It is now time to demonstrate that there really is a link invariant 
that satisfies the crossing change formula given for X. in Definition 4.2. Here is the 
definition. 

Definition 8.6. For a two-component link L = (K, J), define 

X(L) = c3(L) - cl(L)(c2(K) + c2(J)). (7) 

Since the ci are integral invariants of L, so is X. 

Theorem 8.7. The invariant X of two-component links defined by (7) satisfies the 

crossing change formula given by (1) in Definition 4.2. 

Proof The goal is to show that 

X (X , J) - x (X, J) = 1k (>, J) 1k (, J) (8) 

Suppose that the link L = (K, J) has linking number n. Then equation (7) can be 
rewritten as X(L) = c3(L) - n(c2(K) + c2(J)). Only crossing changes in K are con- 
sidered; working with J is identical. Rewriting the difference in terms of the definition 
of X changes (8) into the following: 

c3 (X, J)- c3 (<, J)-n (c 2 (X)- c2k (X)) =)k k(< J). 

Applying the defining relation (5) for the Conway polynomial (C(X/) 
- C(/X) = 

zC(7> )) turs this into 

C2 (> < , J) 
- nc ,k , ( <) = k ( ) k J) 9) 

Since 

k (>, J) + lk (<, J) = n 

and 

C (><) =lk(>,<), 
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(9) becomes 

C2 (> <, J) 
- (lk (>, J) + lk (<, J))lk (> ) <= k (>, J) 1k (<, J). 

Notice that (> <, J) represents a three-component link: the first component has been 
smoothed. Theorem 8.5 can thus be applied to expand the c2 term, and this quickly 
shows that this final equation holds and the proof is complete. U 

The value of A. At this point a formal definition of X has been given, along with a 
crossing change formula. The reader might have observed that the value of A has not 
as yet been computed for any link. Clearly XL(U2) = 0. This section concludes with a 
more interesting family of examples. 

Theorem 8.8. For the link Tn, (Tn) = 0. 

Figure 25. T5. 

Proof Since both components of Tn are unknotted, it follows that X(Tn) = C3(Tn). A 
crossing change at the crossing marked with a dot in Figure 25 (which shows Tn for 
n = 5) converts Tn into Tn-1. Smoothing the crossing results in an unknot, denoted U1. 
Hence 

C3(Tn) - c3(Tn-1) = 2(U1) = 0, 

i.e., C3(Tn) = C3(Tn-l). This reduces the calculation to that for To. But To is the unlink 
U2, for which c3(U2) = 0. (It was shown earlier that, in fact, C(U2) = 0.) 0 

9. FINITE TYPE INVARIANTS. We cannot conclude this article without mention- 
ing the connection of X to one of the most active areas in knot theory in recent years, 
the theory of finite type invariants. A more formal introduction to finite type invariants 
is contained in the paper [3]. The crossing change formulas that have been consid- 
ered here focus on what happens to an integer-valued knot invariant, say ,/, if a single 
crossing is changed. One can instead consider what happens when the focus changes to 
multiple crossings. For instance, suppose that two crossings in a knot or link diagram 
are selected. The following sum then arises naturally: 

. (x X)-.(x X)-.('Xx)+('XX ). 
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Similarly, if one focuses on k crossings in a diagram there is a corresponding sum of 
2k terms, where the signs are determined by the parity of the number of left-handed 
crossings in each of the individual summands. This sum is called the type k difference 
for u. 

Definition 9.1. The link invariant /u is said to be of finite type k (k = 0, 1, 2, ...) if 
for every link L the type k + 1 difference for i/ is 0 for all possible choices of k + 1 
crossings in all possible diagrams for L. 

The following is a somewhat tricky exercise, but one with a simple solution once 
found. 

Exercise 9.2. The Conway coefficient Ck is a type k finite type invariant. 

Two link invariants /,l and ,A2 are added in the obvious way: (/,1 + ,2)(L) = 
,1 (L) + l2(L). With addition so defined, the family F of all link invariants forms 
an Abelian group. The set Fk of type k invariants constitutes a subgroup of F. It fol- 
lows from the definition that Tk is contained in Fk+l for all k > 0. A basic result in 
the subject is the following: 

Theorem 9.3. The quotient .Fk+l/Tk is a finitely generated free Abelian group. 

An outstanding problem in link theory is to determine the rank of these quotient 
groups. It is known that the rank grows quickly as a function of k. If one restricts 
attention to two-component links of a given linking number, say n, then in the differ- 
ence formula one must restrict the type k difference equation so that each individual 
crossing represents the crossing of one component with itself. This ensures that each 
link in the equation has the same linking number. With this modification one can refer 
to type k invariants of links with linking number n. For any given linking number, one 
has the following: 

Theorem 9.4. For all n, X is a type 1 invariant of two-component links with linking 
number n. 

The proof Theorem 9.4 is a basic application of the crossing change formula for A 
and the fact that changing a self-crossing in a link does not change the linking number. 
A much deeper result is: 

Theorem 9.5. Every type 1 invariant of two-component links with linking number n 
is of the form aX + bfor some constants a and b. 

