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new areas for investigation and broaden the market. Neither the pure nor the applied
aspects of any science can stand alone. Each contributes to the other more than some
would care to admit. I have stressed the importance of mathematics; may I now say
that we should make it interesting as well as fun to do.

At this point you may be wondering why a publisher continues. Well he has a
dream, and he wants to be a part of the world of knowledge. He knows that a scientific
book is a tool, and it must be made available, despite the limited audience to which
it is addressed. He is also aware that the branching and twigging effect that has occur-
red in science and technology is reflected in lower sales. The publisher needs to break
even and to make a profit so that he will be there to publish your current book and
your succeeding books.

JoHN WILEY AND SONS, 605 THIRD AVENUE, NEW YORK, NY 10016.

REPRESENTATIONS OF SL (2, p)

J. E. HUMPHREYS

1. Introduction. The special linear group SL (2,p") consists of all 2 x 2 matrices
of determinant 1 with entries from the field of p” elements, where p is a prime. (These
matrices do form a group under matrix multiplication, thanks to the product rule
for determinants). The matrices + ((1) (1)) commute with all others, and thus form
a normal subgroup Z, and the quotient groups PSL (2, p") = SL (2, p")/Z turn out
to be simple when p" # 2,3, i.e., they have no proper normal subgroups (cf. Dorn-
hoff [6, Part A, §35]). This is just the first of a number of infinite families of simple
groups which arise from Lie theory by way of matrix groups over finite fields. In fact,
if we add to the list so obtained, the alternating groups A, (n = 5), we get all but
22 or so of the presently known (nonabelian) simple groups. So it is a good idea
for anyone interested in finite groups and their applications (cf. Waall [27]) to find
out more about these remarkable families. Here we shall limit ourselves to the
groups SL(2,p") when n = 1, to avoid some technical details involving tensor
products. But most of the ideas carry over to the case of arbitrary n — and even to
the other families of Lie type.

If G is any finite group, F any field, a representation of G is by definition a homo-
morphism p: G — GL(n,F) (= group of all invertible n X n matrices over F).
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The number n is called the degree of p. A representation of degree 1 is essentially
just a homomorphism of G into the multiplicative group F* of F. As the name
implies, a representation provides a sort of picture of G: in place of abstract group
elements, multiplied abstractly, we get concrete matrices, multiplied in a familiar
way. But the picture may be a poor likeness of the original; for example, let p send
all elements of G to 1 (this is called the 1-representation of G and denoted 15). Even
so, the study of all possible representations of G often yields a very good ‘‘composite’’
picture of G (cf. Klemm [17]). In the next three sections we shall survey some of the
theory of representations for arbitrary G and then see what can be said about
SL (2, p).

The reader may object that SL(2, p) is already given concretely enough (in its
“natural’® representation of degree 2 over the field of p elements). But in fact the
nicest results are obtained by studying representations of a group over the field C of
complex numbers.

2. Group representations. In §2-§4, G is an arbitrary finite group, and all
representations are over C. The theory to be summarized here was developed around
1900, largely by Frobenius, Schur, and Burnside. As general references we suggest
Curtis and Reiner [5], Dornhoff [6, Part A].

In order to sort out the representations of G, it is necessary to decide first when
two of them are to be viewed as essentially the same. Given p: G — GL(n, C), each
x € G is represented by a matrix p(x), which in turn describes a linear transformation
of the vector space ¥V = C" relative to the usual basis. So G acts (via p) on V, which
we express by saying that V is a G-module. This action of G on V really does not
depend in any essential way on the basis chosen for V, although a change of basis
would lead to different representing matrices. Indeed, if A e GL(n,C) describes a
change of basis, then the new matrices are of the form Ap(x)4 ~' (x € G). This leads
us to say that p is equivalent to another representation p’: G - GL(n,C) (same
degree n) if there exists 4 € GL(n, C) such that p'(x) = Ap(x)A~" for all xe G.

Consider, as the first nonabelian example, the symmetric group S; of order
6 = 3!. S, is generated by the 2-cycle x = (12) and the 3-cycle y = (123), subject
only to the relations: x> = 1 = y3, yx = xy?. To construct a representation of Sj,
we just have to specify two matrices p(x), p(y) satisfying the same relations. If we
identify 1 x 1 matrices with scalars, we can write down a couple of obvious re-
presentations of degree 1: the 1l-representation p(x) =1 = p(y), and the sign
p'(x) = — 1, p'(») = 1 (+ 1 for an even permutation, — 1 for an odd permutation).
THese two representations are not equivalent. (Exercise : They are the only possibilities
of degree 1.)

Turning to degree 2, we propose

o) = ( o) P = (0 o)
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where  is a primitive cube root of 1 in C. It is easy to check that these matrices
satisfy the required relations. On the other hand, we could take

v = (] o) 0 =(T] )

. . 1
But p’ is equivalent to p: choose A = (610 w)

What about degree 3? Here S; has a “‘natural” representation: to a permutation
of {1,2,3} corresponds the linear transformation which permutes the usual basis
(e4, €3, €3) of C? in the same way. For instance,

00 1
(123) goes to {1 0 0
lo 1 o

But notice that the vector e; + e, + e is fixed by all permutations of the subscripts,
while the complementary subspace spanned by e; — e3, e, — e3, is stable under all
the representing transformations. Changing the basis to (e; +e,+e;3, e, —e3, e, —e;),
we get an equivalent representation under which

1 ] 0 Ow 1 [ 0 0
(12) goes to 0 0 1 ‘ and (123) goes to 0 -1 -1}
0 1 0] 0 1 0]

What we have here is the direct sum of the 1-representation and the representation
of degree 2 constructed above. So nothing new has been obtained.

