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This, too, is probable, according to that saying of Agathon: It is
part of probability that many improbable things will happen.”
— Aristotle: Poetics

The twentieth century may be partially characterized as far as mathematics is concerned as the
century of intensive abstraction. The genesis and the program of abstraction was summed up in
the first decade of the century by E. H. Moore of the University of Chicago, who wrote:

The existence of analogies between the central features of various theories implies the existence of a
general theory which underlies the particular theories and unifies them with respect to their central features.

Putting it slightly differently, abstraction perceives the common features of diverse theories and
fits them into a superstructure wherein they will be unified with respect to this common feature.
There was clear apprehension on Moore’s part as to what was happening and a prophetic vision
and zeal as to what would happen.

As common examples of abstraction, one may cite the algebraic structures of all sorts:
semigroups, groups, rings, fields, manifolds, and abstract spaces, such as Hilbert and Banach
spaces. But there are many others. As I write, I have before me books on abstract optimality
theory, abstract harmonic analysis, and so on. The whole program of abstraction has been so
pervasive and so influential that it would not miss the mark by much to say that, in the view of
many contemporary mathematicians, mathematics is precisely the study of abstract structures of
all sorts.

Returning to Moore’s observation that diverse theories are unified with respect to their common
features, we may now raise the embarrassing question: What is a common feature of two diverse
theories? How does one recognize such a feature? And having recognized such a feature, from
whence does one derive the confidence that it is a worthwhile task to unify along such a feature?
This is not a question of mathematics as such, but a question in the history, psychology, aesthetics,
and applications of mathematics, and ultimately it is answerable only in terms of a mathematical
culture and certain values that are operative in it. I know of no way of defining—before the
act—what a “common feature” means; this is allied to the old philosophical question of
universals. But the act of abstraction does it for me. This is precisely one of its functions.

Having raised the question of possible definitions, I should like to twist Moore’s quotation still
further and ask: Is it possible that a common feature is a coincidence of form which one has
observed in several different places? And I mean here to stress the word coincidence almost in its
surprise aspect. I think that one variety, at least, of a common feature may be identified with
coincidence.

I cannot define coincidence. But I shall argue that coincidence can always be elevated or
organiZed into a superstructure which performs a unification along the coincidental elements. The
existence of a coincidence is strong evidence for the existence of a covering theory.
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I shall elucidate the experience of coincidence with a number of examples. The examples
selected are formed, for the most part, from the simplest of mathematical ingredients.

Example 1. First, a personal experience. In the eighth grade of elementary school I learned that
the diagonal of a rectangle was related to the sides by the Formula of Pythagoras,

d* =a* + b>.
As an adjunct, I learned to carry out the laborious square root algorithm with pencil and paper. A

week or so later, I learned that the diagonal of a three-dimensional box was related to the sides of
the box by the formula

d?> =a® + b* + %
I recall distinctly that the feeling came over me that this was a great coincidence. Why was the
formula not something like

d*=a? +b* + ¢ + (abe)*

There were plenty of difficult forms knocking around in my textbook. (The formula just given
reduces to the two-dimensional case when a, b, or ¢ = 0 and is dimensionally correct. But of
course it does not reduce properly on all subspaces, which is precisely how the correct formula is
obtained.) Moreover, I was grateful that on account of this coincidence I would not have to learn
an additional laborious algorithm in order to compute the diagonals of a box. Not so if one wants
the side of a cubic box, given its volume.

From the point of view of a mature mathematician, the use of the word coincidence in this
connection might be regarded as demeaning. What we have here, he might say, is no mere
coincidence. It is a general theory that extends all the way from the rectangle to the box, from the
box to the hyper box, to the box in countably infinite dimensional Hilbert space, to the box in
nonseparable spaces, to the ... It is part of a great, useful, expansible theory, part of a Grand
Plan, part of the Decreed Order of the Universe. He might assert all this, forgetting for the
moment that he has had to temper the Hilbert universe in such a way that the box makes sense:

a? +b*+c?+ < oo,
and that some authorities advocate regarding the theorem as a definition. (See [9, p. 36].)
In this view, to talk about coincidences, mere coincidences, one would have to fasten upon a

parallelism that is totally “accidental,” “uncaused,” something paltry, something almost to be
disregarded and certainly not worthy of being honored with a proof.

