
INVERSE PROBLEMS 

JOSEPH B. KELLER 

1. Introduction. We call two problems inverses of one another if the formulation of each involves 
all or part of the solution of the other. Often, for historical reasons, one of the two problems has been 
studied extensively for some time, while the other is newer and not so well understood. In such cases, 
the former is called the direct problem, while the latter is called the inverse problem. As illustrations, 
we present the following three inverse problems. The corresponding direct problems, which are their 
solutions, are given in the appendix. 

1. What is the question to which the answer is "Washington Irving"? 
2. What is the question to which the answer is "Nine W"? 
3. What is the question to which the answer is "Chicken Sukiyaki"? 

These examples demonstrate that inverse problems often have many solutions, and also that some 
particular solution is preferable to the others. 

Some examples of inverse problems in mathematics are the following: 

4. Find a polynomial p(x) of degree n with the roots xI, * * *, xn. This is inverse to the direct 
problem of finding the roots xi, * * *, xn of a given polynomial p(x) of degree n. In this case the inverse 
problem is easier, having the solution p(x) = c(x - xl) ... (x - x"), which is not unique because c# 0 
is an arbitrary constant. 

5. Find a polynomial p(x) of degree n with given values yi, y , Yn at x i , xn. The correspond- 
ing direct problem is to find the values y,, * * , yn of a given polynomial p(x) at xl, * *, x,,. The inverse 
problem is called the Lagrange interpolation problem, while the direct problem is that of evaluation of 
a polynomial. 

6. Given a real symmetric matrix A of order n, and n real numbers A1, *, An, find a diagonal 
matrix D so that A + D has eigenvalues Al *, An. This is inverse to the direct problem of finding the 
eigenvalues Ab * * * An of a given real symmetric matrix A + D. 

A common inverse problem used on intelligence tests is this: 

7. Given the first few members a,, a2, a3, a4 of a sequence, find the law of formation of the 
sequence, i.e., find an for all positive integers n. Usually only the next few members a,, a6, a7 are 
asked for as evidence that the law of formation has been found. The direct problem is to evaluate the 
first few members of a sequence an, given the law of formation. A well-known instance of this inverse 
problem is to find the next few members of the sequence which begins 4, 14,34,42. The solution is 
59,125,145, since the sequence consists of the express stops on the 8th Avenue subway in New York. 
It is clear that such inverse problems have many solutions, and for this reason their use on intelligence 
tests has been criticized. 

The fnain sources of inverse problems are science and engineering. Often these problems concern 
the determination of the properties of some inaccessible region from observations on the boundary of 
the region. Here are some examples: 

8. Find the mass distribution p(x) of matter within the earth, given the gravitational potential 
?(x) for x on the surface of the earth. This is inverse to the direct problem of finding +(x) given p(x), 
which has the solution 

O(x)= G p(x')lIx-x'l dx'. 

Here G is the gravitational constant and I x - x' is the distance from x to x'. The inverse problem is 
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important in locating high or low density regions within the earth, which may contain ore or oil, from 
observations of anomalies in the gravitational potential on the earth's surface. 

9. Find the intermolecular potential V(r) between two molecules a distance r apart, given the 
equation of state of a gas composed of such molecules. This is inverse to the direct problem of finding 
the equation of state, given the potential, which is a basic problem of statistical mechanics. 

10. Find the intermolecular potential V(r) from scattering data; i.e., from information about the 
angle through which a molecule is scattered when it collides with another molecule. The direct 
problem is that of calculating the scattering angle, given the potential. These problems can be 
analyzed by either classical mechanics or quantum mechanics, and the two kinds of analysis are 
applicable in different physical situations. 

11. Find the shape of a scattering object, given the intensity of light, of radar waves, or of sound 
waves it scatters in any direction. The direct problem is that of calculating the scattered light, radar or 
sound intensity in any direction from a given illuminated object. This problem is important in 
identifying objects in space from radar observations of them, and of identifying objects in the ocean 
from sonar observations. 

In each of the seven following sections of this paper, an inverse problem which has arisen in 
physics will be analyzed. 

