PARTITION IDENTITIES—FROM EULER TO THE PRESENT
H. L. ALDER, University of California, Davis

1. Introduction. A partition of a positive integer # is defined as a way of
writing 7 as the sum of positive integers. Two such ways of writing # in which
the parts merely differ in the order in which they are written are considered the
same partition. We shall denote by p(n) the number of partitions of #. Thus,
for example, since 5 can be expressed as the sum of positive integers by 5, 441,
3+2,34+1+1, 24241, 24+1+1+1,and 141414141, we have p(5)=7. An
explicit formula for p(n) valid for all positive integers # was discovered by
Rademacher in 1937, but since it is a complicated infinite series and is not needed
for the purposes of this paper, it will not be given here. On the other hand, there
exists a simple generating function for p(n), that is, a function which, when
expanded into a power series Y ., ¢,%™ has as its general coefficient ¢, = p(n).

THEOREM 1. The generating function for p(n) is given by

1) f(x) = —:—1—- where |x| <1.
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Proof of Theorem 1. We have to show that the right hand side of (1), when
expanded into a power series, has as its general coefficient p(n). To do this, we
rewrite the right hand side of (1) as
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If we multiply this out and calculate, for example, the coefﬁcient?of x8, we
find that the term «x° is obtained in the following ways:
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Each of these products corresponds to a partition of 5, indeed in exactly the
order in which the partitions of 5 are listed above. Since there is a one-to-
one correspondence between the number of times the term x» is obtained in
the product (2) and the number of partitions of #, the coefficient of x» in (2)
is p(m).

The function p(#n) is also referred to as the number of unrestricted partitions
of n, to make clear that no restrictions are imposed upon the way in which # is
partitioned into parts. A very interesting—perhaps the most interesting—part
of the theory of partitions concerns restricted partitions, that is, partitions in
which some kind of restrictions is imposed upon the parts. The fascination in
this study lies in the fact that there exist numerous surprising identities valid
for all positive integers # of the general type

©) p'(n) = p"(n),

where p’(n) is the number of partitions of # where the parts of # are subject to
a first restriction and p'/(n) is the number of partitions of # where the parts of »
are subject to an entirely different restriction. It is the object of this paper to
give a survey of the existence and nonexistence of such identities as known up
to date.

Perhaps the simplest identity of the above kind is given by the following
theorem:

THEOREM 2. The number of partitions of n into exactly u parts (u a given posi-
tive integer) is equal to the number of partitions of n into parts the largest of which
S M.

Proof of Theorem 2. A partition of » into exactly u parts can be represented
graphically by u lines of dots, the number of dots in each line equalling the part.
Thus, the partition of 23 into the 5 parts 7+6-+4+4442 can be represented by
the following graph:

When read vertically by columns, this represents the partition of 23 into 545
4444424241, that is, into a partition, the largest part of which is 5. Thus,
to each partition of # into u parts corresponds a partition of # into parts the
largest of which is u, and, since this is a one-to-one correspondence, we have
proved the theorem.

The following theorem follows immediately from Theorem 2.
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TuEOREM 3. The number of partitions of n into at most u parts (u a given posi-
tive integer) is equal to the number of partitions of n with parts not exceeding u.

Theorem 2 was proved by means of a combinatorial proof in a direct way,
that is, a one-to-one correspondence between the two types of restricted parti-
tions was established. Many—or perhaps most—identities involving two kinds
of restricted partitions are proved more easily, and up to now in some cases can
be proved only by analytical proofs, that is, by showing that the generating
functions for the two types of restricted partitions involved are identical. We
shall now consider examples of such identities.

2. Restricted Partition Functions. In order to be able to prove identities of
type (3) by use of generating functions, we need to know how to derive generat-
ing functions for certain restricted partitions. We shall list in the following table
a few which will be needed later.

PARTITIONS INTO GENERATING FUNCTION
Distinct parts ITa+a
pyal

0dd parts 1/ II (1 — a2ty

»=0

13

Parts not exceeding u 1 H 1 —a)

v=1
Parts taken from the set {a;, as, « + + } 1/ J1da— 2%

=1

These generating functions can easily be derived by modifying the proof of
Theorem 1 appropriately. Thus, since for distinct parts each positive integer is
allowed no more than once, each of the infinite sums of (2) has to be reduced to
its first two terms only. Similarly, for partitions with odd parts, the second,
fourth, sixth, - - - infinite sums of (2) have to be deleted which immediately
yields the generating function in the second line of the table above.