Example 2. The numbers 7 and e are the outgrowths of substantial, but different, theories.
Write down the decimal expansion of 7 and e:

Number of Digits
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3
e 2|7 1 8 2 8 1 8 2 8 4 5 9 0 4 5

Notice the coincidence in the 13th digit of 7 and the 13th digit of e (and no earlier digit). I call
this a mere coincidence, because our first reaction upon seeing it may very well be “So what!”
This, despite the number-mystical fact that the coincidence occurs at the 6th prime. I can call it a
coincidence despite the fact that the statement

“The thirteenth decimal digits of both 7 and e are identical”

is, in fact, a mathematical theorem and can be proved rigorously by established methods of
mathematical proof.
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As we all know, it is possible in different ways to elevate this mere coincidence into something
more substantial. Let us look for further coincidences:

Number of Digits
17 |18 [ 19 (20 |21 |22 |23 |24 25|26 |27 {28 |29 {30 |31 (32|33 (343536

m| 2| 3 8| 4| 6| 2| 6| 4| 3| 3| 8| 3| 2| 7|9 5|0| 2|8
e| 23| 53,60 2| 8| 7| 4| 7| 1| 3] 5]2]6| 6|2 4|29

o]

In this way, we have discovered further coincidences at the 17th, 18th, 21st, and 34th digits. Our
experience with this kind of problem now tells us that it is extremely unlikely that we can discover
an elementary formula for the location of the nth coincidence; but exposure to probabilistic
thinking, which is designed specifically to elevate chaos and mere coincidence to a Grand Plan,
would lead us to say that we observed 5 coincidences in 36 observations. If, as seems likely, the
digits of 7 and e are distributed at random and wholly independently from among 0,1,2,...,9
(again, which seems likely psychologically, if not logically), then we would expect, on average, one
coincidence every ten digits. Since the digits of # and of e are now available to hundreds of
thousands of decimal places, a devotee of this problem might like to count the coincidences and
subject them to a statistical analysis via the binomial distribution. (In a later example we refer to a
similar investigation.) At any rate, the statement

“The decimal digits of 7 and e coincide, on average, once every ten digits”

is, to my knowledge, neither proved nor disproved. It is difficult of proof or disproof, but is
credible and psychologically satisfying. Furthermore, the statement and the denial of the state-
ment are both interesting; and if the denial turned out to be true, we would be inclined to
decorate it with an exclamation point.

Example 3. Consider the formula

x=y1141y? + 1.

Fory = 1,2,3,...,100, it is an easy job to show on a hand-held computer that the corresponding x
is not an integer. We may be led to wonder whether x is ever an integer. The truth of the matter is
that it is not an integer for 1 <y < 10%. The first value of y for which x is an integer is

y = 30,693,385,322,765,657,197,397,208.

Now we have no direct computational experience of the dearth of integer solutions in the range
1 <y < 10%. The anomaly is explained within the Theory of the Pell Equation, which informs us
that if the (periodic) continued fraction expansion of Vd has a long period then the first solution
of the Diophantine equation

x2—dy? =1

will be exceedingly large. The solution just quoted has been arrived at backwards via a
comprehensive theory whose existence could have been surmised from experiments in the more
modest range 1 < y < 1000.

(See [19].)

Example 4. Consider the two numbers

A=V5+V2+2/5
B= 11+2@+‘/16—2\/2—9+2V55—10@.

I ask you now to go to a computer and, using a language that does multiple precision arithmetic,
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compute the numbers 4 and B. If you do, you will find that 4 and B agree at the very least to 26
significant figures:

7.38117 59408 95657 97098 72669.

Now either (1) This is an incredible coincidence, or (2) A = B is an incredible identity, inasmuch
as A and B do not appear “to the naked eye” to lie in the same algebraic field.

If A 5= B, then we would still be left with the necessity of elevating the coincidence by placing
it within a more comprehensive theory. After all, you just cannot throw integers and square roots
around at random and expect to get 26-figure coincidence. There would have to be something
behind the coincidence; and, whatever it is, that something would probably enable us to construct
further incredibilities of a similar sort.

The reader may infer from the title of one of the references whether 4 = B or 4 5= B.

