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Thus our integral serves all the needs of integration with respect to distributions
in finite-dimensional spaces.

However, such processes as infinite sequences of tosses of a coin occur in fairly
elementary probability theory, and at a more advanced level we meet stochastic
processes, or random functions. An infinite sequence of real numbers is a point of
RZ, where Z = {1,2,3,-+}; a function on a set T is a point of RT. So the prob-
ability theory of such processes calls for distributions and integration over infinite-
dimensional spaces RT (where T'may be Z). If we define intervals and neighborhoods
in RT in the manner that has long been customary in topology, we find that Def-
inition 2.1 applies to this case also.

By now it should be clear that the only thing keeping us from going on and on
with the full development of the Lebesgue integration theory is the fact that we
have reached the end of our program of fitting the theory into undergraduate in-
struction (and, perhaps, of the editor’s patience). Anything that can be proved
about the Lebesgue integral can be proved about this integral, because it is the
Lebesgue integral. And for those students, such as engineers, who lack time or
inclination to work through detailed proofs, we are at least asking them to believe
unproved statements about an integral they know, rather than about an integral
whose very definition is unfamiliar to them.

This paper is an expansion of an address given to the Louisiana-Mississippi Szction of the MAA
on February 18, 1972.
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spaces can be represented in a ‘‘diagonal” form. At the beginning of the twentieth
century neither this spectral theorem nor the word ‘‘spectrum”’ itself had entered the
mathematician’s repertoire. Thus, although it has deep roots in the past, the
mathematical theory of spectra is a distinctly twentieth century phenomenon.

Today every student of mathematics encounters the spectral theorem not later
than his first course in functional analysis and often as early as his first course in
linear algebra. Usually he studies one specimen of the spectral theorem, plucked
out of historical context and imbedded in the logical context of his particular course.
Although this scheme is pedagogically efficient and logically aesthetic, it does often
obscure the fact that the spectral theorem was (and perhaps still is) an evolving
species. Its evolution is an outstanding example of the counterpoint between pure
and applied mathematics, for while the motive force in its evolution was the attempt
to provide adequate mathematical theories for various physical phenomena, the
forms through which it evolved are precisely those which have marked the development
of modern abstract analysis.

So we offer here an austere outline of the evolution of the spectral theorem as a
microcosmic example of the history of twentieth century mathematics. To understand
the significance of contemporary achievements and to recognize their continuity with
the past, we begin with the principal historical roots of our subject.

1. Principal axes theorem. The only theorem available at the turn of the
twentieth century which we can with hindsight recognize as a direct forerunner of the
modern spectral theorem is the principal axes theorem of analytical geometry. It
should not be surprising that the simplest form of this theorem is contained in the
writings of the founders of analytical geometry, Pierre de Fermat (1601-1665) and
René Descartes (1596-1650). For the Euclidean plane R2, this theorem says that a
quadratic form ax? + 2bxy + cy? can be transformed by a rotation of the plane into
the normal form ax? + By?, where the principal axes of the normal form coincide
with the new coordinate axes. The essential content of this theorem—that the al-
gebraic reduction to normal form corresponds to the geometric rotation onto
principal axes—is contained in Descartes’ La Géométrie [1637], and was known at
about the same time by Fermat but not published until after his death [1679]. The
term “‘principal axes” was introduced by Leonhard Euler (1707-1783) in his in-
vestigation of the mechanics of rotating bodies [1765]; Euler also discussed (in
[1748]) the reduction of quadratic forms in two and three dimensions.

The general form of the principal axes theorem asserts that any symmetric
quadratic form (Ax,x) = Xa;;x;x; on R" can be rewritten by means of an orthogonal
transformation T: R"— R" in the normal form X1x;%. (4 is symmetric if o;;= o,
and T is orthogonal if it leaves invariant the Euclidean metric on R".) The generaliza-
tion from R to R" of the algebraic part of this theorem (that a quadratic form can be
written as a sum of squares) was discussed by Joseph Louis Lagrange (1736-1813) in
a paper [1759] on the maxima and minima of functions of several variables. In
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[1827] Carl Gustav Jacob Jacobi [1804-1851] investigated the principal axes of
various quadratic surfaces, and about the same time Augustin-Louis Cauchy (1789-
1867) showed in [1829] and [1830] that the coefficients 4; of the normal form of a
symmetric quadratic form must be real.

But itwas not until the second half of the nineteenth century that the general form
of the principal axes theorem was achieved when James Joseph Sylvester (1814-1897)
and Arthur Cayley (1821-1895) used the notation of matrices to systematize the
algebraic description of n-dimensional space. In [1852] Sylvester showed explicitly
that the coefficients A; in the normal form of (4x, x) are the roots of the characteristic
polynomial det (Al — A) = 0; in [1858] Cayley inaugurated the calculus of matrices,
in which the reduction to normal form corresponded to a diagonalization process
on the matrix A. Specifically, the principal axes theorem says in the language of
matrices that each symmetric real matrix A4 is orthogonally equivalent to a diagonal
matrix D; in other words, for some orthogonal matrix T, the matrix D = T~ AT
is in diagonal form. The diagonal entries of D are the eigenvalues of A, that is, the
roots of the polynomial equation det (AI — 4) =0.

Although the new concepts of matrix theory had an immediate and profound
influence on British mathematics, their impact on the continent was relatively minor.
Especially in Germany bilinear forms continued well into the twentieth century to
be the principal tool of analytical geometry, and in [1878] Georg Frobenius (1849-
1917) published a systematic account of matrix algebra entirely in the language of
bilinear forms. So by the end of the nineteenth century we can discern two versions
of the principal axes theorem: the reduction to normal form of a symmetric bilinear
form, and the diagonalization of a real symmetric matrix.