In other words, for each n, X stands out as essentially the unique type 1 invariant of 
two-component links with linking number n. 

Little is understood concerning finite type invariants for disjoint links of type greater 
than 1. It is assumed that this group is infinitely generated if the type is greater than 1, 
but a proof of this has yet to be found. 

ACKNOWLEDGMENTS. I would like to thank Paul Kirk for working with me in developing the enhanced 
linking number. The suggestions and corrections given to me by Scott Baldridge, Jae Choon Cha, Charles 
Delman, Hyungsoo Do, Lynn Greenfield, Ben Himpel, Eric Livingston, John McAtee, Kevin Pilgrim, and Chris 
Tuffley were of great help. I would also like to thank the referee for comments that improved the exposition. 

? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110 384 



REFERENCES 

1. J. Alexander, Topological invariants of knots and links, Trans. Amer Math. Soc. 30 (1928) 275-306. 
2. P. Andersson, The color invariant for knots and links, this MONTHLY 102 (1995) 442448. 
3. J. Birman and X-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225-270. 
4. J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, in Computa- 

tional Problems in Abstract Algebra, Pergamon, Oxford, 1970, pp. 329-358. 
5. T. Kanenobu, Y. Miyazawa, and A. Tani, Vassiliev link invariants of order three, J. Knot Theory Ramifi- 

cations 7 (1998) 433-462. 
6. L. Kauffman, New invariants in the theory of knots, this MONTHLY 95 (1988) 195-242. 
7. , On Knots, Annals of Mathematics Studies, no. 115, Princeton University Press, Princeton, 1987. 
8. P. Kirk and C. Livingston, Vassiliev invariants of two component links and the Casson-Walker invariant, 

Topology 36 (1997) 1333-1353. 
9. W. B. R. Lickorish and K. Millett, The new polynomial invariants of knots and links, Math. Mag. 61 

(1988) 3-23. 
10. C. Livingston, Knot Theory, Cams Mathematical Monographs, no. 24, Mathematical Association of 

America, Washington, D.C., 1993. 
11. O. Nanyes, An elementary proof that the Borromean rings are non-splittable, this MONTHLY 100 (1993) 

786-789. 
12. N. Sato, Cobordisms of semiboundary links, Topology Appl. 18 (1984) 225-234. 
13. M. Sullivan, Knot factoring, this MONTHLY 107 (2000) 297-315. 

CHARLES LIVINGSTON studied mathematics as an undergraduate at UCLA and MIT; his graduate study 
was done under the direction of Rob Kirby at the University of California, Berkeley, where he received his 
Ph.D. in 1980. Following an instructorship at Rice University he moved to his present position on the math- 
ematics faculty at Indiana University. In his first effort to bring an appreciation of knot theory to a wider 
audience, Livingston wrote the book Knot Theory for the MAA Carus Series in 1993. In addition to studying 
knots and links, Livingston has worked at improving the education of journalists in mathematics and statistics; 
in joint work with Paul Voakes, a colleague in the IU School of Journalism, he is writing a book for practicing 
journalists and journalism students. 

Department of Mathematics, Indiana University, Bloomington, IN 47405 

livingst@ indiana. edu 

ENHANCED LINKING NUMBERS May 2003] 385 


	Article Contents
	p. 361
	p. 362
	p. 363
	p. 364
	p. 365
	p. 366
	p. 367
	p. 368
	p. 369
	p. 370
	p. 371
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378
	p. 379
	p. 380
	p. 381
	p. 382
	p. 383
	p. 384
	p. 385

	Issue Table of Contents
	American Mathematical Monthly, Vol. 110, No. 5 (May, 2003), pp. 361-461
	Front Matter
	Enhanced Linking Numbers [pp. 361-385]
	Admissions and Recruitment [pp. 386-399]
	How Many Unit Equilateral Triangles Can Be Generated by N Points in Convex Position? [pp. 400-406]
	Random Harmonic Series [pp. 407-416]
	Four Colors Do Not Suffice [pp. 417-423]
	Notes
	Carleman's Inequality [pp. 424-431]
	A Note on the Solvability of a Diophantine Equation Involving Radicals [pp. 431-434]
	Zeros of the Alternating Zeta Function on the Line R(S) = 1 [pp. 435-437]

	Problems and Solutions
	Problems
	11012 [p. 438]
	11013 [p. 438]
	11014 [p. 438]
	11015 [p. 438]
	11016 [p. 439]
	11017 [p. 439]
	11018 [p. 439]

	Solutions
	A Surprisingly Simple Determinant: 10891 [pp. 439-440]
	Spanning Cycles in Hypercubes: 10892 [pp. 440-441]
	Groups of Divisors: 10893 [pp. 441-443]
	Another Description of the Central Delannoy Numbers: 10894 [pp. 443-444]
	Convergent Series with Exponents: 10928 [pp. 444-445]
	Serendipitous Solution: 10428 [p. 445]


	Reviews
	Review: untitled [pp. 446-455]
	Review: untitled [pp. 455-458]

	Telegraphic Reviews [pp. 459-461]
	Back Matter