3. The Euler and Rogers-Ramanujan Identities. The most celebrated iden-

tity which is very easily proved by means of generating functions is due to
Euler [11], who discovered it in 1748.

TyreoreM 4. (Euler). The number of partitions of n into distinct parts is equal
to the number of partitions of n into odd parts.

Proof of Theorem 4. We have to show that the generating function for parti-
tions into distinct parts, as given in line 1 of the above table, is equal to the
generating function of # into odd parts, as given in line 2 of the above table.
This is easily done as follows:



736 PARTITION IDENTITIES—FROM EULER TO THE PRESENT [September

M+ = +ad+adtan. . —oLlzal=a

y=1 l—xl—le—x"”’
1

0

H (1 — x>+1)
v=0

It is possible—although considerably more difficult—to prove this result by
combinatorial methods, see, for example, [26].

Since the Euler identity involves partitions into distinct parts, that is, where
parts must differ by at least 1, it is natural to ask whether there exists a corre-
sponding identity involving partitions, where parts must differ by at least 2.
Such an identity was discovered by Rogers and Ramanujan around the turn of
the century.

THEOREM 5 (Rogers-Ramanujan). The number of partitions of n into parts
differing by at least 2 is equal to the number of partitions of n into parts which are
congruent to 1 or 4, modulo 5.

To express this theorem as an equality of the generating functions for the
two kinds of restricted partitions involved, we need to derive the generating
function for the number of partitions of # into parts differing by at least 2. We
represent such a partition graphically, for example, 23 =10+7+4+2, as follows:

Since parts must differ by at least 2, each line must have at least 2 more dots
than the one below. Thus, if the partition has exactly u parts, the graph must
have atleast 1+3+5+ - - - +(2u—1) =u2 dots (in our graph, they are the dots
inside the indicated triangle). Consequently a partition of # into u parts differing
by at least 2 can be graphically represented by a triangle with u? dots and a
partition of #—pu? into at most u parts. To obtain the number of all partitions of
n into u parts, we need the generating function for the number of partitions of
n—u? into at most u parts or, which is the same according to Theorem 2, the
number of partitions of #—u? into parts not exceeding u. From line 3 of the
above table, we know that the generating function for the number of partitions
of » into parts not exceeding u is

A=) —a?) - (1—aw)

Consequently the coefficient of x* in
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x”2

-2 =22 (1 —xx

4)

equals the number of partitions of # —u? into parts not exceeding u. To find the
number of all partitions of # into parts differing by at least 2, we need to sum

the coefficients of x» in (4) for u=1, 2, 3, - - - ; that is, we determine the coeffi-
cient of x» in

0

©®) 2

p=1 (l—x)(l—-x2)--~(1_xp).

xH

Accordingly, Theorem (5) is expressed as an identity of generating functions
as follows:

=)

© > = - 1I !

wm (I—2)1 —a) - (1 —a¥) oo (1 — a¥ 1) (1 — xbrte) ‘

The proof of (6) and consequently Theorem 5 is somewhat more lengthy
than the proof of Euler’s identity. The basic tool is the conversion of the infinite
product appearing on the right hand side of (6) into the sum on the left hand
side by use of Jacobi's identity

(7 II (1 — 922 (1 + 921 (1 — y2Higl) = 37 yu'gs,

y=0 p=—00

and the use of an auxiliary function for which a recurrence equation is derived.
The details of the proof will not be given here, but can be found in [17, Chap.
19] and [20].
Rogers and Ramanujan found a second identity in which the parts were not
only required to differ by at least 2 but also to be all at least equal to 2.

THEOREM 6 (Rogers-Ramanujan). The number of partitions of n into parts
differing by at least 2, each part being greater than or equal to 2, is equal to the num-
ber of partitions of n into parts whick are congruent to 2 or 3, modulo 5.