2. Infinite systems of linear equations. The central fact of modern spectral
theory is that certain linear operators on infinite dimensional spaces can also be
presented in ‘‘diagonal’’ form. Thus the second historical taproot of spectral theory
is the evolution of infinite dimensional theory from finite dimensional cases. This
evolution occurred first in algebra—in the solution of systems of linear equations—
and only much later in geometry. Finite systems of linear equations were solved most
often throughout the eighteenth and nineteenth centuries by the metkod of elimi-
nation, as expounded, for instance, in [1770] and [1779] by Euler and Etienne
Bézout (1730-1783). In [1750] Gabriel Cramer (1704-1752) introduced for 3 x 3
systems the rule which now bears his name, although he did not, of course, use the
concept or notation of determinants.

Infinite systems of equations were used throughout the eighteenth and nineteenth
centuries to obtain formal solutions to differential equations by the method of
undetermined coefficients: if a formal power series with unknown coefficients is
substituted for the unknown in a given differential equation, the task of solving the
differential equation is reduced to that of determining the infinitely many unknown
coefficients. (Of course few at that time worried very much about the convergence of
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the power series thus obtained.) If all went well, the infinite system of equations in
the unknown coefficients would exhibit a recursive pattern which made it possible
to solve the infinite system by finite dimensional tools. But for this reason precisely,
these recursive techniques contributed little to the development of a general theory
of infinite dimensional systems.

Joseph Fourier (1768-1830) launched the first significant general attack on the
problem of infinite systems of equations when he attempted to show [1822] that
every function can be expressed as an infinite linear combination of trigonometric
terms. The problem of determining the unknown coefficients in these linear combi-
nations led him directly to the general problem of solving an infinite system of linear
equations. Fourier’s approach (called the principe des réduites by Frédéric Riesz
[1913a]) was to solve the first n x n system by ordinary means and let n — .

Although Fourier’s assertion about the expansion of “‘arbitrary’’ functions into
trigonometric series stimulated intense work on the theory of integration, his method
of solving infinite systems of linear equations was virtually ignored. More than fifty
years passed before Theodor Kétteritzsch of Saxony reopened the investigation with
a paper [1870] in which he attempted to extend Cramer’s rule to infinite systems.
Seven years later the American astronomer George William Hill (1838-1914) published
in Cambridge, Massachusetts, a monograph [1877b] in which he successfully applied
to the infinite dimensional case the theory of determinants which had at that time
only been established for finite dimensional systems. Hill’s work was first disseminated
in Europe in [1886a] when G. Mittag-Leffler reprinted it in Acta Mathematica in
the year following the appearance in France of a paper [1885a] by Paul Appell
(1855-1930) in which he applied the principe des réduites to determine the coefficients
of the power series expansion of elliptic functions.

At this point Henri Poincaré (1854-1912) entered the discussion with two papers
([1885b], [1886b]) in which he provided a rigorous definition for an infinite deter-
minant in order to clarify the works of Hill and Appell. The work begun in Paris by
Poincaré was continued in Stockholm by Helge von Koch (1870-1924) who developed
between 1890 and 1910 an extensive theory of infinite determinants. Von Koch’s
first major papers on this subject appeared in [1891] and [1892]; his own survey of
the field in [1910d] provides further references. The more recent survey [1968] by
Michael Bernkopf includes a complete discussion of these fundamental papers.

3. Integral equations. The theory of infinite matrices and determinants might
have led directly to an elementary spectral theorem if someone had generalized the
diagonalization form of the principal axes theorem. But the road to spectral theory
was not that straight: the first spectral theorem was achieved only after infinite
determinants were applied to integral equations, thereby extending the theory from
the countably to the uncountably infinite. The formal study of integral equations is
usually traced back to [1823] and [1826] when the young Norwegian genius Niels
Henrik Abel (1802-1829) used an integral equation to solve a generalized tautochrone
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problem concerning the shape of a wire along which a frictionless bead slides under
the influence of gravity. Somewhat later Joseph Liouville (1809-1882) introduced (in
[1837]) the method of iteration to solve a specific type of integral equation; in
[1877a] Carl Neumann (1832-1925) extended Liouville’s iterative method to a more
general setting while investigating a boundary value problem for harmonic functions.

Neumann’s work precipitated considerable research in integral equations,
especially by Poincaré in France and in Rome by Vito Volterra (1860-1940). But it
was not until 1900 that the theory of integral equations became especially relevant
to the history of spectral theory, for in that year the Swedish mathematician Ivar
Fredholm (1866-1927), then a docent at the University of Stockholm, applied to
integral equations the theory of infinite matrices and determinants as developed by
his colleague von Koch. By mimicking von Koch’s technique for expanding infinite
determinants, Fredholm developed in [1900] his now famous ‘‘alternative’’ theorem
concerning the solutions ¢ of the integral equation

1
W () + ﬁ KGoy)o()dy =¥(), (O=x<1),

Just as Daniel Bernoulli (1700-1784) nearly two centuries earlier had represented
the vibrating string as the limit of n oscillating particles [ 1732], so Fredholm conside-
red the integral equation (1) to be the limiting case of the corresponding linear system

e B+ T KG)d0) = v, (SIS,

Fredholm defined a ‘‘determinant’” Dy for the integral equation (1) which is the
continuous analog of the classical determinant of the n x n system (2) and showed—
in exact analogy to the classical theory for (2)—that the integral equation (1) has a
unique solution which can be expressed as the quotient of two ‘‘determinants’
whenever Dy # 0; or alternatively, if Dy =0, then the transposed homogeneous
equation ¢(x) + fé K(y,x) ¢(y)dy =0 has nontrivial solutions and (1) is solvable
if and only if  is orthogonal to each of these solutions. Fredholm’s major paper
on this subject appeared in [1903a]; a summary of this work together with later
developments is the substance of his survey article [1910e].