Conversely, we can build up representations of arbitrarily large degree by com-
bining known ones in this way. The crucial thing is therefore to find those repre-
sentations (called indecomposable) which cannot be broken down further into direct
sums. The Krull-Schmidt Theorem (for G-modules) assures us in advance that each
representation is a direct sum of indecomposable ones, the summands being unique
up to ordering and equivalence. But it gives us no guidance in finding them!

Here a stronger condition comes into play: p: G — GL(n,C) is called
irreducible if no proper subspace of C" is stable under all p(x), x € G. (Irreducible
implies.indecomposable, but not vice versa.) The reader can verify, for example,
that the above representation of degree 2 of Sj is irreducible, as is any representation
of degree 1. Another basic result in algebra (Jordan-Holder Theorem) assures ‘us
that each G-module has a ‘‘composition series’” with irreducible ‘‘factors’’ which
are essentially unique. In matrix language, this means that p is equivalent to some p’,
where all p’(x) have the form:
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[P1(x) ]

S *

_Pz(x) J

[0 | P
the p; being irreducible representations and the * entries being unspecified.
Fortunately, we do not have to choose between the Krull-Schmidt approach
and the Jordan-Holder approach, thanks to
(2.1) MascHKE'S THEOREM: Every representation of G is equivalent to a direct
sum of irreducible ones.

The remaining task is to describe the irreducible representations of G. Again,we
are fortunate, because there are not ‘‘too many’’ of them:

(2.2) The number of (inequivalent) irreducible representations of G is equal
to the number of conjugacy classes of G.

This result is somewhat peculiar, because examples show that there is (in general)
no natural 1-1 correspondence between the representations and the classes. In our
example, S has three conjugacy classes: {1}, {(12),(13),(23)}, {(123),(132)}, one for
each type of cycle structure. So the three irreducible representations already con-
structed must be the only ones, and we can fairly claim to have determined (up to
equivalence) all possible representations of S;. Notice that the degrees 1, 1, 2 obey
the following general rule:

(2.3) Let py,--, ps be the distinct irreducible representations of G, n; = degree
of p,. Then Xn? = ] G 1 (the order of G). Moreover, n; divides lGl

The reason for |G| to appear here becomes plainer if we introduce the regular
representation of G. The reader may recall Cayley’s Theorem, which identifies an
abstract group with a subgroup of the symmetric group Sj¢| (xe G permutes the
elements of G by right multiplication). In turn, S|g| may be represented by matrices
obtained by permuting columns of the identity matrix (as was done above for S;).
This yields the desired representation pg; of G, of degree ]G | The equality in (2.3)
thén comes from the more precise fact:

(2.4) The regular representation pg is the direct sum of the various p,, each p;
occurring n; times.

3. Characters. So far, the theory looks very satisfactory. But when G is a large
or ‘‘complicated’’ group (and simple groups tend to be quite complicated!), the
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actual construction of irreducible representations is no routine matter. In fact, we
usually have to settle for something less explicit.

Recall from linear algebra that the trace tr M of a square matrix M is the sum
of its diagonal entries, and that this does not change if M is replaced by the similar
matrix AMA™" (thanks to the fact that tr XY = tr YX). Given a representation
p: G —» GL(n, C), the function x(x) = tr p(x) from G to C is therefore the same for
any representation equivalent to p. We call y the character of p. Note that the charac-
ter of a direct sum is just the sum of the characters. If x is conjugate to y in G (say
x = zyz~ '), then p(x) = p(z)p(»)p(z)”* is similar to p(y) and thus has the same
trace. So y may also be thought of as a C-valued function on the set of conjugacy
classes of G. This suggests that we write down an s x s character table, the rows
indexed by the characters gy, -+, x, of the irreducible representations p,,--, p,, and
the columns by representatives x,, ---, x, of the distinct conjugacy classes, with the
value y,(x;) appearing in the (i, ) position. It is customary to put the class {1} first,
so the first column contains the numbers y,(1), which are clearly just the degrees n,.
For S;, see Table 1.

l 1 (12 . (123
x| 1 1 1
x| 1 —1
X3 | 2 0 -1

TasLE 1. Character table of S3

C-valued functions on conjugacy classes of G may be added or multiplied by
scalars, so they form an s-dimensional vector space CF (G) over C. (What is the most
obvious basis?) This vector space has a natural (unitary) inner product, the bar
denoting complex conjugation:

G.1) (6$)e = |G| ! ZG 1)) = [G|™F Z hx(x;) d(x;)

(x; = class representative, h; = number of conjugates of x;).
Remarkably enough:

(3.2) The irreducible characters x,,---,%s form an orthonormal basis for
CF(G).

This is one of the basic orthogonality relations. The other involves the columns
of the “character table:

(33) 2 1(e)(%) = 3] G|hy.

These relations are often used to get information about unknown characters from
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information about known ones. (For instance, the reader should be able to fill in
the third row of Table 1 once the first two rows are known.) Moreover, (3.2) shows
that the character y, which at first sight seems to contain only partial information
about p, actually determines p uniquely:

(3.4) Two representations of G having the same character are equivalent.
If x is a character of G, then yx is irreducible if and only if (x,x)¢ = 1.

4. How to construct characters. G may have a subgroup H whose characters
we already know. Say ¢ is one of these. It is easy enough to extend ¢ to a C-valued
function ¢ on G, by decreeing that ¢(x) = 0 if x¢ H. But ¢ has little chance of
being a character — for one thing, ¢ may take distinct values at elements of H
which are not conjugate in H but are conjugate in G. So we try something fancier:

4.1) ¢%x) = |H|™! EG dlyxy™") (x€G).