To express this theorem as an identity of the generating functions of the two
kinds of restricted partitions involved, we proceed exactly as in the derivation
following Theorem 5 except that the triangle of that graph is replaced by a
trapezoid, the bottom line of which contains 2 dots, the next to last 4 dots, etc.,
so that the trapezoid would contain inside a total of 24446+ - - - +2u
=u24-p dots. Consequently, Theorem 6 is expressed as an identity of generating
functions as follows:

o xp2+u [ 1

(8) >

eSS ¢ QS DN R I;Io (1 — aa)(1 — o)

4. The Nonexistence of Certain Other Identities of the Euler-Rogers-
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Ramanujan Type. If we denote by ¢am(n) the number of partitions of # into
parts differing by at least d, each part being greater than or equal to m, then the
Euler and Rogers-Ramanujan identities are all of the type

) qa,m(n) = pam(n),

where pa,m(n) is the number of partitions of # into parts taken from a fixed set
Si,m- Thus, in the case of the Euler identity (d=1, m=1), the set S ; is the set
of odd numbers; in the case of the first Rogers-Ramanujan identity, S;,; is the
set of numbers congruent to 1 or 4, modulo 5.

It is natural to ask whether there are any more identities of the type (9).
For d=1, such an identity exists for every m; that is, there exists the following
generalization of the Euler identity:

THEOREM 7. The number of partitions of n into distinct parts, each part being
greater than or equal to m, is equal to the number of partitions of n into parts taken
from the set {m, m=+1, - - -, 2m—1, 2m+1, 2m+43, - - - }

The proof of this theorem is analogous to that of Theorem 4.

Aside from this generalization of the Euler identity and the two Rogers-
Ramanujan identities, no other identities of type (9) can exist, so that we have
the following theorem.

THEOREM 8. The number qa,m(n) of partitions of n into parts differing by at least
d, each part being greater than or equal to m, is not equal to the number of pariitions
of n into parts taken from any set of imtegers whatsoever unless d=1 or d=2,
m=1, 2.

This theorem was proved for the case m =1 by D. H. Lehmer [18] in 1946,
and for the general case by this writer [1] in 1948. To prove it, we note that by
a slight generalization of the argument used to derive the generating function
(5), the one for the number g4,»(%) of partitions into parts differing by at least d,
each part being greater than or equal to m, is given by

(10) >

SU—n1—a) (1=

gmutdp (p—1) /2

while the generating function for the number of partitions of # into parts taken
from a fixed set {as, as, - - - } is given in the last line of the above table. The
proof then consists of showing that no matter how the a; are chosen, the latter
generating function cannot equal that given by (10).

This then proves that the Euler identity and its generalization, given in
Theorem 7, together with the two Rogers-Ramanujan identities are indeed the
set of all identities of type (9) which can exist.

The question may be raised whether identities of type (9) are possible if
Pa,m(n) is the number of partitions of # into distinct parts taken from a fixed set
Sa,m(n). That this is not possible is stated in the following theorem:
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THEOREM 9. The number qa.m(n) of partitions of n into parts differing by at
least d, each part being greater than or equal to m, is not equal to the number of
partitions of n into distinct parts taken from any set of integers whatsoever unless
d=1.

The proof of this theorem, also given in [1], consists of showing that for no
choice of the elements a; of the set S, the generating function for the number
of partitions of # into distinct parts taken from that set, namely

IT (14 2™,

y=1

can equal the generating function given by (10).

5. Early Combinatorial Generalizations of the Euler Identity. Although, in
accordance with Section 4, certain generalizations of the Euler identity cannot
exist, it was already proved in the last century that others do exist. The first
remarkable result in this direction was proved by Glaisher [12] in 1883.

TrEOREM 10 (Glaisher). The number of partitions of n into parts not divisible
by d is equal to the number of partitions of n of the form n=n+n+ - - - +n,
where n; =0y and ni=nipg1+1.

For d =2, Theorem 10 clearly reduces to Euler’s Theorem since the last in-
equality then requires each part of a partition, when written in nonincreasing
order of the parts, to be at least 1 greater than the next one. For d =3, the last
inequality requires that in any set of three consecutive parts of a partition the
first is greater by at least 1 than the last one, thus permitting in this case two
consecutive parts to be equal.

Another generalization of Euler’s Theorem in an entirely different direction
was discovered by Sylvester [26] in 1882.

TreoOREM 11 (Sylvester). The number of partitions of n into odd parts, where
exactly k distinct parts appear, is equal to the number of partitians of n into distinct
parts, where exactly k sequences of consecutive iniegers appear.

Note that in this theorem, a sequence of 2 consecutive integers may consist
of a single integer if 2=1.