4. David Hilbert. Although there is very little in the papers of either von
Koch or Fredholm that could be construed as a logical ancestor of the modern
spectral theorem, we have discussed these developments for two particular reasons—
one mathematical, the other historical. The twentieth century evolution of infinite
dimensional spectral theory from the much simpler finite dimensional theory is
foreshadowed by the nineteenth century development of linear equation and determi-
nant theory, from the finite to the infinite (von Koch) to the continuous (Fredholm).
Butthere is even a more direct connection, for when Fredholm’s ideas were introduced
(by Fredholm’s colleague Eric Holmgren) in David Hilbert’s 1900-01 seminar at
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Géttingen, Hilbert, in the words of Hermann Weyl [1944], ‘“‘caught fire at once’.

For the next ten years Hilbert (1862-1943) focused his impressive mathematical

talent exclusively on integral equations, and through a series of six papers published

in Gottingen Nachrichten from 1904 to 1910 (collected and published as one volume

in [1912a]) he outlined the basic definitions and theorems of spectral theory (which

he named) and Hilbert space theory (which he did not name, or even define directly).
Hilbert worked primarily with the integral equation

1
©) $x) — f K 9)$() dy = p(x)

together with the analogous finite or infinite dimensional matrix equation
@ P(x) — 4 ,E K(xi, y () = ¥ (xy).

In the process of constructing the machinery necessary to solve these equations,
Hilbert defined the spectrum of the quadratic form K, distinguished the point
spectrum from the continuous spectrum, and defined the concept of complete
continuity which served to separate those forms that had pure point spectra from
those with more complicated spectra. But most important from the viewpoint of
this essay, he formulated and proved the spectral theorem—not only for completely
continuous forms, but for bounded forms as well.

Hilbert’s papers on integral equations contain an astonishing quantity of what
we now recognize as modern analysis in classical language. Because he was primarily
concerned with solving integral equations, Hilbert never applied his results speci-
fically to matrices or operators; furthermore, because of the position of the parameter
4 in equation (3), all of Hilbert’s eigenvalues and spectral points are reciprocals of
those in use today. And while his theorems had a most modern thrust, his basic
method of proof was that of Bernoulli and Fredholm—a laborious passage to the
limit from the corresponding finite case.

Beginning in 1905 with his doctoral dissertation under Hilbert, Erhard Schmidt
(1876-1959) generalized and simplified Hilbert’s work by introducing the suggestive
language of Euclidean geometry. In [1907a], [1907b] and [1908a] Schmidt presented
a definitive theory of ““Hilbert’s space’’—what we now call 12, the space of square
summable sequences—replete with the language of norms, linearity, subspaces and
orthogonal projections. (It was Schmidt who generalized to I? the iterative algorithm
for orthonormalization first introduced in [1883] by Jorgen Pederson Gram of
Copenhagen.) Schmidt’s conceptual simplifications were immediately incorporated
by Ernst Hellinger (1883-1950) and Hermann Weyl (1885-1955) in their 1907 and
1908 dissertations under Hilbert. In [1909a] Hellinger reformulated the theory of
quadratic forms in the new language of Hilbert and Schmidt, and in the same year
Weyl published an extensive study of bounded forms and their spectra [1909d]. So
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by the end of the first decade of the twentieth century we can perceive in the writings
of Hilbert and his pupils the major part of spectral theory for bounded linear
transformation on I2.

5. Hilbert-Schmidt spectral theory. Recall, as did Hilbert at the beginning
of his first paper on integral equations [1904a], the principal axes theorem for finite
dimensional spaces. Let 4; <4, <-.- £ 4, be the n (real) eigenvalues of the sym-
metric n x n matrix K, listed according to multiplicity. Let ¢, --- ¢, be an orthonor-
mal collection of corresponding eigenvectors, so K¢; = A;¢; for 1 <i < n. Then the
action of K is represented, with respect to the basis ¢, -+ ¢,, by the diagonal matrix
L with entries 4; on the main diagonal. The matrix T whose rows are the vectors
¢, -+ ¢, is an orthogonal transformation which maps the new basis vectors ¢, --- ¢,
back to the original (canonical) basis vectors. Thus L = T~ 'K T is the diagonalization
of K by the orthogonal transformation 7. The matrix L can be written as X, A,P,
where P; is the projection (i.e., the transformation which projects R") onto the one
dimensional subspace spanned by ¢;.

Hilbert’s first step in extending this theorem was to generalize the concept of
eigenvalue to the case of an infinite symmetric form K. His new concept was the
spectrum of K, denoted by ¢(K), which is the set of A for which the transformation
Al — K is not invertible. (Actually Hilbert used I — AK while Schmidt used AI — K.)
The subset of ¢(K) consisting of those A for which the equation K¢ = A¢ has non-
trivial solutions is called the point spectrum of K; this is the strict analog of the set
of eigenvalues. The complement of the point spectrum in ¢(K) is called the continuous
spectrum. Much of Hilbert’s fourth paper [1906a] is devoted to a study of the
relationships between a transformation K and its spectrum o(K).

One of the simplest relationships Hilbert discovered was that the spectrum of K
is a bounded set whenever K is a bounded transformation—that is, whenever the set
S= {" Kx " || X " < 1} is bounded, where the notation " ", due to Schmidt, is the
1?2 norm. In fact, whenever K is symmetric, the least upper bound of S, called the
bound (or norm) of K and denoted by | K ||, is the same as the least upper bound of
{ll] : Aea(K)}; this fact is now called the spectral radius theorem. The bounded
linear transformations on I are important from another point of view, also due to
Hilbert: they are precisely the continuous linear transformations, in the sense that
they preserve strong convergence (i.e., | Kx, — Kx | - 0 whenever || x, — x || - 0).