A moment’s scrutiny should make it clear that ¢¢ is at least a class function on G.
Indeed:

(4.2) ¢%is a character of G (called an induced character)).

The reason why ¢¢ should be a character cannot be well understood without
going into some technical details about tensor products. To see that some sort of
““product’’ is involved, observe that:

(4.3) The degree ¢p%(1) is the product of ¢(1) and the index [G: H].

If H has fairly small index in G (i.e., if H is big), and if ¢ is irreducible, then
there is at least a chance that ¢ may also be irreducible. Take, for example, G = S,,
H the cyclic subgroup generated by (123). H has an obvious representation of degree
1 sending (123) to w ( = primitive cube root of 1). The induced character given by
(4.1) then has degree 2 and in fact occupies the third row of Table 1.

There is another useful technique, based in a different way on tensor products:

(4.4) If x, ¢ are characters of G, then so is their product: (x$)(x) = y(x)d(x).

The degree of y¢ being the product x(1) ¢(1), there is usually little hope that the
product will be irreducible even if y and ¢ are. But y¢ may contain new irreducible
constituents, and we may be able to sort them out.

5. The groups SL(2,p). From now on G = SL(2,p) unless otherwise specified.
Since we are dealing with a whole family of groups, not just a single group, the
question arises at once: Why should we expect the representations of (say) SL(2,17)
to have anything at all to do with those of (say) SL(2,71)? The common origin of
these groups in Lie theory does not at first seem to have any connection with their
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representations over C. One of our purposes, then, will be to explain what con-
nection exists.

It is an observed fact that many phenomena surrounding these groups are
(in some sense) independent of p, or else vary ‘‘smoothly’’ with p. For example:

(5.1) The order of SL(2,p) is p* —p = p(p + D)(p — 1).
This formula is easy to derive (cf. Dornhoff [6, Part A, Lemma 35.2]). It shows
that the order of a p-sylow subgroup of G is p. One subgroup of this size consists

of the matrices ((1) ‘11); we denote it by U. Let T be the subgroup of all diagonal

matrices (8 2_ 1) in G. This is cyclic of order p — 1 (being isomorphic to the

multiplicative group of the field of p elements.) The product B = TU is the group
of upper triangular matrices in G, and has order p(p — 1), hence index p + 1.

From now on we shall always assume that p is an odd prime, to avoid a few
awkward statements. The case p = 2 is essentially done, anyway, since SL(2,2)
happens to be isomorphic to S;. (To see this, notice that SL(2,2) has order 6, by
(5.1), and permutes the three distinct subspaces of dimension 1 in 2-dimensional
space over the field of 2 elements.)

The next two sections are based on the exposition in Dornhoff [6, Part A, §38],
which in turn rests on Schur [19].

6. Conjugacy classes of SL(2,p). To find the irreducible representations of G
(or at least their characters), we have to know how many to look for, i.e., how many
classes G has (2.2). The answer is a polynomial in p, namely, p + 4. (If 4 is inter-
preted as the square of the order of the center of G, the same formula will work
forp =2.)

The best way to survey the classes is to introduce a factorization valid in any
finite group (for a given prime p). Call x € G p-regular if its order is relatively prime
to p, p-singular if its order is a power of p.

(6.1) Let xe G. Then there exist unique elements y,z€ G satisfying the con-
ditions: x = yz = zy, y p-regular, z p-singular.

This boils down to an assertion about the cyclic group generated by x, which
the reader can readily check.

In our case, G is given as a matrix group (over the field of p elements), so we can
ask what meaning this factorization has in terms of linear algebra. A p-singular
element of G is a matrix whose eigenvalues are both 1 (why?). On the other hand,
a matrix has order prime to p if and only if it is diagonalizable (either over the
prime field or over a quadratic extension). By adapting Jordan normal forms, one
can show without much trouble that there are p classes of p-regular elements, in-
cluding the class of 1, two other classes of p-singular elements, and two ‘‘mixed”’
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classes. There are essentially two types of p-regular elements: those conjugate
already in G to a diagonal matrix and those which only become diagonal over a
field of p* elements.

In Table 2 we list class representatives, along with the number of elements in
the class ( = index in G of the centralizer in G of an element in the class). Here

10 11 1 v v 0
t=(o tfr=te=(o 1)a=(o 1)a= (5 o)

Representative 1 z d o ¢ d zc zd

# Conjugates 1 plp+D  plp—1) 321 3p2-1) 1p2-1) Hp2—1)

TaBLE 2. Class representatives of SL(2, p)

where v generates the multiplicative group of the field of p elements. Also, b denotes
an element of order p + 1 which is not diagonalizable over the prime field. The
non-conjugate powers are: a' (1 £ 1 < (p—3)/2), b™ (1 £ m £ (p—1)/2), plus
of course 1 = a®=b% z = a?~V? = pP* V2 Ag an exercise, the reader might
verify that the number of classes exhibited is p + 4 (as claimed) and that the total
number of elements is p* — p (5.1).

A group of order 2, called the Weyl group, makes its appearance here. It brings
about, for example, the conjugacy of a* and a ~* (and similarly for powers of b).
This group W is the same no matter what p is, which turns out to be a key factor
in the uniformity of the results which follow. Strictly speaking, W = N4(T)/T,
where the normalizer of the diagonal group T consists of all matrices with exactly
one nonzero entry in each row and each column (check this). W should be thought
of as the symmetric group S,.

7. Characters of SL(2,'p). The character table of SL(2, p) was first obtained by
Frobenius; shortly afterwards, Schur [19] and (independently) H. Jordan [16]
found the characters of SL(2, p"). We are following Dornhotl’s version of Schur’s
paper.