Thus, for # =13, the partitions into odd parts where exactly 3 distinct parts
appear are 9+3+1, 74541, 74+3+4+14+141, 54+34+3+1+1, 54+34+14+141
+1+1, so that we have 5 partitions of this kind, while the number of partitions
of 13 into distinct parts, where exactly 3 sequences of consecutive integers ap-
pear, are 9+3+1 (which consists of the three sequences of 1 integer each),
8+4+1, 74541, 7+4+2, 64+4-+2-+1 (which consists of two sequences of 1
integer each and one sequence, namely 2, 1, of two consecutive integers) so that
again we have 5 such partitions.

Euler’s Theorem is a direct consequence of Theorem 11 by summing over
all values of &.
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This theorem—and consequently also Euler’s Theorem—was proved arith-
metically by Sylvester [26, Section 46]. It was proved by the use of generating
functions by Andrews [5] in 1966.

6. Analytic Generalizations of the Rogers-Ramanujan Identities. If we
consider the Rogers-Ramanujan identities merely as functional equations and
disregard their interpretations in terms of partitions, then it is possible to gen-
eralize the Rogers-Ramanujan identities. Since Jacobi’s identity (7) which
plays a vital role in the proof of the Rogers-Ramanujan identities converts an
infinite product consisting of three different terms into a certain infinite sum, it
seems natural to consider the set involved in the first Rogers-Ramanujan iden-
tity as the set of numbers 7ot congruent to 0, +2 (mod 5), rather than the set
of numbers congruent to 1 or 4 (mod 5). The first Rogers-Ramanujan identity
(6) involving the case where parts are not congruent to 0, £2 (mod 5) can then
be generalized to the case where the parts are not congruent to 0, +% (mod
2k+1) as follows:

THEOREM 12. The following identity holds:

i 1 — g@eDHE) (1 — xCRHLyHRET)
an 11 ( )(
S (1 —_ x(2k+1)v+1)(1 — x(2k+1)v+2) e (1 _ x(2k+1>"+2’°)

_ d Gk.u(x)
B ‘j‘ =21 —a?) - (1—a¥)’

where the left side is the generating function for the number of partitions into parts
not congruent to 0, +k (mod 2k+1) and the Gi,,(x) are polynomials in x and reduce
to the monomials x*’ for k=2, that is, for the Rogers-Ramanujan case.

The second Rogers-Ramanujan identity (8) involving the case where parts
are congruent to 2 or 3, modulo 5, or, what is the same, parts #of congruent to
0, +1 (mod 5) can be generalized to the case where parts are not congruent to
0, +1 (mod 2k+1) as follows:

THEOREM 13. The following identity holds:

ﬁ 1
e (1 — p@FDr2) (] — g@HDAS) L. (1 — gl E-D)
12
(12 ® Gr,,u(2) x#

S - —a) (=)
where the Gy, (x) are the same polynomials as those of Theorem 12.

More generally, it can be shown that identities involving the generating
function for the number of partitions into parts not congruent to 0, * (k—r)
(mod 2k-+1) exist for each 7 within the range 0<r=<k—1, so that for a given
modulus 241, there are always & such identities. This agrees with our knowl-
edge that for the modulus 5 two such identities exist.
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Theorems 12 and 13 were proved by this writer [2] in 1954 by means of
generalizing the proof of the Rogers-Ramanujan identities, again making use
of Jacobi’s identity (7) and using a generalization of the auxiliary function of
the proof of the Rogers-Ramanujan identities. This more general function and
a recurrence formula involving it were originally introduced by Selberg in 1936
[22, p. 4, equation 3]. Another proof of Theorems 12 and 13 was given by Singh
in 1957 [23]. In [2] some properties of the polynomials Gx,.(x) were given.
Further properties of these polynomials were derived in two papers by Singh in
1957 [24] and in 1959 [25]. An explicit formula for these polynomials was given
by Carlitz [9] in 1960. While Theorems 12 and 13 show that it is possible to
generalize the Rogers-Ramanujan identities, it has not been possible to describe
the right hand sides of (11) and (12) as generating functions for certain types of
restricted partitions.