I first heard of this and similar coincidences through H. O. Pollak of the Bell Telephone
Laboratories. His interest in the matter lay in an auxiliary question. Let A and B be irrational
algebraic numbers. How can one prove or disprove the equation 4 = B by systematic rational
operations? (For example, the identity

1+3=V3+V13+4/3

can be established by two squarings) and can this be carried out in polynomial time? At the time
of writing, the last question had not yet been resolved.
(See [15], [18].)

Example 5. In elementary plane geometry, there are numerous theorems which contain a
strong flavor of coincidence. Thus:

(a) the three medians in any triangle intersect in a common point.
Not only do we have this but

(b) the three angle bisectors intersect in a point, and
(c) the three altitudes intersect in a point.

Each of these circumstances represents a coincidence. Many observers view (a), (b), () as a
further coincidence since their conclusions are identical: “They intersect in a point.” This
experience may be part of the reason for elevating the separate instances into a comprehensive
theory:

CEvVA’s THEOREM. Let the sides of a triangle ABC be divided at L, M, N in the respective ratios
A:1, u:1,v:1. Then the three lines AL, BM, CN are concurrent if and only if Apv = 1.

Now the ideas of (a), (b), (c) are easily extended to higher dimensional simplexes. What
about the truth of the resulting statements? Focus attention on (¢). Do the altitudes of a
tetrahedron’intersect? This is a problem about which the Harvard geometer J. L. Coolidge once
wrote that most highly educated mathematicians do not know the answer. On the one hand, direct
spatial intuition fails most of us. We simply do not have enough experience playing with wire
tetrahedra and dropping perpendiculars. On the other hand, if one argues by verbal analogies, one
is inclined to answer the question with “yes.” Se non é vero, é ben trovato. If it is not true, it
deserves to be true.

If, then, the statement is true, it is a coincidence of a more complex form than the simple
triangle case (n = 3) and we should look for a fairly simple explanation. If the statement is false
for n = 4, there are still, obviously, special instances of it which are true, e.g., the regular
tetrahedra, and we would be inclined to deem interesting that class of tetrahedra for which it is
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true. In either case, then, natural curiosity and aesthetics would start from the sense of
coincidence and force an appropriate theory to come into being.
(See [2].)

Example 6. A number of years ago, in the April issue of the Scientific American, Martin
Gardner, who writes a regular column of mathematical recreation, ran a special “April Fool’s”
column. This was a collection of scientific hoaxes. One statement in particular caught the eyes of
people who enjoy doing long computations:

“The number N = e™'® is an integer.”

Now this statement is a shocker. If it is true, we would have a “fairly simple” real relationship
between 7 and e. In view of all we know or have heard about such numbers, this does not seem

likely. In view of the known complex relationship eV l= — 1, however, there might, perhaps, be
a residue of doubt in our minds. N just might be an integer.

Well, let’s go to the computer. But notice that a little hand-held computer is useless, for
e~ 27, m~ 3.1, /163 ~ 12.8, so that N ~ ¢*° ~ 10"". Since hand computers carry 10 to 12
figures, we have got to go to a computer where we can work in multiple precision. Numbers such
as e,,/163 have been computed out to hundreds, if not thousands, of figures and have been
published, but we had best write our own superaccurate programs for these numbers. At any rate,
let us shoot for 20 figures.

A 20-figure computation yields N = 262,53741,26407,68743.99. Hmm. What have we here?
The fractional part .99 is tantalizing. Let’s go for 25 figures. The computer grinds away (requiring
a time which is probably proportional to the cube of the number of figures desired), but finally
prints out

N =262,53741,26407,68743.99999 99.

The mystery thickens. Is it really possible that N is an integer? Of course one can’t prove it by
this kind of numerical computation, for however long a string of 9’s were produced there would be
some residue of doubt. But we could disprove it; so let’s push the button once again and give the
computer a really good whirl.

N = 262,53741,26407,68743.99999 99999 99250.
Well, that blows it. N isn’t an integer after all. But notice: it differs from an integer by around
10712,

Now of course anyone well versed in the theory of transcendentals could have told us that
e™'% is not an integer. It is what we think it should be: a transcendental number. This can be
deduced as a consequence, for example, of the Gelfond-Schneider Theorem (1932), which tells us
that if g is an algebraic number and is neither 0 nor 1, and if b is an algebraic irrational, then a” is
a transcendental.