Hilbert extended the principal axes theorem to symmetric bounded linear trans-
formations; the spectra of these transformations are bounded subsets of the real
axis. Those A in the point spectrum p(K) of K are like eigenvalues since there exists
an orthonormal collection of corresponding eigenvectors ¢, satisfying K¢, = 1¢,.
If P, denotes the projection onto the subspace generated by ¢,, we can form the
diagonal transformation L= XAP, where A ranges over the point spectrum p(K).
The transformation L reflects accurately the action of K on the subspace generated
by the eigenvectors ¢,, but since this subspace will in general be strictly smaller than
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12—since we have omitted the continuous spectrum—we cannot say that L and K
represent the same transformation.

To express the contribution of the continuous spectrum, Hilbert set up an
integral patterned after one defined in [1894] by the Dutch mathematician Thomas-
Jean Stieltjes (1856-1894). In his study of continued fractions, Stieltjes was led (via
the problem of moments) to the integral [2f(x) dg(x) as the limit of the sum Xf(&;)
[g(x;) — g(x;-1)] (for continuous f and increasing g). By rewriting the sum X 4,P,,
as X A[E;, — E;, _,], where E;, = Xj_,P,, Hilbert constructed for the continuous
spectrum s(K) the Stieltjes-type integral [,,AdE, as the limit of sums of the form
X A[E;, — E,,_,]- Then Hilbert’s spectral theorem was that every symmetric bounded
linear transformation on I2 can be represented (by means of an orthogonal
transformation) in the ‘‘diagonal’ form '

©) X AP, + AE,

o(K) s(K)
where the summation is over the point spectrum, and the integral is over the con-
tinuous spectrum.

Hilbert completed his spectral theory by identifying a large class of transformations
whose continuous spectra were empty. He called these transformations completely
continuous, and Schmidt characterized them by the property of mapping weakly
convergent sequences to strongly convergent sequences. In other words, the linear
transformation K is completely continuous if

IIKx,,—lel—>0

whenever (y,x,)— (y,x) for all y. The completely continuous transformations are
the nearest infinite dimensional analog to the finite dimensional transformations,
since their spectra consist entirely of eigenvalues with zero as the only possible
accumulation point; furthermore, every completely continuous symmetric linear
transformation K can be expressed (by an orthogonal transformation) in the diagonal
form X A P, (since s(K) = ¢).

Although Hilbert originally used infinite matrices merely as convenient ap-
proximations to integral equations, he concluded his theoretical investigation by
establishing a major link between these two theories, namely that of a complete
orthogonal system. Such a system {¢,}, either of vectors in the sequence space I or
of continuous functions on the interval [0,1], is characterized by the orthogonality
relation (¢,, ¢,,) = 0if n £ m, together with the fact that every vector (or continuous
function) ¢ can be represented by the Fourier-type series ¢ = 2.2 ; a,¢,. The matrix
equation (4) can then be derived (by mathematics, rather than by analogy) from the
integral equation (3) by replacing each continuous function ¢, ¥ by its Fourier
expansion with respect to the complete orthogonal system {¢,}. This application of
a complete orthogonal system enabled Hilbert to derive Fredholm’s alternative
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theorem for the integral equation (1) directly from the corresponding theorem for
the infinite linear system (2).

To keep the record straight, we should emphasize again that Hilbert introduced
spectral theory in the language of quadratic forms, whereas we have reported his
work primarily in the language of linear transformations on the infinite dimensional
space [2. Barely fifty years had elapsed since Cayley in England and Hermann
Grassman (1809-1877) in Germany had begun, in [1843] and [1844] the systematic
study of Euclidean n-dimensional space for n > 3. Hilbert and Schmidt were the
first to explore the totally unknown depths of an infinite dimensional space and it
was not until other such spaces were studied that the broad outlines of a theory of
linear transformations became clear. The early twentieth century development of
infinite dimensional (function) spaces is recorded in [1966].

6. The Lebesgue Integral. At about the same time as Hilbert was creating his
spectral theory for spaces of square summable sequences, Henri Lebesgue (1875-1941)
was developing the new integral which now bears his name ([1901], [1904c]). In
three brief papers in 1907 Friedrich Riesz (1880-1956) and Ernst Fischer (1875-1959)
joined together the works of Hilbert and Lebesgue by showing that Hilbert’s space /2
is isomorphic to the space [? of functions whose square is Lebzsgue integrable. In a
subsequent paper [1910c] (in which he introduced the more general L” spaces), Riesz
derived a spectral theory for L? entirely analogous to that developed for /2 by Hilbert
and Schmidt.

In the year preceding the appearance of his paper on L? spaces, Riesz proved in
[1909b] his now famous representation theorem in which he solved a problem first
studied in [1903b] by Jacques Hadamard (1865-1963). What Riesz showed was that
every continuous linear functional on C([a,b]) is a Stieltjes integral [ fdg with
respect to some function g of bounded variation. Lebesgue then showed in [1910f],
in direct response to Riesz’s paper, that every Stieltjes integral can be interpreted as
a Lebesgue integral under a proper interpretation of the heuristic formula

jf(x)dg(x) - f £ ().

This led Johann Radon (1887-1956) to develop (in [1913b]) integration with respect
to a measure (i.e., a countably additive set function) thus encompassing the integrals
of both Lebesgue and Stieltjes and providing the foundation for all modern the-
ories of the abstract integral.