It turns out that the irreducible characters of G occur in two “‘series.”’ The first
of these is very easy to construct by the induced character technique sketched in
Section 4. (In this case one easily gets the representations, not just the characters.)
Begin with T, the cyclic group of order p — 1 generated by a. There are p — 1 distinct
characters of T having degree 1 (cf. (2.2) and (2.3)), given as follows: Let 7eC be a
primitive (p — 1)-th root of 1, and define A,(a*) = 7". We could induce these charac-
ters to G, but since T has rather large index in G this would be unwise. Instead, we
extend 4; first to a character (again called A;) of the triangular group B = TU by
requiring that A,(x) = 1 for xe U. (Why is this legitimate?) Now [G: B] = p + 1,
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so the induced character {; = A has degree p + 1 (4.3). From (4.1) the values of {;
on class representatives can be computed without much labor (Table 3).

1 z ad b" c d zc zd

p+1 (—=Dip+1) dlye™i 0 1 1 =1 =1

TaBLE 3. Values of {;

A glance at Table 3 shows that not all {; are distinct; so we can limit our attention
to the indices 0 < i < (p — 1)/2. The next question is: Which (if any) of the {; are
irreducible? A straightforward calculation using (3.1) shows thatif 1 < i < (p — 3)/2,
then ({;,{)¢ = 1, so (3.4) says that these {; are indeed irreducible. (Since we are
looking for a total of p + 4, our task is roughly half completed.) On the other hand,
o,L0)g = 2. This means (cf. (3.2)) that {, is the sum of two irreducible characters.
It can be shown that one of these is 14, so the other one (denoted ¥ and called the
Steinberg character) has degree p = highest power of p dividing G (cf. Steinberg
[23]). Finally, when i = (p — 1)/2, we again get ({;,{;)¢ = 2. In this case {; can be
shown to split into a sum &, + &,, where each &, has degree (p + 1)/2. (But the
values of these characters are a bit tricky to compute.)

The series of characters just constructed ‘‘corresponds’’ in some sense to the
family of p-regular classes represented by powers of a (this in spite of our remark
following (2.2)!). So it is natural to turn to the cyclic group S of order p + 1 generated
by b for another series. Let o€ C be a primitive (p + 1)-th root of 1, and define
characters of S by ¢(b") = ¢". So far, so good. Unfortunately, S (like T) has large
index in G but fails (unlike T) to sit inside a larger group to which we can trivially
extend ¢;. The induced character ¢, has degree p(p—1), and therefore could not
be irreducible (cf. (2.3)).

At this point, the second technique in Section 4 for constructing characters is
invoked. Consider the class function:

(7.1) 0, =Ly—Ci—0f (=i (p+D)2)

The values of 6; are not hard to compute (Table 4). But the reason for picking 0,
in the first place is certainly obscure; for now, just note the presence of the Steinberg
character . At any rate, when 1 < i < (p—1)/2, (0;,0)¢ = 1 (and 1) > 0),

1 z a " c d ze zd

p—1  (=Dip-1) 0 ("™ 4 oM -1 -1 (=i (=it

TaBLE 4. Values of §;
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which guarantees that 6, is a bona fide irreducible character of G. As to 0,4 12, it
splits into a sum 7, + 7, of two irreducible characters of degree (p — 1)/2. Once
the values of #,, n, are pinned down (with the aid of the orthogonality relations
(3.2), (3.3)), we are in possession of p+ 4 distinct irreducible characters, so our
task is done (2.2). The results are shown in Table 5, where ¢ = (— 1)?~ "2, For

1 z a " c d
1] 1 1 1 1 1 1
Y|P p 1 -1 0 0
& | pt1 D+ A0 1 1
& o+ de@+D (D 0 10+ ) 30— Jep)
£ 4p+D  te@+D (-1 0 = e) o+ Jep)
6 | p—1 —D'e-1 0 —@m oM -1
m| -1 —k@-D 0 (—1mt W1+ \fop) 3= 1—\/81,)
n2 | ¥p—1) —3(p—1) 0 - (—pm+t H—1—[ep) H—1+/ep)

TABLE 5. Characters of SL (2, p) (classes of zc, zd omitted)

brevity, the classes of zc and zd are omitted: for any character y, x(zc) = yx(z)
¥(1)™* x(c), and similarly for zd. It is an amusing exercise to verify directly from
this table the formula (2.3) for | G |

The characters 6; are rather mysterious, having been constructed in a roundabout
and seemingly arbitrary way. Moreover, the representations to which they belong
are nowhere in sight. (It is a difficult matter to construct them explicitly, cf. Tanaka
[25], Silberger [20], Gel’fand [7].) In recent years a more systematic approach to
the characters of groups of Lie type has been formulated by Harish-Chandra [9]
(see Springer [21]), making clear why two series are to be expected here. On the
other hand, Green [8] was already able around 1955 to compute explicitly the
characters of the finite ‘‘general linear’’ groups, thus going well beyond SL(2, p).
But there are still a lot of unanswered questions.

One striking fact about Table 5 is that most of the irreducible characters have
degree either p+ 1 or p — 1, these being polynomials in p with highest term p
( = highest power of p dividing |G|) Equally striking is the fact that the actual
character values on p-regular classes (which account for most classes) are so
simple and involve numbers such ast” + 7~ which are in some sense ‘‘symmetric’’
relative to the Weyl group W discussed in Section 6. These phenomena occur for
other groups of Lie type as well, so it is reasonable to look for some further ex-
planation of them in Lie theory. This we do next.