2. Determination of the shape of a hill from travel time, and probing the ionosphere. Suppose we 
slide a particle up a frictionless hill with initial energy E, and measure the time T(E) required for it to 
return. If we vary E and measure T(E), can we determine the shape of the hill from it? This problem 
was formulated and solved by Abel in 1826. To analyze it we shall first formulate and solve the direct 
problem: Given the shape of the hill, find the travel time T(E). 

Let s denote arclength along the hill and let the height of the hill at s be h(s) with h(O) = 0. We 
denote by m the mass of the particle, by g the acceleration of gravity, and by s(t) the position of the 
particle at time t. Then the equation of motion of the particle is 

(2.1) m d2 = ds 

Here V(s) = mgh (s) is the potential energy of the particle at s, so V(O) = 0. We shall measure s and t 
from the initial position and from the instant of release of the particle, respectively, and denote by vo 
its initial velocity. Then the initial conditions are 

(2.2) s(O)=O, 
d 

vo. dt 

We shall assume that vo > 0. 
We now multiply (2.1) by ds/dt and integrate to get the energy equation 

(2.3) M - + V(s)= E. 

In (2.3) E is the total energy of the particle, given by 

(2.4) E = 2 mv. 

Next we solve (2.3) for (dsldt)-1 choosing the positive square root because vo > 0, and integrate using 
(2.2) to get 

(2.5) t= (2) [E - V(s')f2ds', 0-'t- t T(E). 

This equation yields the solution in the form t = t(s) from s = 0 until s reaches the value s1(E), which 
is the smallest value of s -' 0 at which E - V(s) = 0. The corresponding value of t, which we shall call 
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2 T(E), is given by setting s = s,(E) in (2.5). Thus 

r sl(E) 

(2.6) T(E) = (2m)1/2 J [E- V(s')-112 ds'. 

At the instant T(E)12 the particle velocity vanishes, and then the velocity becomes negative. Thus 
the solution for t _ T(E)12 is obtained by using the negative square root in solving (2.3). The result 
can be written in the form 

1 (Mn 1/2(sl(E)1 
(2.7) t T(E) + ( [E - V(s')]f1/2 ds', T(E)-?t 

2 k2 2~ 

By setting s = 0 in (2.7), we see that the time at which the particle returns to its initial position s = 0 is 
just T(E) given by (2.6). Thus (2.6) yields the solution of the direct problem. We see that it is defined 
only for those values of E for which s,(E) exists. These are just the values of E in the interval 
O-' E-< Vm sups,o V(s). For E > V1/r the particle never returns to s = 0, so we can set T(E) = X0 

for E > Vrn. 

Now we can consider the inverse problem: Given the travel time T(E) for E ?0 , find the shape of 
the hill, i.e., find the potential V(s) for s ' 0. Once we know V(s) then the height of the hill is given 
by h(s) = V(s)/mg. To find the equation of the hill in cartesian coordinates we write it parametrically 
as x(s), y(s). Then y(s) = h(s), while x(s) is related to y(s) by the arclength condition (dxlds)2 + 

(dylds)2 = 1. Solving this equation for dx/ds and integrating yields 

(a FL 12\ 1/2 

(2.8) x (s) = x (O)+t (1- ds ds', s '~>0. 

This shows that the shape of the hill can be determined readily once V(s) is found, so it suffices to find 
V(s). 

V 
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FIG. 1. A potential V(s) which is increasing in the interval 0_ s < o,,, decreasing in 0r < s < 0a2 and increasing 
again in a2 <s The inverse function is called s1( V) in the first interval, s2( V) in the second interval and s3( V) in the 
third interval. 