We can see from this digression that the evolution of the modern integral was
closely connected to Hilbert’s creation of spectral theory. Although neither theory
depended logically on the other, the historical dependence of each on the other is
quite clear: Hilbert used Stieltjes’ integral to obtain the spectral theorem for /2,
while Riesz, following Hilbert, used and thereby immortalized Lebesgue’s integral
by developing the spectral theory of L2,
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The second decade of spectral theory was rather uneventful. In Géttingen,
Hilbert had turned his attention to the axiomatization of physics, a task which he had
proposed to the International Congress of Mathematicians in 1900 as the sixth of his
famous 23 problems for twentieth century mathematics. “Physics,”” he said, ‘‘is
much too hard for physicists’’ ([1970]). In the United States Eliakim Hastings Moore
(1862-1932) at the University of Chicago developed a system of ‘‘general analysis”
([1908b], [1912b]) which was designed to include as special cases the work of
Hilbert, Fredholm and Riesz. But Moore’s results were constrained by the fact that
European investigators were not then accustomed to receiving new mathematical ideas
from America. So while Moore’s research had a profound effect on the development
of mathematics in the United States, it did not influence significantly the direction of
research on spectral theory.

Many European efforts from 1910 to 1925 were devoted to exposition and recapi-
tulation. Riesz [1913a], Fredholm [1910e] and von Koch [1910d] published surveys
of the theory of infinitely many variables and integral equations, each of which
contained various forms of Hilbert’s spectral theory. Hilbert’s collected papers on
integral equations were themselves published in book form in [1912a]. But certainly
the most impressive survey work of this period was the massive Enzyklopddie der
Mathematischen Wissenschaften which contains in volume II.3.2. a comprehensive
discussion of integral equations and spectral theory by Hellinger and Otto Toeplitz
(1881-1940); this survey paper was also published separately [1928a].

7. Quantum mechanics. In Gottingen in 1925-26 Werner Heisenberg (1901-)
and Erwin Schrodinger (1887-1961) created the theory of quantum mechanics. In
Heisenberg’s theory the physical fact that certain atomic observations cannot be
made simultaneously was interpreted mathematically to mean that the operations
which represented these observations were not commutative. Since the algebra of
matrices is non-commutative, Heisenberg together with Max Born and Pascual
Jordan ([1925a], [1926a]) represented each physical quantity by an appropriate
(finite or infinite) matrix, called a transformation; the set of possible values of the-
physical quantity was the spectrum of the transformation. (So the spectrum of the
transformation which represented the energy of an atom was precisely the spectrum
of the atom.)

Schrodinger, in contrast, advanced a less unorthodox theory based on his partial
differential wave equation. Following some initial surprise that Schrodinger’s ““wave
mechanics’” and Heisenberg’s ‘‘matrix mechanics”’—two theories with substantially
different hypotheses—should yield the same results, Schrodinger unified the two
approaches by showing, in effect, that the eigenvalues (or more generally, the spec-
trum) of the differential operator in Schridinger’s wave equation determine the
corresponding Heisenberg matrix. Similar results were obtained simultaneously
([1925b], [1926b]) by the British physicist Paul A. M. Dirac (1902-). Thus interest
in spectral theory once again became quite intense.
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Hilbert himself was astonished that the spectra of his quadratic forms should
come to bz interpreted as atomic spectra. ‘I developed my theory of infinitely many
variables from purely mathematical interests, and even called it ‘spectral analysis’
without any presentiment that it would later find an application to the actual spectrum
of physics’’ [1970]. It quickly became clear, however, that Hilbert’s spectral theory
was the proper mathematical basis for the new mechanics. Finite and infinite matrices
were interpreted as transformations on a Hilbert space (still thought of primarily as
1> or F?) and physical quantities were represented by these transformations. The
mathematical machinery of quantum mechanics became that of spectral analysis
and the renewed activity precipitated the publication by Aurel Wintner (1903-1958)
of the first book [1929b] devoted to spectral theory.

Hilbert’s original spectral theorem applied to real quadratic forms (or infinite
matrices) that were bounded and symmetric. This theorem was quickly and easily
extended (by Schmidt and others) to bounded complex matrices 4 = (a;;) for which
a;; =d;;; such matrices are called Hermitian after the French mathematician
Charles Hermite (1822-1901) who introduced them (in [1855]) and proved their
eigenvalues real. Both symmetric and Hermitian forms may be characterized in
terms of their respective inner product by the relation (4x,y) = (x,Ay) for all
x,y. Like symmetric matrices, Hermitian transformations have real spectra and,
more generally, play the role of the real number line in the algebra of transformations.

Almost miraculously, it was precisely the Hermitian transformations which
qualified in the new mechanics to represent a physical quantity. One reason for this
is that physical quantities are measured by real numbers, so it is natural to represent
them by those transformations which behave like real numbers. Perhaps a more
compelling justification is that the hypothesis that the transformations of mathema-
tical physics are Hermitian implies certain fundamental laws (or assumptions) of
physics: if A is Hermitian, the wave equation ¢ = A¢ implies the conservation of
energy, a fundamental law of classical mechanics, and the solutions of Schrodinger’s
equation ¢ = id¢ will have constant norm, which is a fundamental assumption of
quantum mechanics.

Although every observable was represented in the new mechanics by 2 Hermitian
transformation, it was not necessarily true that every such transformation repre-
sented an observable. Dirac [1930b] added the crucial hypothesis that a Hermitian
transformation represents an observable if and only if its eigenvectors form a complete
(orthogonal) system: his hypothesis was designed to insure that any vector (rep-
resenting a quantum mechanical state) could be expressed as a (possibly infinite)
linear combination of eigenvectors of any given observable. The identification of
transformations with t his property is part of the Hilbert-Schmidt spectral theory, but
this theory provided only a partial answer: those Hermitian transformations which
are completely continuous have a complete set of eigenvalues.