8. Irreducible modular representations. For the moment let G be any finite group,
p any prime dividing |G | , and K an algebraically closed field of characteristic p. As
alleged in Section 1, the representations of G over K are not so well-behaved as
those over C. Indeed, the main results listed in Sections 2 and 3 break down com-
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pletely. The ““modular’’ theory therefore seems at first very unpromising. But since

the late 1930°s Brauer and others (cf. Brauer and Nesbitt [ 2]), have made it a valuable

tool in the study of ‘“‘ordinary”’ representations (i.e., those over C). General ref-

erences for the modular theory are Curtis and Reiner [5], Dornhoft [6, Part B].
The first interesting fact, which generalizes (2.2), is:

(8.1) The number of (inequivalent) irreducible representations of G over K is
equal to the number of p-regular conjugacy classes of G.

However, (2.3) fails to hold over K, and the characters are not very useful:
e.g., the first part of (3.4) fails, and we cannot make sense of the inner product (3.1)
when p and hence IGI is 0 in K. To get around this, Brauer associated with an
irreducible representation p: G — GL(n, K) a C-valued function ¢ on G,., (= set of
p-regular elements of G), nowadays called the Brauer character. To define ¢, notice
that for x € G,,,, the eigenvalues of p(x) are certain roots of unity in K, of order
relatively prime to p, and their sum is the trace of p(x) (the usual character). We just
replace these eigenvalues by corresponding complex roots of unity and call the sum
¢(x). If r = number of p-regular classes, denote by ¢, -, ¢, the corresponding
irreducible Brauer characters. The usefulness of these functions is indicated by:

(8.2) ¢y, ¢, form a basis of the vector space (over C) of C-valued class
functions on G,.,. An (ordinary) character of G, restricted to Gy, is a nonnegative
integral linear combination of the ¢;.

In particular, the restrictions to G, of the (ordinary) irreducible characters
X1, > Xs of G can be expressed as:

1M

(8.3) X = ﬂl dij9; (dy; eZ").

J
The integers d,; form an s x r matrix D, called the decomposition matrix of G
(relative to p). In terms of actual representations, (8.3) reflects the fact that the
representation with character y; may be ‘‘reduced modulo p’’ to obtain a repre-
sentation over K whose composition factors have the indicated Brauer characters
with multiplicities d;;.

The point of all this is that a knowledge of D and of the ¢; would enable us to
write down that portion of the character table of G corresponding to G,.,. When
G = SL(2, p), virtually all classes are p-regular, so this would be a very large portion.
Of course, it seems at this stage no easier to find D and the Brauer characters than
to find the y;. (We mention, in passing, that in principle D itself can be found if
all y, and ¢; are known. This is quite hard to do in practice — cf. Srinivasan [22].
And, of course, it tends to defeat the purpose of the theory!)

Now let G = SL(2, p) again (and let the prime in question be p). Lie theory
actually provides a systematic procedure for constructing all the irreducible modular
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representations of G. We view G as acting on a 2-dimensional vector space over K,
with basis (e;, e,), and we extend that action in a natural way to the space of homo-
geneous polynomials of degree 4 = 0 in e; and e, (viewed as indeterminates). This
space of polynomials has dimension A+ 1, with basis (e},el™'e,, ", e3), and is
denoted M, . For instance,

sends e, to ve; and e, to v 'e,, so it must send efe, to (ve,)* (v e,) = vi(eje,). It is
not too hard to verify that the resulting G-module is irreducible provided 0 £ 4 < p.
(For A = 0, we just get 15.) So we obtain irreducible Brauer characters of degrees
1,2,--, p. Since there are just p p-regular classses (Section 6), (8.1) insures that we
need look no further.

The case 4 = p — 1 is especially interesting. Here the reader can verify that the
Brauer character agrees on G,., with the Steinberg character y constructed in
Section 7. In fact, the representation M,_, is precisely the “‘reduction modulo p”’
of the ordinary representation whose character is .

9. Lie algebra representations. The construction of G-modules in Section 8 is
straightforward, but does not fully reveal the influence of Lie theory. So we shall
give a slightly more abstract version, based on the Lie algebra g = sl(2, K), which
is by definition the set of all2 x 2 matrices over K having trace 0. g is closed under
addition and scalar multiplication, so it is a vector space over K. One basis consists of

- ( 1 0) .= (0 1) _ {0 0

0o —1)’ 0 O’y_(l 0)'
g is also closed under a bilinear (but not associative) ‘‘product’ operation:
[u,v] = uv — vu.

A representation of g is just a linear transformation p: g — M(n, K) ( = space of
of all n x n matrices over K) such that p[u,v] = p(u)p(v) — p(v)p(u). As for group
representations, there is a natural notion of ‘‘equivalence,” and K" can be viewed
as a ‘“‘g-module.”

The analogous Lie algebra over C has a well-known series of irreducible repre-
sentations, which in dimensions < p adapt at once to g. Letting (e, -, ¢;) be a
basis for K***, we simply prescribe:

.1 p(h)e; = (A—2i)e;,
plx)e; = (A—i+ 1)e (e-y = 0),
p(y)e; = (i+ Deiyy (er+1 = 0).

The reader can check that this recipe yields a representation of g (of degree
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A + 1). What is more, the G-module M, of Section 8 can in a sense be identified with
this g-module, via ‘‘exponentiation.”” We give a rough idea of how this works. If 4
is any square matrix, then expA4 = 1 + A + A%/2!4+ A3/3! + ... may or may not
be a well-defined matrix over K. Since division by p is impossible in K, one clearly
has to require that A? = 0. For instance, exp (g (t)) is defined and equals ((1) i)
It turns out that we can exponentiate the matrix p(x) or p(y) given by (9.1) and
thereby get matrices representing elements of G on M, .