To find V(s) we shall start with (2.6), which relates T(E) to V(s). It is a nonlinear integral 
equation for V. We can convert it into a linear integral equation by introducing V instead of s as the 
integration variable. This change of integration variable must be made separately in each interval 
within which V(s) is monotonic. Therefore we first consider the first such interval, 0? s r a, and 
suppose that V(s) is monotone increasing within it. (See Fig. 1.) Let s = si(V) denote the inverse of 
V(s) within this interval, within which 0- V-' V(o(1). 'rhen we can rewrite (2.6) in this interval in the 
form 

(2.9) T(E) = (2m)1/2 [E - V]-1/2 
ds1( V) dV, 0 -' E - V(ci). )1/ J[E- /] dV 
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Eq. (2.9) is a Volterra integral equation of the first kind for dsl/dV, and with the kernel (E - V)-12 
it is called an Abel equation. Its solution for ds,(V)IdV is 

(2.10) ds1(V) - ~~~~~T(O) 1 (V (2.10) Vsl1/)2= 
) + )1/2, ( V-E )-1/2 T'(E)dE. 

dV (2mV)1i +(2 m)11ir I ~ ' 

This can be verified by substitution into (2.9). Finally integrating (2.10) from 0 to V yields, after an 
integration 

(2.11) Si (2)1/2 f (V-E)112T(E)dE, 0-c v V(l). 

This is the solution of the inverse problem for V(s) in the interval 0-' s o or,. It was obtained by Abel. 
If V(o(1) = oc, it is the complete solution. This solution applies to a particle in any potential, not only a 
gravitational one. 

A method like that described here is used to find the electron density n(s) at height s above the 
earth in the ionosphere. The method is to send up a radio wave of angular frequency w, and to 
measure the time T(co) required for it to return to the ground from the ionosphere. The group velocity 
Cg of a wave of frequency co in an electron plasma, like the ionosphere, is cg = cW-1[W2 -2(S)]112. 

Here c is the velocity of light in vacuum and 2p(s) = 4ire2n(s)Im is the plasma frequency, where e 
and m are the charge and mass of an electron, respectively. Thus the time for a wave to travel from 
s = 0 up to the first point s1(w), where W2 = W2(S ), and then back down to s = 0 is 

(2.12) T(w) = 2 - d ( 2 _f A 2(S)]f1/2ds. 

This is of the form (2.6) and therefore its solution is of the form (2.11): 

r2 

(2.13) SI(6) = c [2- w2f112T(w)dw 

3. The nonmonotonic case. Now we suppose that V((J1) is finite, and that V is decreasing in the 
interval a, < s < O2 and then increasing in the next interval 0f2 < C < (J3. (See Fig. 1.) We denote by 
s2(V) and S3(V) the inverses of V(s) in these two intervals, respectively. Then we can write (2.6) in the 
form 

FCV(o'1) ds, V(o'1) _ S 

(3.1) T(E) = (2m )12[J (E - V)-112 dV-J (E - V)-1/2 ds dV 

+ fE (E - V)-1/2 ds3 dv] 

Next we define w (V), the width at depth V of the "potential well," by 

(3.2) w ( V) = S3(V) - S2( V), V((J2) - V - V((J1) 

In writing (3.2) we assume that E ' V((J1). Then we can rewrite (3.1) as 

VQr'1) ,ds, CE S 
(3.3) T(E) = (2m )1/2 (E - V)-1'2 - dV + I (E - V)-1/2 ds3 dV [J0 ~~~ 

~~dV 
J 

(01) dV 

CV(0o1) 1 
+ I (E- V)-1/2 d dVI. 

J 0Q2) dV 

The formula (3.3) shows that T(E) involves only the width function w (V) of the well, and does not 
depend upon its two sides s2(V) and S3(V) separately. Therefore it is not possible to obtain these sides 
from T(E). However, as we shall soon see, it is not even possible to determine w(V) from T(E). 
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Let us regard (3.3) as an integral equation for ds3/dV in the range V ' V(o1,). Then it is of the 
same form as (2.9) with T(E) replaced by T(E) plus the integrals involving ds,/dV and dw/dV, and 
with the lower limit replaced by V(o1r). Therefore the solution is given by (2.10) with the same 
replacement. After integration, the solution becomes 

(3.4) S3( V) = s3[ V(u-1)] + ( V - E)2 [(2m 1/2 T(E) - f (E _ z )1/2 dz 

- f ;(cr) (E - z)-12 dz dzl dE, V(crl)-' V. 
J(-2) d V 

This form of the solution can be simplified with the aid of the integral formula 

(3.5) 
f 

(V- E)112(E - z)-1/2dE = 2 sin- (v-z) = r -2sint [V(oz) z] 

When (3.5) is used in (3.4), the solution can be written in the simpler form 

__v_2v___1 ds1 . V(or1) - zV1'2 (3.6) s3(V) = (2/ f,| (V-- E)-12 T(E)dE + d f sin-' [ ( l dz 

2 f"(0i) dw [V(cri)- zV12 + 2 tV<X) sin [v J dz, V(0J1) - V. 