This theorem did not provide a satisfactory elucidation of Dirac’s hypotheses
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since the transformations of quantum mechanics are usually not completely contin-
uous. Most of the important transformations in physics involve differentiation of,
say, functions in I?, The theorem on integration by parts shows that differentiation is
formally symmetric, for in this case (4f,g) = (f,Ag) means [f'g= [fg’. But since
the derivative of a function has practically no relation to the magnitude of the
function, differentiation is neither continuous nor bounded, nor evendefined every-
where. In fact, if a symmetric of Hermitian transformation (like differentiation) were
defined everywhere, it would have to be bounded. This rather surprising result—
which says, in effect, that a candidate for the spectral theorem which fails to be
bounded must fail to be everywhere defined—was demonstrated as early as [1910b ]
by Hellinger and Toeplitz.

Thus many of the transformations of quantum mechanics, although Hermitian,
failed nevertheless to satisfy the second of Hilbert’s hypotheses, namely, that they be
bounded. Like differentiation, they were unbounded and defined only on a dense
subset of I2. Paul Dirac attempted to overcome the exceptional behavior of dif-
ferentiation by introducing his é-function to provide derivatives where none existed
and thereby to enlarge the set of functions to which the differentiation transformation
could be applied. Dirac’s approach was highly successful in explaining the new
quantum mechanics and led eventually to Laurent Schwartz’ theory of distributions
precisely because it lacked an adequate mathematical foundation. But in 1926
Dirac’s approach represented more an alternative to spectral theory than an
extension of it, and it did not really help to extend Hilbert’s theory to
unbounded transformations.

8. John von Neumann. After Hilbert, the only major study of unbounded
transformations was that published in [1923] by Torsten Carleman (1892-1949) in
Sweden. In this monograph Carleman showed that many of the results of Fredholm
and Hilbert still hold under a weaker type of boundedness hypothesis. But from the
viewpoint of spectral theory, the major breakthrough came in 1927-29 when the
twenty-five year old Hungarian John von Neumann (1903-1957) revolutionized the
study of spectral theory by introducing the abstract concept of a linear operator
on Hilbert space. In [1927] von Neumann expressed the transformation theory of
quantum mechanics in terms of operators on a Hilbert space, and explicitly recognized
the need to extend from the bounded to the unbounded case the spectral theory of
Hermitian operators. In [1929a] he carried out that extension.

Before von Neumann, the name ‘‘Hilbert space’’ had been applied principally
to the space 12 of square summable sequences (often called ‘‘Hilbert’s space’’) or to
the space I? of Lebesgue square integrable functions which Riesz had proved
isomorphic to I2. The essential properties of these spaces, widely recognized, were
those of a vector space with an inner product which was complete and separable
(i.e., which had a countable dense subset). Von Neumann’s first step in his theory
of linear operators was to define an (abstract) Hilbert space axiomatically as any
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separable, complete inner product space. He then defined a general linear operator
on the abstract Hilbert space H as a linear transformation defined on some subsct
of H. This subset, called the domain Dy of the operator T, is usually assumed to be
a linear subspace of H, which, like the domain of the differentiation operator, is
dense in H. Von Neumann’s linear operators thus comprehend both the matrices
and quadratic forms of Hilbert’s theory, and the transformations of quantum
mechanics.

A linear operator is continuous if and only if it is bounded, and a bounded linear
operator with a dense domain can be uniquely extended to a bounded linear operator
on the whole space H. Every linear operator T with a dense domain has a unique
adjoint operator T* defined by the relation

6 (Tx,y) = (x, T*y)

for all x € Dy; the domain of T* is the set of y € H for which (6) holds for all x. An
operator T is called self-adjoint if T = T*, and symmetric if 7% is an extension of
T, or equivalently, if (Tx,y) =(x,Ty) whenever x, yeDy. (In von Neumann’s
papers, the self-adjoint operators were called hypermaximal.)

Every self-adjoint operator is clearly symmatric, and every symmetric operator
which is everywhere defined must be self-adjoint. Thus for bounded linear operators
(which either are everywhere defined or may be extended to become so) the concept
of symmetric and self-adjoint coincide. The Hellinger-Toeplitz theorem, cited in
section 7 above, can be extended to von Neumann’s operators and shows that any
symmetric operator which is everywhere defined must be bounded. (This result is
closely related to a more general theorem due to Stefan Banach (1892-1945), now
commonly known as the closed graph theorem [1932b].) Thus in von Neumann’s
theory there are precisely three types of symmetric operators:

I. bounded, self-adjoint and everywhere defined;
1. unbounded, self-adjoint and densely but not everywhere defined; and

I11. unbounded, not self-adjoint, and densely but not everywhere defined.

Hilbert’s original theory applied to operators of type I, while von Neumann’s
spectral theorem encompassed those of type IT as well since it applies to all self-
adjoint operators. This theory, though initiated by von Neumann, was developed by
Riesz [1930c] and more extensively, by Marshall H. Stone (1903-) at Yale University
who expounded it in great detail in [1932a]. The combined (but largely indépendent)
efforts of von Neumann and Stone for the five year period 1927-1932 provided for
spectral theory the largest collection of new methods since Hilbert’s five year effort
of 1901-1906.

9. Von Neumann — Stone Spectral Theory. Hilbert’s general spectral theorem
says that every bounded symmetric linear transformation T can be written in the
form

2 AP, + ME;.

o(T) s(T)
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By rewriting the first sum as a Stieltjes-type integral and combining it with the
second integral, we may express Hilbert’s spectral theorem in the concise form

©) T= AdE;,
o(T)
where the integral is over the entire (bounded) spectrum of T. The operators E, are
projections with the following properties:
() If A < u, the range of E, is contained in the range of E,;

({)Ife>0,E,,,»E;,ase—0;

(iii) E;, >0 as A > — o0;

Gv)E,»Tas A— + .

Stone called such a family of operators a resolution of the identity; in more intuitive
language, properties (i)-(iv) require that the function A— E, be increasing, con-
tinuous from the right, with 0 and I as left and right limiting values.