This needs to be made more precise, of course, but it will suffice to indicate how
g is brought into the picture. For more details, consult Curtis [4], Steinberg
[24].

10. Principal indecomposable modules. In Section 8 we pointed out the desirability
of finding the decomposition matrix D (without first knowing y;, -+, x,). It happens
that D is related in a remarkable way to another matrix of integers, which we now
explain.

Consider briefly the case of an arbitrary finite group G. Maschke’s Theorem (2.1)
breaks down rather badly in characteristic p, when p divides |G|, leaving us with
a vast assortment of indecomposable representations other than the irreducible ones.
(Since SL(2, p) has cyclic p-sylow subgroups, it is actually possible in this case to
classify them to some extent, cf. Janusz [14]. But this seems beyond reach for other
groups of Lie type.) Fortunately, some of these are both useful and manageable.
As in Section 2, we can construct the regular representation of G (over K) and de-
compose it via the Krull-Schmidt Theorem into a direct sum of indecomposables.
These are called the principal indecomposable modules (PIM’s for short). Two
pleasant facts emerge:

(10.1) There is a natural 1-1 correspondence between PIM’s and irreducible
modular representations of G, each of the latter occurring as unique ““top’’ com-
position factor of its PIM. Moreover, a PIM occurs as many times in the regular
representation as the degree of the associated irreducible representation.

(10.2) The degree of a PIM is divisible by the highest power of p dividing l G| .

Denoting by #; the Brauer character of the PIM corresponding to ¢; (1 < i < r),
we can write (thanks to (8.2)):

(10.3) n; = Z CU¢J (cij EZ+).
ji=1

The r x r matrix C = (c;;) is called the Cartan matrix of G (relative to p). It satisfies:
(10.4) C = D'D (D' = transpose of D); in particular, C is symmetric.
(10.5) The determinant of C is a certain (predictable) power of p.
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C can therefore be found once D is known. (Brauer also showed how to compute
C — in principle, but rarely in practice — if only ¢, -+, ¢, are known.) Conversely,
D can sometimes be reconstructed from a knowledge of C and this turns out to be
the case for SL(2, p)!

An example may help to fix the ideas. Take G = S5, p = 2. There are two p-
regular classes (those of 1 and (123)), hence two irreducible representations over K:
the 1-representation and the (reduction modulo 2 of the) degree 2 representation
constructed in Section 2. Table 6 gives the Brauer characters. Comparison with
Table 1 shows that

l 1 (123)
o1 1 1
é2 2 —1

TABLE 6. Brauer characters of S3,p = 2
e (1 1 0\
b= (0 o 1)
: 10) (and det C = 2).

The general set-up may still seem to be hopelessly complicated (perhaps the
reader wishes we had quit while we were ahead, at the end of Section 7). But the
strategy is a simple one: to ‘‘trap’’ the ordinary characters y; of a group G between
the #; and the ¢;. Indeed, (10.4) comes essentially from the fact that each #, is a sum
of certain y; (or their restrictions to G,,), while each y; is a sum of certain ¢; in a
reciprocal fashion.

Henceforth, G = SL(2,p). Denote by R; the PIM corresponding to M,

(0 = 4 < p), as in (10.1). Since dimM,; = A + 1, (10.2) makes it clear that M, is
strictly smaller than R; except possibly when A = p — 1. In fact:

Therefore, C = D'D = (

(10.6) R, i = M,_, (Steinberg representation).

11. PIM’s for the Lie algebra. Now the Lie algebra g = sl (2,K) re-enters the
picture. It happens that g too has PIM’s. The ‘‘regular representation”’ here involves
the so-called ‘‘restricted universal enveloping algebra,”” an algebra of dimension
p> over K which we shall not attempt to describe further. (10.1) carries over ver-
batim:

«(11.1) There is a natural 1-1 correspondence between PIM’s Q, and irreducible
modular representations M; (0 < A < p), Q, occurring as often as thedegree of M.

Pollack [18] studied these PIM’s in detail and found (cf. (10.2), (10.6)):

(11.2) @, = M,_, (Steinberg representation). If 0 < A < p—1, then Q,
has degree 2p; its composition factors are M, and M, ,_,, each repeated twice.
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These results were explained (and generalized) by Humphreys [10] (cf. Verma
[26]), in a way which makes plain the role of the Weyl group. (For example, the 2
in 2p results from the fact that W has order 2.) Here W appears as a group of order 2
acting on the subspace b of diagonal matrices in g: the nontrivial element of W
sends h to — h. W acts equally on the numbers A, which in Lie theory are viewed as
linear functions on § and called weights: 4 is sent to + A. The weight 1 plays a special
role and gets the special name 6. Now define weights 4, u to be linked if w(d + J)
= (u + J) (mod p) for some we W. This is an equivalence relation, with equivalence
classes:

It is no accident that these pairs (or the single weight p — 1) also occur in (11.2):

(11.4) If M, and M, occur as composition factors of any indecomposable
representation of g, then A and u must be linked.

In effect, then, each PIM Q, (4 # p — 1) involves a single linkage class, repeated
twice. And in each such case, dimM, + dimM,_,_, = p.

12. Comparison of PIM’s. The results of Section 11 are pleasant, but of course
one has to ask what bearing they have on G. Recent work of Jeyakumar [15],
Humphreys [11, 12], Humphreys and Verma [13], reveals the following pattern:
G and g share the same irreducible representations M. They almost share the same
PIM’s — but not quite, since the regular representation of G has degree p* — p
while that of g has degree p® (cf. (10.1), (11.1)). In fact Q, may be constructed as a
summand of a suitable “‘tensor product” M, ® M,_, ; the latter is also a repre-
sentation of G, and it turns out that Q, is stable under the action of G. What is more:

(12.1) Q, (viewed as a representation of G) involves R, as a summand. In parti-
cular, dimR; < dimQ; < 2p.