The result (3.4) or (3.6) shows that S3( V) is not unique, since w ( V) can be chosen arbitrarily. For 
each choice of w(V), S3(V) is determined uniquely in the range V-' V(oJ1), up to the next local 
maximum of V(s). The function ds1/dV in (3.4) is given by (2.10) in terms of T(E). 

The preceding considerations can be applied at once to a potential V(s) with any number of local 
maxima and minima, but we shall not do that. 

V 

E 

X X 

SIME O S SI(E) 
FIG. 2. A potential V(s) which increases as I s I increases. The intersections of the graph with the horizontal line at 
height E are the roots s,(E) and ?,(E) of the equation V(s)= E. 

4. Determination of a potential from the period of oscillation. Let us now consider a particle in a 
potential well. (See Fig. 2.) Its motion is still governed by (2.1) with the initial conditions (2.2). 
Therefore the results (2.3)-(2.7) apply, so the particle travels to the right until it reaches the point 
s,(E) at the time T(E)/2 and then it travels to the left, returning to the origin at the time T(E). Its 
velocity at the origin is - v,,, so it will continue past the origin until it reaches a point f,(E) where 

E-V(s) = O, at a time we shall call T(E) + 2 T(E). Then its velocity reverses sign and it travels f o the 
right, reaching the origin again at the time T(E) + T(E) with the velocity vo. Thereafter the mlotion 
repeats periodically, since the position and velocity have returned to their initial values s = 0 and 
dsldt = vo. 
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The period P(E) of this periodic motion is P(E) = T(E) + T(E), since the initial conditions first 
recur at this time. Now T(E) is given by (2.6), and T(E) is given by the corresponding expression with 
sM(E) replaced by ?,(E), and with the negative square root. Thus the period is given by 

r s1(E) F 11(E) 

(4. 1) P(E) = T(E) + T(E) = (2m )12 J [E - V(s)-112 ds - (2m )1/2 J [E - V(s)]j1172ds 

f s1(E) 
= (2m )1/2 J [E - V(s)]-112ds. 

J(E) 

Here s,(E) and ?1(E) are respectively the smallest (in absolute value) positive and negative roots of 
the equation V(s) = E. 

The result (4.1) is the solution of the following problem, which we shall call the direct problem: 
Given a potential well V(s), find the period P(E) of oscillation of a particle with energy E. It is 
important to note that in general the period does vary with E, since in the often studied case of small 
amplitude oscillations, the period is independent of E. We shall return to this point later. Now we shall 
pose the inverse problem: Given the period of oscillation P(E) of a particle with energy E in a 
potential V(s), find the potential. 

To solve the inverse problem, let us consider first the case in which V(s) is symmetric, 
V(s) = V(- s). In this case it is clear that ?,(E) = - si(E) and then T(E) = T(E). Thus the period is 
just P(E) = 2T(E), where T(E) is given by (2.6). The problem of finding V(s) was solved in Section 2 
for the case in which V(s) is monotonic increasing for s > 0. The solution is given by (2.11). The 
inverse problem for this symmetric monotonic case was first posed and solved by B. F. Kimball (1932). 
The symmetric nonmonotonic case is treated in Section 3. 

Next, let us consider the nonsymmetric case. For simplicity we shall assume that V(s) is monotone 
increasing as I s I increases. Then we can introduce the two inverses si(V) > 0 and ?,(V) < 0 of V(s), 
and write (4.1) in the form 

(4.2) P(E) = (2m (E - ds dv-(2m)1/2 (E- V)-1/2 dV 

(2m)1/2 (E V)-1/2 dVJod = (2m)1/2(E V)12v dw dV. 