7. Combinatorial Generalizations of the Rogers-Ramanujan Identities. The
first success in attempts to generalize the Rogers-Ramanujan identities in a way
in which the generalization states an equality between two kinds of restricted
partitions was achieved by Gordon in 1961 [15]. This generalization extends the
Rogers-Ramanujan identities in a way similar to that in which Glaisher’s Theo-
rem 10 extended the Euler identity:

THEOREM 14 (Gordon). Let py .(n) denote the number of partitions of n into
parts not congruent to 0, +r (mod 2k+1), where 1 =r=k. Let qi.(n) denote the

number of partitions of n of the form n=mn+ns+ - - - +n, where niZnip, ni
=ni5_1+2 and with 1 appearing as a part at most r —1 times, then
(13) Dra(1) = qir(n).

This theorem reduces to the first Rogers-Ramanujan identity for k=2, r=2
and to the second for =2, r=1. As in the case of the analytic generalizations
of the Rogers-Ramanujan identities discussed in Section 6, there are also in this
case for a given modulus 2k+1 exactly % identities.

Gordon in his paper [15] gives a combinatorial proof of Theorem 14 which,
therefore, contains as a special case a combinatorial proof of the Rogers-
Ramanujan identities. Andrews [6] in 1966 gave an analytic proof of Theorem
14 along the lines of Ramanujan’s proof of his identities [20] using the auxiliary
function and its recurrence formula introduced by Selberg [22] and also used
in the proofs of Theorems 12 and 13 [2].

For some purposes, it is advisable to note that gi,.(n) can also be thought of
as thé number of partitions of # of the form

0
n = Efti,
=1

where f; denotes the number of times the part ¢ appears in the partition, fi+fit1
<k—1, and with 1 appearing as a part at most »—1 times. The condition
fi+fizn<k—1 implies that the total number of appearances of two consecutive
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integers zand 741 in a partition is at most k—1, so that in any set of % consecu-
tive parts in a partition, arranged in nonincreasing order of parts, the first and
last part must differ by at least 2, that is, #; = niyr_1+2.

Using this latter interpretation, Andrews [4] in 1965 was able to generalize
Gordon’s Theorem further as follows:

TuEOREM 15 (Andrews). Let pa,x,-(n) denote the number of partitions of n into
parts not congruent to 0, +dr (mod d(2k+1)), where d=21, 1 Sr<k. Let qax..(n)
denote the number of partitions of n of the form n= Y ;o fi-i, where if fi=a
(mod d) (0=a=d—1) then fi+fip1Sdk+a—1, and where 1 appears as a part at
most dr —1 times.

The above is a corrected version of the abstract which appeared in the
Notices of the AMS. If d=1, Theorem 15 reduces to Gordon’s Theorem 14. If
k=1,r=1, Theorem 15 reduces to Glaisher’s Theorem 10. This theorem conse-
quently is the first theorem which contains both the Euler identity as well as the
Rogers-Ramanujan identities as special cases.

8. Schur’s Identity. If in the Euler identity (see Theorem 4), we replace
“odd parts” by “parts congruent to +1, modulo 4” and in the first Rogers-
Ramanujan identity (see Theorem 5) “parts which are congruent to 1 or 4,
modulo 5” by “parts which are congruent to 41, modulo 5,” the similarity of
these two identities becomes even more striking. Let us, therefore, define pq(n)
as the number of partitions of # into parts congruent to + 1, modulo d+3; then
the Euler identity can be written as ¢1,1(#) =p1(n) and the first Rogers-Rama-
nujan identity as g»,1(#) =p2(n). It follows as a consequence of Theorem 8 that
gs.1(n) cannot equal p3(n), but the obvious question arises as to whether there is
a relationship between the two. Schur proved that g;,1(n) —ps(n) is the number
of partitions of # into parts differing by at least 3 and containing at least 2 con-
secutive multiples of 3 so that we have the following theorem, stated in a slightly
different form:

THEOREM 16 (Schur). The number of partitions of n into parts differing by at
least 3 among which no two consecutive muliiples of 3 appear is equal to the number
of partitions of n into parts which are congruent to 1 or 5, modulo 6.

Thus, for example, the number of partitions of 15 into parts differing by at
least 3 among which no two consecutive multiples of 3 appear are 15,

14+1,13+2,124+3,11 +4,10+5,10+4+1,94+ 5+ 1,8+ 5 4 2,

so that the number of partitions of this kind is 9 which is the number g3,1(15) of
all partitions of 15 into parts differing by at least 3, namely 10, minus the num-
ber among these partitions in which two consecutive multiples of 3 appears,
namely 1 in this case (that is, 9+6). As the reader may verify, this number, 9,
is also the number of partitions of 15 into parts congruent to 1 or 5, modulo 6.