By counting dimensions and using the last assertion of (10.1), the reader will see
quickly that all but one R, must coincide with Q, (viewed as a representation of G).
The odd case turns out to be: Qp = Ry + R,

The tensor product involved here begins to shed light on the mysterious formula
(7.1), and points up the pivotal role of the Steinberg representation (which is unique
in being both irreducible and a PIM). On a more practical level, the tensor product
construction yields precise information about R,, obtained earlier only by resort
to Brayer’s theory or a knowledge of ordinary characters (cf. [11], [15]):

(12.2) The composition factors of R, (0 = A < p—1) are: M, M,_,_;, M,
M,_5_; (the last omitted if p—3 — A < 0).

In particular, the matrix C can now be written down explicitly (for any given p).
Evidently p plays no essential role in the general pattern: there are three diagonal
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blocks, one the 1 x 1 matrix (1) corresponding to the Steinberg representation,
the other two of the form illustrated in Table 7 (entries not shown being 0).

rz 1 )
1 2 1
12’1
1 2
1
2 1
1 2 1
L 13

TaBLE 7. A block of C

With a little effort, the reader can use the equation (10.4) to reconstruct the
matrix D, whose entries are all 0 or 1 (cf. Brauer and Nesbitt [2, p. 590]). The fact
that D can be recovered in one and only one way from C is a special fact about
SL(2, p), which fails for most groups (but does seem to persist for some other groups
of Lie type). At any rate, without using the results of Section 7, most of the character
table of G for a given p can in principle be written down using just the modular
theory! We shall see below how well it can be done in practice.

It has to be added that Brauer, Dade, and others have been able to derive these
results about the modular theory of SL(2, p) in another (very different) way, by
means of a deep general theory (cf. Dornhoff [6, Part B, §71], Alperin and Janusz [1]).
But this general theory does not apply to other groups of Lie type, so we avoid
discussing it here.

13. The role of the Weyl group. The calculation of C (and then D) sketched in
Section 12 does not yet explain adequately the regularities encountered earlier.

A closer look at D (cf. (12.2)) reveals that M,, M, ,_, (resp. M,, M, ;_;)
oceur together in the decomposition of some ordinary character of degree p + 1
(resp. p—1). It is suggestive to view each pair of weights {4, p—1— A} or
{A, p— 3 — A} as a deformation of the linkage class {4, p — 2 — A}. These two de-
formations can be assigned in a precise way, independent of p, to the two elements
(or conjugacy classes) of W, as follows. Say W = {e,w}, w> =e. Set 6, =0,
d, = 0 (= 1). Then:
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(13.1) The element e deforms the linkage class {A, p—2— A} by adding
ed,) =0to A and ed,) =1 to p—2— A The element w deforms this class by
adding w(d,) = 0to Aand wld,) = —1top—2—A.

From this perspective, the dimension polynomial p = dimM; +dimM,_,_; is
being ‘‘deformed”’ to yield either p+ 1 or p — 1. In defense of this formulation,
which appears at first sight artificial and overly elaborate, we remark that (a) it de-
scribes the observed facts, (b) it generalizes to some other groups of Lie type, (c) it ties
in with the suspicion on other grounds that the ‘‘series’” of ordinary characters
found in Section 7 are somehow connected with the conjugacy classes of W. (The
classes of W are known in any case to lead to the two families of p-regular classes
described in Section 6.)

The above pairs of weights also tie in neatly with the simple form taken by the
actual character values on p-regular classes (Table 5). An example should make
this clear. Take p = 13, A = 8. Then

is represented on M, by a diagonal matrix whose diagonal entries are the following
powers of v: 8,6,4,2,0, —2, — 4, — 6, — 8. Replacing v by 7, a primitive (p — 1)-th
root of 1 in C, we see that the Brauer character of M, assigns to a the number:
78 + 1% 4+ ... 4+ 778, Since 1'? = 1, the exponents here can equally well be thought
of as: 8, 6, 4, 2, 0, 10, 8, 6, 4. Now the other weight in the pair {A4,p — 1 — A} is 4,
and similar reasoning leads to the exponents: 4, 2, 0, 10, 8. So the Brauer character
of Mg + M, assigns to a the corresponding sum of powers of 7. But each even
exponent from 0 to 10 occurs in the combined list exactly twice, except that 8 and 4
each occur three times. Since 7 is a root of X!2 — 1, but not of X?> — 1, 7 is also a
root of

X2 -D)XP-1D)=X"+ X+ X+ X*+ X*+ 1.

So most terms in the Brauer character add up to 0, leaving just: 1 + t* (=17* + 1%).

On the other hand, the Brauer character of Mg assigns to the element b a sum of
powers of ¢, a primitive (p + 1)-th root of 1, the exponents (modulo 14) being:
8,6,4,2,0,12, 10, 8, 6. For M, the exponents are: 4, 2, 0, 12, 10. Here the combined
list contains each even exponent from 0 to 12 exactly twice. But ¢ is a root of
X'24 X4 ... 41, so the Brauer character assigns to b the value 0. This is not
unexpected (if we know Table 5), since the preceding paragraph already showed that
the ordinary character in question must be {, .