In writing the last form of the expression for P(E), we have again introduced w(V), the width of the 
well at height V, defined by w (V) = si(V) - ?,(V). This form shows that P(E) depends only upon 
w(V), and not upon the separate sides of the well, s,(V) and s?(V). Therefore it is not possible to 
obtain these sides from P(E), but only the width. 

Eq. (4.2) is an Abel equation for dw/dV which is of the form (2.9) with w and P replacing s, and 
T, respectively. Therefore the solution is given by (2.11) with the same replacements, i.e., 

(4.3) W(V) (2 )1/2 I (V- E)-1?2p(E)dE, 0_ V. 

In the symmetric case ?,(V)= - s1(V) so w(V) = 2s,(E) and P(E) = 2T(E). Then (4.3) becomes 
identical with (2.11). It is always possible to assume that the well is symmetric, and then (2.11) yields 
the unique symmetric solution. However, whether or not the solution is symmetric is not determined 
by P(E); only the width is determined. 

As an application of (4.3), we shall find w ( V) when the period P(E) is constant, independent of E. 
Then (4.3) yields 

(4.4) p2 V 
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Solving (4.4) for V yields 

( * ) ~~~2 [P] 

Thus, if and only if V is proportional to w2 is the period constant, independent of E. In the symmetric 
case when w = 2s1, (4.5) is just the quadratic potential which arises in the analysis of small amplitude 
oscillations. 

The results of this section are due to J. B. Keller (1962). They can be extended to the case in which 
V(s) is not a monotone function of I s I by the method of Section 3, but we shall not carry out that 
extension. 

5. Inverse transit time problem. We shall again consider a particle moving in the potential V(s), 
governed by (2.1) with the initial condition (2.2). We now pose the following direct problem: Find the 
transit time r(E) required for a particle of energy E to travel from s = 0 to s = L > 0. From the 
analysis of Section 3, we know that the particle will reach L if and only if E satisfies the condition 

(5.1) E > Vm = sup V(s). 
O9ss L 

When (5.1) is satisfied, r(E) is obtained by setting s = L in the solution (2.5), which yields 

(5.2) r(E) = [ ] f [E - V(s)f-112ds, E > Vm. 

From the solution (5.2) of the direct problem, we see that r(E) is a decreasing function of E. A 
series expansion of r can be obtained by expanding the integrand with the aid of the binomial 
theorem, and integrating term by term. This yields with binomial coefficients c, 

Fm 1/2 c 
nLV 

(5.3) r(E) = > cnE-J V"(s)ds, E > Vm. 

Now we can formulate the inverse problem: Given the transit time r(E) for E > Vm, find the 
potential V(s). In order that this problem have a solution, the given r(E) must possess an expansion 
of the form (5.3), which we shall write as follows: 

(5.4) r(E) = [2E E c-Enrn, E > Vm. 

By comparing (5.3) with (5.4), we see that the coefficients rn in the expansion of the given function 
r(E) are related to the unknown function V(s) by the relations 

rL 

(5.5) m=n f Vn(s)ds, n = 0, 1, . 

To find V(s) from (5.2) or (5.5), we shall assume that V(s) is monotone increasing. Then we can 
rewrite (5.2) and (5.5) as follows: 

(5.6) T(E) = (m) f (E - V) dV dV, E> V(L) = Vm. 

(5.7) fTn J vdVdI n =0, 1, 

Eq. (5.6) is a linear integral equation for dsfdV, called a Fredholm equation of the first kind. It differs 
from the Volterra equation (2.9) by having a fixed upper limit of integration, rather than a variable 
limit. Because of this difference we cannot solve it explicitly, as we did (2.9). Therefore we shall 
instead try to find ds/dV from (5.7). 
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The integral in (5.7) is called the nth moment of ds/dV. Thus the problem of finding dsfdV is 
equivalent to that of finding a function from all its moments. This classical problem is called the 
moment problem. One aspect of it is to determine whether a given set of numbers r,, are the moments 
of some function. We shall assume that they are, because of the manner in which they are determined. 
Then it remains to find ds/dV from them. Because (5.7) is a linear relation between dsfdV and rn, it 
follows that ds/dV is a linear function of the tn. Thus we shall seek ds/dV in the form 

(5.8) ds T I ngn( V). 