The von Neumann-Stone extension of the spectral theorem for self-adjoint
operators from the bounded to the unbounded case corresponds to the extension of
(7) from bounded to unbounded spectra o(T). Specifically, it says that to each self-
adjoint operator T there corresponds a unique resolution of the identity {E,} such
that (7) holds. .

Despite the power of this theorem, many differential operators are not covered
by it since they are rarely self-adjoint. For instance, to make the operator D = d /dt
symmetric on a dense subset A of the Hilbert space 1*(0,1), we should select for A
the subset consisting of those continuously differentiable functions f which satisfy
f(0) =f(1) =0 (in order to insure that the relation (Df, g) =(f,Dg) would follow
by integration by parts). But the domain A is too small to permit D to be self-adjoint,
for every continuously differentiable L? function is in the domain of D*. To make D
self-adjoint we would have to enlarge its domain appropriately—thereby risking a loss
of symmetry. Each symmetric operator of type I1I suffers from the same disease: its
domain is smaller than that of its adjoint. Moreover the cure—namely, extension
of the domain—is often fatal since with a larger domain the operator may fail to be
symmetric.

To apply his spectral theorem to symmetric operators von Neumann had to
know which types of symmetric operators admit self-adjoint extensions. He [1929a ]
and Wintner [ 1929b] identified a large class of such operators, namely those operators
T, called semibounded, for which there is a positive constant M satisfying either
(Tx,x) <M | x| for all xe Dy or — M | x| < (Tx,x) for all xe Dr. The best state-
ment of this result is due to Stone [1932a] and Kurt O. Friedrichs [1934]: every
semibounded symmetric operator may be extended to a semibounded self-adjoint
operator with the same bound.

Whereas the central focus of the von Neumann-Stone spectral theory (and of
Hilbert’s alse) is on operators with real spectra, the spectral theorem does apply, at
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least in two cases, to operators with more general spectra. The simplest case concerns
isometric operators which leave the inner product on H invariant; from this definition
it follows easily that the spectrum of an isometric operator is a subset of the unit
circle. An isometric operator that maps H onto H is called unitary and is charac-
terized by the fact that its adjoint is its inverse (i.e., TT* = T*T = I). Unitary
operators were first studied in [1909c] by Isaac Schur following their introduction
by Léon Autonnein[1902].In[1929a] von Neumann employed the Cayley transform
C:T— (T—il)(T+il)~* to map symmetric operators T into isometric operators
C(T); he showed that T is self-adjoint if and only if C(T) is unitary. Thus the spectral
theory for unitary operators follows from that for self-adjoint operators by use of a
spectral integral on the unit circle instead of on the real line.

Now every bounded linear operator T can be written in the ‘“‘Cartesian’ form
T= A + iB, where 4 and B are bounded and self-adjoint; in fact,

A=3(T+T*, B= fli—(T— T*).

Thus it would appear likely that the spectral theorem could be extended to all
bounded linear operators by using this decomposition. However, the details of that
extension require that AB = BA (or equivalently, that TT* = T*T). So the desired
extension works only for those operators which commute with their adjoints: such
operators are called normal, after Toeplitz [1918a]. Toeplitz extended Hilbert’s
spectral theorem to completely continuous normal quadratic forms by showing that
such a form was unitarily equivalent to a diagonal form. More generally, the spectral
resolution

T= A dE,
a(T)
extends to bounded normal operators, where the integration is over the spectrum of
T which is a compact subset of the complex plane contained in the disc of radius
| T|. Von Neumann [1930a] and Stone [1932a] extended both the definition and
spectral theory of normal operators to the unbounded case as well.

We have come a long way from the principal axes theorem, and the spectral
theorems of von Neumann and Stone reflect far more analysis than geometry. The
geometric content of the spectral theorem for finite dimensional space is that the
entire space can be expressed as the direct sum of subspaces on each of which the
given transformation acts like simple multiplication. But this theorem fails in the
infinite dimensional cases as soon as the continuous spectrum appears. In a paper
written in 1938 but not published until [1949a ], von Neumann effectively resuscitated
the geometrical spectral theorem by defining a direct integral of Hilbert spaces (in
strict analogy with the direct sum). He then showed that the action of a self-adjoint
operator on any Hilbert space could be represented as the accumulated effect of
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simple multiplications on certain subspaces whose direct integral was (unitarily
equivalent to) the original space.

10. Gelfand-Naimark Theorem. The collection of all operators on a Hilbert space
forms a ring; such rings, with various topologies, were extensively investigated by
von Neumann and Francis J. Murray in [1936a], [1937a] and [1940a]. During the
same period 1936-40 S. W. P. Steen published in England a series of five papers
([1936b], [1937b], [1938a], [1939], [1940b]) devoted to an axiomatic theory of
operators. But the papers that offered the most significant insight into the spectral
theorem were [1941a], [1941b] and [1943] published in the U.S.S.R by Israel
M. Gelfand, Mark A. Naimark and Georgii E. Silov. Gelfand and his colleagues
created a theory of normed rings which not only subsumed much of the work of von
Neumann, Murray and Steen on rings of operators, but also provided a beautiful
general setting for the study of Fourier transforms and harmonic analysis. Related
studies were carried out in the United States by Stone ([1940c], [1941c]) and Shizuo
Kakutani [1941d].