Now N = ™16} = ¢~ m/-163 — (- l)m, so that by Gelfond-Schneider, N is transcenden-
tal. But the equation N = integer + O(10 ~'?) is remarkable, and surely requires some sort of an
explanation. You just don’t slap e’s and #’s and square roots around and expect to get integers to
within 10 ~'2. (Forget obvious identities such as 7/7 -+ e/e = 2.) On the other hand, a 12-figure
coincidence doesn’t seem excessively long (certainly not as good as the 26-figure coincidence in
Example 3); so one would expect that the explanation would be fairly complicated. And
complicated it is.

The writer was first shown this mathematical amusement by Morris Newman in 1952 when he
joined the National Bureau of Standards. Newman was a student of Hans Rademacher and had
just computed N to high precision on one of the first electronic computers in the world: the
SEAC. It is not unreasonable to suppose that the explanation of the coincidence is to be found in
the kind of mathematics that Rademacher delighted in and was most skillful in: analytic and
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algebraic number theory. But we shall have to make a very long story short.
Let

o;(n)=3d*> and x=e*""  (Im7>0).
d|n
Set

J(r) = {1 + 240 §‘, 03(n)x"}/£l(1 — x")*.

n=1

J, as a function of x, has the Laurent expansion
J(r) =14 748 + 1968845 + - .

The function J(7) is invariant under the modular group 7’ = (at + b)/(c7 + d), (ad — bc) = 1.
It is known as the elliptic modular function, or Felix Klein’s absolute modular invariant. Now the
function J(7) is intimately related to the theory of quadratic forms in two variables with integer
coefficients. Let Q(x,y) = ax? + bxy + cy?. Assume that a >0, d = b> — 4ac <0, and that
a,b,c, have no common factor. Let #(d) be the number of equivalence classes of Q under
unimodular substitutions of determinant 1. It is a theorem of Weber that the quantity
J((—b + Vd)/2a) is an algebraic integer of exact degree h(d). Hence, if h(d) =1, then
J((—b + Vd)/2a) is an (ordinary) integer. It has been proved that there are only nine negative
values of d for which h(d) = 1; they ared = —1,—2,—3,—7,—11,—19,—43, —67, — 163.

If we now select a = b = 1, ¢ = 41, then d = —163. Hence J((—1 + v— 163)/2) is an integer.
With x = ¢2™" and 7 = (— 1 + V— 163)/2), it follows that
(_2m‘——(_1 i 3 ) = 163,

-1 —

x~ =exp
Therefore, by the Laurent expansion for J(7),

J( - 2 - ) = integer = — ™1 4 744 + 196884¢ VIO + .- .

Hence,
e™18 = integer + 744 + 196884 V1€ 4 ...
Since e ~"V'*~ 10 77, we have
e™1% = integer + 0(10~'2),

as we have discovered by a brute calculation. The same device works for e™" whenever
n=1,2,...,67,163, but the value 163 naturally gives the sharpest agreement.

The reader needs scarcely to be informed that all of this was discovered by working forward,
from the theory of modular invariants and quadratic forms, pushing toward the mysterious

coincidence, rather than by starting from e”V'¢> as a “shot in the dark” and working backward
toward an explanation.
(See [14], [21], [20].)

Example 6'. Along lines that are similar to Examples 6 and 4, consider a problem posed by H.
P. Robinson. Let {(x) be the zeta function and let

1=/0°°{§(x) — 1}dx, L=nlin;0{ » ﬁ—f"d—x}.

k=2 0 Inx
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Numerical agreement is reported to 43 places. Does I = L?

Query: Was numerical agreement obtained as a result of a computation or inferred from a
proof of I = L?

(See [16].)

Example 7. The Riemann Hypothesis is currently the most notorious of unsolved problems of
analysis, if not of the whole of mathematics. Riemann’s zeta function is defined for Rez > 1 by
means of the Dirichlet Series

(=3 .
z)= Q) —

n=1 n’
and is extended to the rest of the complex plane (where possible) by analytic continuation. The
Riemann Hypothesis is that all the complex roots of the zeta function have real part equal to 3.
Many interesting consequences of this theorem are known, many equivalent formulations are
known, but thus far a proof or a disproof has eluded investigators.