Theorem 16 was proved by Schur in 1926 [21] by means of a lemma concern-
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ing recurrence relations for certain polynomials. In 1928, Gleissberg [13] gave
an intricate arithmetic proof of this theorem. A shorter proof was given by
Andrews [8] in 1967, based on Appell’s Comparison Theorem [10, p. 101].

9. The Nonexistence of Certain Generalizations of Schur’s Identity. Using
the notation of Section 8, we know that the difference gq,2(%) —pa(n) is equal to
0 for d=1 (Euler identity) and for d=2 (the first Rogers-Ramanujan identity)
and that for d =3 this difference represents the number of partitions of # into
parts differing by at least 3 and containing at least 2 consecutive multiples of
3. For d 24, however, there seems to be no simple interpretation of the difference
gaa(n) — pa(n), even if it could be shown to be nonnegative. The following theo-
rem shows in particular that there cannot be an interpretation exactly like that
ford=3:

THEOREM 17. The number of partitions of n into parts differing by at least d,
among which no two consecutive multiples of d appear, is not equal to the number of
partitions of n into parts taken from any set of integers whatsoever if d> 3.

This theorem was proved in 1948 by this writer [1]. The method used in that
proof can also be used to prove that there cannot exist a dual to Schur’s Theorem
in the sense that the second of the Rogers-Ramanujan identities is a dual to the
first one, so that we have the following theorem:

THEOREM 18. The number of partitions of n into parts differing by at least 3,
no part being equal to 1, among which no two consecutive multiples of 3 appear, is
not equal to the number of partitions of n into parts taken from any set of integers
whatsoever.

No results concerning ¢ga,1(n) — pa(n) for d 24 are available, not even whether
this difference is always greater than or equal to 0 although this question was
posed by the author as a research problem in the Bulletin of the Amer. Math.
Soc. [3].

10. Combinatorial Generalizations of Schur’s Identity for the Case where
d=2, Two theorems, both of which are very similar in nature to Schur’s Theorem
in that they consider partitions of # into parts differing by at least 2 among
which no two consecutive multiples of 2 appear (that is, the 3 of Schur’s Theo-
rem is replaced by 2) were discovered independently by Géllnitz [14] in 1960
and Gordon [161 in 1965.

THEOREM 19. (Géllnitz-Gordon). The number of partitions of n into parts
differing by at least 2 among which no two consecutive even numbers appear is equal
to the number of partitions of n into parts which are congruent to 1, 4, 7, modulo 8.

Thus, for example, the number of partitions of 11 into parts differing by at
least 2 and containing no two consecutive even integers are 11, 1041, 942,
8+3, and 74341, so that there are 5 partitions of this kind, while the number
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of partitions of 11 into parts congruent to 1, 4, 7, modulo 8, are 9+1+1, 744,
7+1+414+141, 4+44141+41, and 1414 - - - 41, again 5 such partitions.

THEOREM 20 (Gollnitz-Gordon). The number of partitions of n into parts
differing by at least 2 among which no two consecutive even numbers appear and
with each part being at least equal to 3 is equal to the number of partitions of n into
parts which are congruent to 3, 4, S, modulo 8.

11. A Combinatorial Generalization of the Gollnitz-Gordon Identities. An-
drews [7] in 1967 generalized the Gollnitz-Gordon identities in the same manner
that Gordon’s Theorem 14 generalizes the Rogers-Ramanujan identities.

THEOREM 21 (Andrews). Let pi,(n) denote the number of partitions of n into
parts not congruent to 2 (mod 4) and not congruent to 0, + (2r—1)(mod 4k), where
1=r=k. Let g ,(n) denote the number of partitions of n of the form n= 2 ;1 fi-i,
where fi+faSr—1 and for all i =1

faei1 =1 and f2i +f2i+1 +f2i+2 k-1
Then
(14) Drr(n) = qur(n).

Theorem 21 reduces to Theorem 19 for =2, =2 and to Theorem 20 for
k=2, r=1. Let us consider the case k=3, r =3, then the partitions enumerated
by pss(7) are 641, 5+2, 443, 3+3+1, and 3+1+1+4+1+41, so that p;,3(7) =3,
while the partitions enumerated by ¢;3(7) are 7, 641, 5+2, 443, and 44241,
so that ¢;,3(7) =S5.