Normed rings were first introduced in [1936c] by the Japanese mathematician.
Mitio Nagumo under the name of ‘‘linear metric rings”’. In [1946] Charles E.
Rickart christened Gelfand’s normed rings ‘‘Banach algebras” to avoid mis-
understanding due to the algebraic meaning of ‘‘ring’’; as a consequence Russian
mathematicians now use the former name, while Americans use the latter. But
regardless of its name, the properties of a Banach algebra are those of a complete
normed algebra (over the complex field C) satisfying the multiplicative triangle
inequality || x || | »|| < || xy|. We shall assume that each Banach algebra contains an
identity element e, where e” = 1. The set of all bounded linear operators on a
Hilbert space is a Banach algebra, as is the set of all continuous complex-valued
functions on a compact topological space X (with the sup norm || f " = sup
{ l f (x)[ : x€ X}). The part of Banach algebra theory germane to spectral theory is
the relation between these two examples.

Gelfand’s theory of commutative Banach algebras depends on three fundamental
concepts: homomorphisms, maximal ideals and spectra. A homomorphism of a
commutative Banach algebra B is a non-zero multiplicative linear functional; its
kernel is a maximal ideal since it is contained in no larger proper ideal. Moreover,
every maximal ideal I is the kernel of some homomorphism for in this case the factor
algebra B/I is the field C of complex numbers (according to a result announced by
Stanislaw Mazur [1938b] and proved by Gelfand [1941a]) so the composite map
B— B/I—- C is a homomorphism of B whose kernel is I. The set My of homo-
morphisms (or equivalently, of maximal ideals) of B is given the weakest topology
relative to which all of the functions £: h — h(x) are continuous, for all x € B. Then
the topological space My is compact and Hausdorff, and each element x of B is
represented in C(Mj) (the Banach algebra of continuous complex valued functions
on Mp) by its “Gelfand transform’ %.




1973] HIGHLIGHTS IN THE HISTORY OF SPECTRAL THEORY 375

In strict analogy with the spectral theory of operators on a Hilbert space, Gelfand
defines the spectrum o(x) of an element x € B to be the set of complex numbers A fcr
which the element x — Ae has no inverse. The set o(x) is compact, non-empty and
contained in the disc of radius || x |. Furthermore, o(x) happens to be precisely equal
to the range of the Gelfand transform £: o(x) = {h(x)| h € M}. For this reason the
space My of maximal ideals is often called the spectrum of the Banach algebra B.
If B is the algebra generated by a single element x (such as a particular operator
on H), then the spectrum of the algebra B is mapped homeomorphically by £ onto
the spectrum of x.

In [1943] Gelfand and Naimark showed that the commautative Banach algebra
C(Mp) is characterized by the presence of an involution, namely the operation of
complex conjugation *: f — f. Specifically, they showed that any commutative Banach
algebra with an involution (called a B*-algebra) is isometrically isomorphic to the
algebra C(Mp) for some Banach algebra B. In particular, the commutative B* algebra
B(T) generated by a given bounded normal operator T is isomorphic to the algebra
C(o(T)) of all continuous functions on a(T), the spectrum of B(T); T is assumed
normal in order that the presence of the involution *: T— T* should not destroy the
commutativity of the algebra B(T).

The impact of the Gelfand-Naimark theorem on spectral theory is this: the
spectral theorem for a bounded normal operator T can be inferred via the isomorphism
between B(T) and C(o(T)) from a corresponding theorem concerning continuous
complex valued functions on ¢(T). The required theorem is just that every continuous
function f on o(T) (in particular, the identity function f(1) = 1) can be approximated
uniformly by measurable step functions of the form Xf(4)x,,, where y,, is the
characteristic function of the measurable set A,. The translation of this theorem to
the algebra B(T) (in the special case f(4) = A) is the spectral resolution of the bounded
normal operator T: T= [AdE,. In words instead of symbols, the approximation
theorem says that a continuous function can be approximated by linear combinations
of characteristic functions, while the spectral theorem says that bounded normal
operators can be approximated by linear combinations of projections. Thus Gelfand’s
theory of Banach algebras revealed that the spectral theorem is in some fundamental
sense equivalent to a most rudimentary fact in the theory of functions.

Gelfand’s theory actually yields a spectral theorem far stronger than those which
we have so far discussed. By translating the approximation theorem for an arbitrary
continuous function f we obtain a spectral resolution of the form f(T) = [f(1)dE,.
This formula was originally introduced by von Neumann and Stone as the basis of
their ‘‘operational calculus’’. A related general spectral theorem, also due to von
Neumann [1930a], can be inferred from the Gelfand-Naimark isomorphism: any
commutative family of bounded normal operators admits a simultaneous diagonaliza-
tion—that is, a single resolution of the identity which simultaneously represents all
operators in the family by mz=ans of the integral [f(1)d E, for various functions f.
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11. Unfinished business. This concludes our saga of the spectral theorem. Our
historical vision has been deliberately narrow, focused throughout on the evolution
of just one theorem and only rarely have we glanced at the many fascinating ap-
plications anb extensions of the basic theory. For example, spectral theory for
spaces without inner products can be traced back to Riesz [1918b] and T.H. Hil-
debrandt [1931], while the rudiments of spectral theory for differential operators
are contained in the work |1908c] of George Birkhoff; in [1928b] and [1930d]
Norbert Wiener developed a theory of spectral analysis for functions in an attempt
to analyze mathematically the spectrum of white light, while twenty years later Arne
Beurling [1949b] inaugurated the complementary study of spectral s ynthesis; and
in [1942] Edgar R. Lorch, continuing work begun in [1913a] by F. Riesz, inves-
tigated spectral sets in the plane by means of contour integrals.

Had we stopped to investigate each such offshoot our evolutionary tree (Figure 1)
would have looked like a forest. Indeed, it took Nelson Dunford and Jacob Schwartz
nearly 3000 pages to survey spectral theory ([1958a], [1963], [1971]). So any who
are inspired to examine the fruits of spectral theory are invited to read this treatise
or any of its many less ambitious companions ([1951], [1953], [1958b], [1962]).
Our mission to describe the roots and main trunk of spectral theory is accomplished.
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