The functions gn ( V) are to be determined in such a way that (5.7) holds. This leads to the condition 
rV(L) 

(5.9) f Vng (V)dV = inj. 

Eq. (5.9) can be satisfied by choosing for gn (V) an appropriate polynomial of degree n .To find this 
polynomial it is convenient to introduce the orthonormal polynomials 0n(V) of degree n, which 
satisfy 

rV(L) 

(5.10) O n ( V)*O ( V) dV = Snj. 

Then we express V' and gn(V) in terms of the 4,, as follows: 
r r V(L ) 

(5.11) V= n 
c,j4(V), cni = f Vnocf(V)dV, 

(5.12) gk (V)- > gkj4j (V). 
j =o 

Substitution of (5.11) and (5.12) into (5.9), and then using (5.10), yields for the gkj the equations 
00 

(5.13) _ Cnjgkj 
= tSk. 

i =0 

It follows from (5.11) that the matrix cnj is triangular, i.e., cnj = 0 for j > n, and therefore (5.13) can be 
solved recursively for the gk1. Then gn(V) is given by (5.12) and ds/dV is given by (5.8). Integrating 
(5.8) yields finally 

(5.14) s(V)= ETn r gn(V')dV. 

The foregoing analysis yields the unique monotone increasing solution V(s) of (5.2). It is clear 
from (5.2), however, that any function equimeasurable with this solution is also a solution. Thus the 
inverse problem has many solutions, and we have found a particular one of them. 

6. Inverse eigenvalue problem. In quantum mechanics the wave function +(x) of a particle of 
mass m in a potential V(x) satisfies the Schrodinger equation 

(6.1) + m2 [E - V(x)]+ = O -m < x < m. 

Here h is Planck's constant divided by 2ir, and E is the energy of the particle. Let us suppose that 
V(x) is a monotonic increasing function of I x 1, tending to + oo as I x I becomes infinite. Then (6.1) has 
a quadratically integrable solution, not identically zero, if and only if E is equal to one of the discrete 
set of eigenvalues En, n = 0, 1, * * * of the equation (6.1). The eigenvalues tend to + oX as n increases, 
and they can be labelled so that En, -> En. 
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The direct problem is that of finding the En, given V(x). This problem can be solved 
asymptotically for large values of En by the so-called WKB method. In this method one seeks a 
solution of (6.1) of the form q(x)-A(x)sins(x). By first ignoring derivatives of A, one gets an 
equation for s. Then by keeping A, but ignoring A.,, one gets an equation for A. This leads to the 
following asymptotic form of f: 

(6.2) f(x)- [E - V(x)] ' sin + 3 [-2 [E - V(x')]] dx'j, xi(E)< x <xl(E). 

This result holds only between the two roots x-l(E) and xl(E) of V(x) = E, and the constant Tr/4 
results from matching (6.2) to a boundary layer solution valid around xl(E). A similar matching to a 
boundary layer solution valid around xl(E) leads to the condition 

(6.3) (2m)1/2 [E - V(X)]112dx = (n +2) ir, n = 0, 1, 
J i(E)2 

This equation (6.3) can be viewed as an equation for the determination of En, and thus provides an 
asymptotic solution to the direct problem. The inverse problem is that of finding the potential V(x) 
given the eigenvalues En, n = 0,1, * * * . To solve it, we shall begin with (6.3), which holds asymptoti- 
cally with E = En and n a large integer. We interpolate the given values En by a smooth function 
E(n), defined for all real n -0 O. Then we assume that (6.3) holds for all n ?- 0 with E = E(n), and (6.3) 
becomes an integral equation for V(x). Differentiating (6.3) with respect to n and dividing by dE/dn 
yields 

[dEl- fx,(E) 
(6.4) 2 [ dn] (2m)1'2 

E 
[E - V(x)]-112dx. 