Many years ago, G. H. Hardy proved that infinitely many roots of the zeta function have real
part equal to 3. By laborious computations and laborious analyses of truncation errors, it has
been shown that the first 70,000,000 roots all have the real parts equal to 3. Coincidence? Or is
this sufficient evidence to convince one of the truth of the Riemann Hypothesis?

Some authorities say no. They point out that in the theory of the zeta function, as well as in
- prime number theory, functions whose growth is as slow as that of loglogx occur often, and since
loglogx = 10 if x is around 10'*%% of what significance is a paltry 70,000,000? There is even a
case in the literature of primes when a prevailing tendency was proved by Littlewood to cease
prevailing when n > 100" (Skewes’s number, since lowered.)

But Good and Churchhouse have latched onto another “coincidence.” The Mobius function
p(n) is defined as follows:

p(n) = +1if n has an even number of distinct prime factors
p(n) = —1if n has an odd number of distinct prime factors
p(n) =0 if n has a repeated prime factor.

The “visual” evidence shows that u(n) behaves in an erratic fashion. One can show without too
much difficulty that the probability

thatp(n) = +1is3 /72
thatu(n) = —1is3/x?
thatu(n) =0is 1 — 6/7>.

Now, the Strong law of large numbers in probability theory tells us that if u, is a random variable
selected N times with the probabilities just listed, then

N
3 B, < CN/2+e

n=1

with probability one. But it has been known for some time that the Riemann Hypothesis is
equivalent to the inequality

N
2u(n) < CN'/2*
1

Hence, if we could somehow identify N selections at random of p from the distribution above with
the first N deterministic values u(1),...,u(N), then the Riemann Hypothesis would be proved. To
check numerically whether this identification is valid, Good and Churchhouse computed u(#n) for
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n < 33,000,000. The number of n’s for which p(n) = 0 was 12,938,407. Now
33,000,000(1 — 6 /72 ) = 12,938,405.6.

Here we have 8-figure accuracy. Incredible!

Despite these coincidences, authorities have asserted that there is still but paltry evidence for
believing in the truth of the Riemann Hypothesis. But it seems to me that this great coincidence
shows either (1) the Riemann Hypothesis is true or (2) you have got a very difficult theorem on
your hands to explain away (the 8-figure accuracy). And it is psychologically and almost morally
incumbent upon you to do so.

(See [S], [8], {11], [13])

Example 8. Pappus’s Theorem; Program Verification. One of the principles that is drummed
into every aspiring young mathematician is that one cannot prove a general theorem by merely
proving special instances of it. One must present a proof that embraces all cases. Not infrequently
does a student get his knuckles rapped for dealing only with a special case. (You assumed the
triangle has a right angle; you assumed that a was real, but it may be complex; and so on.) Yet
this principle contains an aspect which is palpably wrong. In the first place, the general theorem
has been inferred, like as not, from several special cases. Second, if the special case is sufficiently
random or “odd-ball,” then its truth implies— with high probability— the general truth and, as we
shall see, for “sufficiently odd-ball” cases, it implies the exact truth.

Consider, as an example, a classical theorem of fourth-century mathematics proved by Pappus.
In Fig. 1, the lines /, and /, are selected at will and on these points P,,..., P, are selected at will.
They are then cross-connected as indicated.

Fi1G. |

The theorem now asserts that the points Q,,Q,,Q, will always be collinear. This theorem may
very well have been found experimentally by fooling around with a ruler and pencil. Its
ingredients are of the very simplest.

It should be observed that Pappus’s proof and updated versions of it to be found in elementary
projective geometry embody an element of great ingenuity. Also, this theorem lies at the heart of
abstract projective geometry over arbitrary algebraic structures insofar as it is equivalent to the
commutativity of the elements of the structure.

The verification of Pappus’s theorem in any particular rational numerical case can be carried
out completely in the field of rational numbers. Hence it can be carried out with exact precision
on a digital computer. The assertion that Q,,Q,,Q; are collinear is equivalent to the statement
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that
x|l
D = X2 y2 1 = 0
x3 y; 1

where Q, = (x,,y,). Now, beginning from integers of smallish size for the coordinates of
P,,..., P, the arithmetic mixing process intrinsic in the geometric figure leads to very large
integers for the numerator and denominator of the points Q,. Therefore the discovery that D = 0
becomes an incredible arithmetic identity unless, of course, one believes that the theorem is true in
general.