12. Some Other Identities of the Schur Type. In 1967 Andrews [8] proved
a theorem which is similar to Schur’s identity, but involves as modulus a multi-
ple of 4.

TuaeorEM 22 (Andrews). Let p,(n) denote the number of partitions of n inio
parts which are either even and not congruent to 4r —2 (mod 4r) or odd and con-
gruent to 2r —1 or 4 —1 (mod 4r), where r 2. Let g.(n) denote the number of par-

titions of n of the form n=m+n+ - - + +ns, where n;=n;,1 and, if n; is odd,
ni—ni1=2r—1 for 121 <, where we define n;11=0. Then
(15) pr(n) = g.(n).

In the proof of this theorem, Andrews used a generalization of the method
used in his proof of Schur’s Theorem.

A student of the author, Elmo Moore [19], proved in 1968 that Theorem 22
is also valid for » =1, so that we have the following theorem:

THEOREM 23 (Moore). Let p1(n) be the number of partitions of n into parts
which are either divisible by 4 or odd. Let q1(n) denote the number of partitions of
n of the form mi+ns+ - - - +n., where n; = niy and, if n;is odd, n;—ni =1 for
1Z51=5s. Then
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16) p1(n) = q1(n).

Thus, for example, for n =8, the partitions of # into parts which are either
divisible by 4 or odd are 8, 7+1, 543, 5+14+1-41, 4+4, 44341, 4+1+1
4141, 3+3+14+1, 34+1+14 - - - 41, and 1414 - - - 41, so that pi(8)
=10, while the partitions of 8 enumerated by ¢:(8) are 8, 741, 642, 543,
54241, 444, 4+3+1, 4+2+2, 3+2+241, and 2+242+2, so that ¢:(8)
=10.

For »=2, Theorem 22 leads to the following interesting result, as noted by
Andrews [8].

THEOREM 24 (Andrews). Let pa(n) be the number of partitions of n into parts
which are congruent t0 0, 2, 3,4, 7 (mod 8). Let gs(n) denote the number of partitions

of n of the form ni+nat+ - - - +n., where niZnip, n.=2, and, if n; is odd,
ni—ni1=3. Then
an pa(n) = qa(n).

13. Conclusion. The above indicates that, after some period of inactivity,
the 1960’s have brought a considerable increase in interest in partition identities
and that new types of identities have been discovered, such as those stated in
Section 12, as well as identities which are generalizations of those already known,
such as Andrews’ Theorem 15 which contains both the Euler identity and the
Rogers-Ramanujan identities as special cases.

There is every indication that further research in both of these directions
will lead to more surprising results. Perhaps the ultimate objective might be
the discovery of an identity which contains most or all of the partition identities
discussed in this paper as special cases, or perhaps, more modestly, at least the
Euler, Rogers-Ramanujan and Schur identities.
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GEORGE POLYA, Stanford University
Professor Klee, Ladies and Gentlemen,

The occasion requires that I should make a speech. Yet I am very old, my
days of invention are over. The little mathematical remarks I have made lately

Prof. Pélya received his Univ. Budapest degree in 1912 and holds honorary degrees from the
E. T. H. Ziirich, Univ. Alberta, and Univ. Wisconsin. He taught at the E. T. H. until 1940 and
has been at Stanford Univ. since. His numerous visiting posts include Cambridge, Oxford, Paris,
Gottingen, and Princeton. He is a Correspondent of the Paris Academy of Sciences and holds
honorary membership in the Council of the Soc. Math. de France, the London Math. Soc. and the
Swiss Math. Soc. Prof. Pélya received the M. A. A. Distinguished Service Award in 1963 and the
1968 N. Y. Film Festival top Blue Ribbon for “Let us teach guessing.”

The scientific contributions of George Pélya include over 230 research papers and the books,
Inequalities (with Hardy and Littlewood), How to Solve It, Isoperimetric Inequalities (with Szegd),
Mathematics and Plausible Reasoning (2 v.), and Mathematical Discovery (2 v.).

Prof. Pélya’s personal influence on three generations of mathematicians has been enormous.
Perhaps no book in existence has influenced the direction of thinking of young mathematicians
more than his two volume masterpiece with G. Szegs, Aufgaben und Lehrsitze aus der Analysis.
Editor.
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