If we set P(E) = h(dE/dn)-1, (6.4) becomes identical with (4.1). Therefore (6.4) has the solution 
(4.3) for the width w(V) of the potential, which is all that can be determined from E(n). This 
nonuniqueness is to be expected from the general theory of the inverse eigenvalue problem, and it is 
not a consequence of our method of approximate solution. If the potential is even, V(- x) = V(x), 
then w(V) = 2x,(E) and the potential is unique. When the eigenvalues En = (n + ')hw are used in 
(4.3), and V(x) is assumed to be even, the potential V(x) = W22mx2/2 is obtained, which is exactly that 
which yields these eigenvalues. 

The fact that (6.4) coincides with (4.1) when P(E) = 2irh(dEldn)-1 is an instance of the 
correspondence principle, according to which certain results of quantum mechanics are asymptotically 
equal to the corresponding results of classical mechanics at high energies. In the present case, the 
quantum mechanical frequency of oscillation v associated with the energies En+, and En is given by 
hv = En+, - E - dEn/dn. Thus the period v-'- h(dE/dn)-1 is asymptotic to the classical period 
P(E). 

7. Inverse scattering problem. Suppose a moving particle is repelled from a fixed scattering center 
by a force derivable from a potential V(r), where r is distance from the center. Then the path of the 
moving particle is a curve which lies in the plane containing the center, the initial position of the 
moving particle, and its initial velocity. This path can be found by solving Newton's equations of 
motion for the particle. The result is that the path is like a hyperbola, with one asymptote along which 
it comes in from infinity and another asymptote along which it goes out again to infinity. 

To describe the path, it is convenient to introduce polar coordinates r, 0 in the plane of the path, 
with origin at the center. Let the incoming asymptote be the line y = b, x < 0 so that the particle 
comes in from x = - oo parallel to the x-axis and at distance b above it. The distance b is called the 
impact parameter of the particle. Then the direction of the outgoing asymptote, determined by solving 
the equations of motion, is found to be 

(7.1) 0(b) = ir - 2 [b-2- r-2 - V(r)E-'b2-"2 r-2 dr. 
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Here E < V(O) is the energy of the particle, and ro is the largest root of the bracketed expression in 
the integrand. 

Suppose a uniform beam of particles of energy E is incident from x = - oo. The number scattered 
in the directions from 0 to 0 + dO is denoted - o(0)2r sin OdO apart from a constant factor, and v(0) 
is called the differential scattering cross-section. These particles are incident in the annular ring of area 
2'nbdb bounded by the impact parameters b and b + db and their number is proportional to this area. 
By equating the incoming and outgoing numbers of particles we get - cr(0)2r sin OdO = 2rbdb, from 
which 

(7.2) ,(0)= _ b db 
sin 0 dO 

By using (7.1) to eliminate b from (7.2), we obtain the solution of the direct scattering problem, which 
is to find o-(O) given V(r) and E. 

The inverse scattering problem is to find V(r), given o-(O) and E. To solve it we follow Keller, Kay 
and Shmoys (1956). First we integrate (7.2) to get 

(7.3) f o(0)sin OdO = b2/2. 

Here we have used the fact that cr(O)= , which follows from (7.1). Now (7.3) determines 0(b). 
Therefore we may now consider the inverse problem of finding V(r), given 0(b) and E. To solve it, we 
shall consider (7.1) to be an integral equation for V(r). 

Let x = b-2 and let us consider 0(x) to be a function of x. Similarly, let u = r-' and let us consider 
V(u) to be a function of u. Then we can write (7.1) as 

ruo 
(7.4) 0(x)= T-2 f {x[l - V(u)E-'] - u2}-"2du, uo = r-1. 