If now one allows the points P,,...,P, to have irrational coordinates, then the numerical
verification of the identity D = 0 is, in the strict sense, impossible on a computer. However, it can
be done by setting up the irrational quantity as an abstract variable, to be processed as a variable
and not numerically, and this is tantamount to a rigorous proof.

In a similar way, consider a program P residing in a digital computer. Let us suppose it is such
that given an input value x, the computer prints out the value y = P(x). We have a certain ideal
program P in mind and we should like to inquire whether P = P. In most instances, it is simply
out of the question to test whether P(x) = P(x) for all the possible input values x.

To limit the problem, suppose we know a priori that both P and P are selected from a limited
family of possible programs. Say they are both polynomials in a single variable x of degree < n.
Then, from our theory of polynomials, we can assert that if x,,...,x, ., are n distinct inputs and if
P(x;))=P(x,)i=1,...,n+ 1, then P = P. Thus a limited testing implies complete identity. We
can assert more.

If we test out the program with a transcendental element x* (which, in the numerical sense, is
inaccessible to the computer), then P(x*) = P(x*) implies P = P. Therefore, one special (but
sufficiently odd-ball) case implies complete identity.

But we can assert more. Suppose that P and P are extracted from the class of computable
functions. Then a simple countability argument provides us with a value x* such that P(x*) =
P(x*) implies P = P. Thus we have in this statement a theory of coincidences wherein a single
coincidence of sufficient intensity implies complete identity.

(See [1], [3], (4], [6], [7], [12], [17].)

Example 9. This example is of a different order. The Laplace equation

grn B U O
dx*  dy? 09z?

plays a role in the theory of gravitational attraction, in electro- and magneto-statics, in fluid flow,
in the theory of elasticity, etc. Coincidence, or part of a Grand Order? Again, to inject a personal
note, when I first learned this, it had the strong flavor of a coincidence, and my teacher and my
textbook certainly emphasized this aspect as well as the fact that one wouldn’t have to learn
totally diffetent theorems. The solution of problems of fluid flow by means of electrostatic analog
devices seemed to confirm the miracle.

Today the books are more sophisticated and attempt to unify the whole by pomtmg out that all
those physical phenomena are subject to the 1/r force law, to similar laws of invariance, of
conservation, and of the operation of the maximum principle.

To restore a sense of coincidence here, consider a different aspect of the equations of
mathematical physics. The relationship between real, two-dimensional potential theory and the
theory of analytic functions of a complex variable is one of the great glories of mathematics.
Many novices anticipate that there must be a corresponding relationship between higher dimen-
sional potential theory and a theory of functions of a hypercomplex variable.
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This is not true in the simplistic sense. But the drive toward preserving the coincidence has
brought forth theories, e.g., application of quaternions or Bergman’s theory of integral operators
of several complex variables, which in some degree can be regarded as substitutes. (See [10].)

But enough of examples: It is time now that we drew some inferences from them.

From time to time mathematicians perceive certain similarities of form which elicit an element
of surprise. Such a similarity may be called a coincidence. The surprise calls for an explanation.
The explanation, if it is forthcoming, serves partially to kill the surprise.

The existence of the coincidence implies the existence of an explanation. If the coincidence is
of a high degree of improbability, then there is more to explain and the explanation will be easier
in the sense that it involves a more easily accessible theory. If the coincidence is only of a medium
order of improbability, the explanation will be more difficult.

A Platonic philosophy of mathematics might say that there are no coincidences in mathematics
because all is ordained. In the words of Alexander Pope ( Essay on Man):

All nature is but art unknown to thee
All chance, direction which thou can’st not see.

But for the working mathematician, coincidence exists. He feels it, he identifies it, he uses it as an
inductive and constructive element. He pursues its implication along certain lines. To some extent,
he even brings it about.

Acknowledgment. I wish to thank Professors Reuben Hersh, Lawrence D. Kugler, and Richard A. Vitale, who
read a preliminary version of this paper and made many valuable comments.
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