The other pair to which the weight 8 belongs is {8, 2}. Here a is assigned the list
of exponents (modulo 12): 8, 6, 4, 2, 0, 10, 8, 6, 4 and 2, 0, 10. So the Brauer character
has value 0 at a. On the other hand, b is assigned exponents (modulo 14): 8, 6,4,2,0
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12, 10, 8, 6 and 2, 0, 12. Here each even exponent occurs twice, except that 10 and 4
only occur once. So the Brauer character assigns to b the value — (¢*° + o*). We
recognize the ordinary character in question as 6, .

14. Conclusion. The reader who has persisted this far might want to look at
some of the cited references in order to see how the actual proofs go, and how to
treat the groups SL (2, p") as well. Admittedly, there is a lot of general theory mixed
into the study of these particular representations. But, in compensation, there are
still many fascinating open questions about the other groups of Lie type, posed
within this same framework. The reader may want to have a hand in settling them.

References

1. J. L. Alperin, G. J. Janusz, Resolutions and periodicity, Proc. Amer. Math. Soc., 37 (1973)
403-406.

2. R.Brauer, C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941) 556-590.

3. R. W. Carter, Simple Groups of Lie Type, Interscience, New York, 1972.

4. C. W. Curtis, Representations of Lie algebras of classical type with application to linear
groups, J. Math. Mech., 9 (1960) 307-326.

5. C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras
Interscience, New York, 1962.

6. L. Dornhoff, Group Representation Theory, M. Dekker, New York, 1971 (Part-A): 1972
(Part B).

7. S. I. Gel’fand, Representations of the full linear group over a finite field, Math. USSR-Sb.,
12 (1970) 13-39.

8. J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80
(1955) 402-447.

9. Harish-Chandra, Eisenstein series over finite fields, in: Functional Analysis and Related
Fields, ed. F. E. Browder, Springer, New York, 1970.

10. J. E. Humphreys, Modular representations of classical Lie algebras and semisimple groups,
J. Algebra, 19 (1971) 51-79.

11, , Projective modules for SL (2, g), J. Algebra, 25 (1973) 513-518.

12, , Some computations of Cartan invariants for finite groups of Lie type, Comm.
Pure Appl. Math., 26 (1973) 745-755.

13. J. E. Humphreys, D.-N. Verma, Projective modules for finite Chevalley groups, Bull. Amer.
Math. Soc. 79 (1973) 467-468.

14. G. J. Janusz, Indecomposable modules for finite groups, Ann. of Math., 89 (1969) 209-241.

15. A. V. Jeyakumar, Principle indecomposable representations for the group SL (2,9), J.
Algebra, 30 (1974) 444-458.

16. H. Jordan, Group characters of various types of linear groups, Amer. J. Math., 29 (1907)
387-405.

17. M. Klemm, Charakterisierung der Gruppen PSL (2, p/) und PSU (3, p?) durch ihre Charak-
tertafel, J. Algebra, 24 (1973) 127-153.

18. R. D. Pollack, Restricted Lie algebras of bounded type, Bull. Amer. Math. Soc., 74 (1968)
326-331.

19. 1. Schur, Untersuchungen iiber die Darstellungen der endlichen Gruppen durch gebrochene
lineare Substitutionen, J. Reine Angew. Math., 132 (1907) 85-137.

20. A.J. Silberger, An elementary construction of the representations of SL(2, GF (g)), Osaka
J. Math., 6 (1969) 329-338.




1975] QUERIES 39

21. T. A. Springer, Cusp forms for finite groups; Characters of special groups; in: Seminar on
Algebraic Groups and Related Finite Groups, Lect. Notes in Math. 131, Springer, New York,
1970.

22. B. Srinivasan, On the modular characters of the special linear group SL (2, p"), Proc.
London Math. Soc. (3), 14 (1964) 101-114.

23. R. Steinberg, Prime power representations of finite linear groups II, Canad. J. Math., 9
(1957) 347-351.

24. , Representations of algebraic groups, Nagoya Math. J., 22 (1963) 33-56.

25. S. Tanaka, Construction and classification of irreducible representations of the special
linear group of the second order over a finite field, Osaka J. Math., 4 (1967) 65-84.

26. D.-N. Verma, Role of affine Weyl groups in the representation theory of algebraic Chevalley
groups and their Lie algebras, in: Proc. 1971 Summer School on Group Representations, ed. .M.
Gel’fand, to appear.

27. R. W. van der Waall, Remarks on the Artin L-functions of the groups GLy(F3) and SLy(F3),
Indag. Math., 35 (1973) 41-48.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01002.

QUERIES
EDITED BY A. C. ZITRONENBAUM

This Department welcomes queries from readers about mathematics at the collegiate level,
such as sources for exposition of a particular topic from a special point of view, references to
vaguely remembered articles, descriptions of special kinds of courses or teaching methods, and
methods constructing illustrative examples for exercises of particular kinds (questions on
research topics should, in general, be addressed to the *Queries Department” of the Notices of
the American Mathematical Society). Replies will be forwarded to the questioner and may be
edited into a composite answer for publication in this Department. Consequently all items
submitted for consideration for possible publication should include the name and complete mailing
address of the person who is to receive the reply. Queries and answer should be sent to A. C.
Zitronenbaum, Department of Mathematics, Cornell University, Ithaca, NY 14853.

17. Can anyone supply the Monthly with a complete list of programmed or
individualized self-instruction texts in arithmetic, algebra, geometry and calculus for
use ifi developmental classes in two or four-year colleges ?

18. A. B. Willcox. Can anyone supply the name and address of a firm that manu-
factures mathematical models for educational use in university courses? Until the
middle 60’s such models were available from a German firm, Rudolf Stoll KG,
but this firm seems to have gone out of business.
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