Now we define v(u), w(u) and g(w) by 

(7.5) v (u ) = 1 - V(u)E-', w(u) = U2V-1(U), g(W) = V -1/2 du (7.5) v(u) 
~~~~~~~~~dw 

Then we can put (7.4) in the form 

(7.6) [ - 0(x)] = f (x - w)"2g(w)dw. 

The Abel equation (7.6) has the solution 

d 1 W IT 0(x) 1 
(7.7) g(w)= dw [2I, | 1/2 dx 

From the definitions (7.5) of v and g we obtain by integration 

(7.8) v = exp f [2g(w)w "2- w-']dw. 

Finally by using (7.7) in (7.8) we get 

1 (W i r1/ W I (7.9) v = exp -{ (w_-"2 f [w'- x(0)]-1/2dOdw} 

This result, together with the definitions (7.5) of v and w, determines the potential V(r). 
As an example let us apply our result to the Rutherford scattering cross-section 
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(7.10) o-(0)= 16E2 sin4(0/2)' 

where e is a constant. We obtain V = e/r, the Coulomb potential from which (7.10) comes. As a 
second example, we consider 

(7.11) e[1- 0] 

7rE sin 0 ) 2 -_ 

From the equations above we get the inverse square potential V = e/r2, which gives rise to (7.11). 

8. Inversion of thermodynamic data. A problemn of statistical mechanics is to determine the 
equation of state of a gas in terms of the potential V(r) between the molecules of the gas. If the 
number density n of the gas is small, the equation of state is found to be 

(8.1) = 1 - 2rb(kT)n + 0(n 2). nRT 

Here p is the pressure, T is the temperature, R is the gas constant, k is Boltzmann's constant and 
00 

(8.2) b(kT) = f [1 -ev-()krlr2dr. 

The expansion (8.1) is called the virial expansion of the equation of state, and b is called the second 
virial coefficient. 

The inverse problem which we consider, following J. B. Keller and B. Zumino (1959), is to 
determine V(r) given the equation of state. Since the equation of state can be obtained by 
thermodynamic measurements, this problem is that of finding the intermolecular potential from 
thermodynamic data. If the equation of state is known, then in particular b(kT) is known. Therefore 
we shall consider the inverse problem of finding V(r) given b(kT). The solution of the direct problem 
is given by (8.2), which we shall use as an integral equation for V(r). 

Let us set ,u = (kT)-1 and v = r3, and regard b = b(t) as a function of ,u and V = V(v) as a 
function of v. Then we can write (8.2) in the form 

(8.3) b(t) = f [I - e-v`v)] dv. 

Differentiation of (8.3) with respect to ,u yields 

(8.4) b'(g) = 1 
f V(v)e-'v(v)dv. 

We first suppose that V(v) is monotone decreasing from V(0) = oo to V(wo) = 0, and introduce V as 
integration variable. Then we write (8.4) as 

(8.5) - 3b '(") = e V(dV/dv)-1 dV. 

Equation (8.5) expresses - 3b'(g) as a Laplace transform of V(dV/dv)-1. Thus if L-' denotes the 
inverse Laplace transform, the solution of (8.5) is 

(8.6) V(d V/dv )-1 = L - b'() 

The solution of (8.6) which vanishes at v = oo is given by 

(8.7) v=3f L-[b1(,t)I dv I 
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Thus when V(r) is monotonically decreasing, it is determined uniquely by b(kT), and (8.7) yields it 
explicitly. 

If V is not monotone then it is not uniquely determined-by b(kT). In fact, all equimeasurable 
functions V(v) yield the same function b(t), as (8.3) shows. Let us suppose that V is not monotonic, 
but has the form shown in Fig. 3, which is typical of intermolecular potentials. Then we proceed as 
above, introducing V separately as the integration variable on each of the two monotonic branches of 
V(v). We.find that (8.7) holds as before for V> 0. However for V < 0 we find instead 

(8.8) v2(V)- v1(V) = 3 f L-[b'(p)] V' 

V 

0r 2 r 
VO- 

FIG. 3. A typical intermolecular potential V(r) which is decreasing in the interval 0 < r < ro and increasing for 
r > r0. The inverse is r,(V) in the first interval and r2(V) in the second interval. 

Here v2(V) and v1(V) are the larger and smaller inverses of V(v), and VO is the minimum of V. As 
(8.8) shows, only the volume 4r/3[r3(V) - r3(V)] of the region where the potential is less than V is 
determined. 

Appendix. 
1. What is the capital of the United States, Max? 
2. Do you spell your name with a "V," Herr Wagner? 
3. What is the name of the sole surviving Kamikaze pilot? 
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