The Many Avatars of a Simple Algebra

S. C. Coutinho

1. INTRODUCTION. Some mathematical structures show up in many different
contexts, under many different guises. This is the case with the Weyl algebra. Born
in the cradle of quantum theory, in the 1920s, it has come up in the representation
theory of enveloping algebras and has played a key rble in the creation of
Z-module theory. It has recently returned to the parental home, under the
auspices of deformation theory.

In this paper we survey the incarnations of the Weyl algebra associated to
several formalisms of quantum mechanics. Beginning with the moment of concep-
tion in the 1920s, we work our way through matrix mechanics, Schrodinger’s
equation and Dirac’s formalism. After a brief interlude where rings of differential
operators are introduced, we return to quantum theory to look at quantisation by
deformation and its version of the Weyl algebra.

2. QUANTUM MECHANICS. The story begins in May 1925, when W. Heisenberg
fell ill with a bout of hay fever so vicious that he decided to ask for a fortnight
leave to recover. He chose the island of Heligoland as a place to escape to. He
must have been in a dreadful state indeed, because the landlady of the inn where
he stopped for breakfast assumed, from his looks, that he had been involved in a
fight the night before, [21, p. 248 ff].

In Heligoland, between walks and baths, Heisenberg carried on the work he had
started in Gottingen. He was trying to develop a quantum mechanics, and his
fundamental intuition was that it should deal only with observable quantities.
Starting from that, Heisenberg developed a mathematical formulation of the
theory. However it was not clear at first whether the mathematical scheme would
be consistent or not.

Heisenberg felt that the real test of his scheme would be to check that it
satisfied the law of conservation of energy. It took him a whole night to verify that
energy was indeed conserved. Elated, he climbed a rock jutting out into the sea
and watched the sun rise.

Let us see how Heisenberg arrived at his scheme of quantum mechanics.
Consider an electron moving in an atom. If the system were classical, then we
would have a function x(¢) describing the position of the electron as a function of
time. We would also have Newton’s equation

i+ f(x)=0.

Heisenberg decided that this equation ought to be retained, but that it would be
necessary to find a new interpretation for x(#). But the motion of the electron is
periodic. Once again, if the system were classical, one could expand x(¢) as a
Fourier series. In this case, the coefficients of the series would represent the
amplitudes. In the quantum case these coefficients should depend on a quantum
number. Developing the mathematical scheme along these lines, Heisenberg was
led ‘almost necessarily’ to a very weird looking formula for the multiplication of
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amplitudes. In particular, as he explicitly stated in his original paper, these
amplitudes do not commute; a fact that deeply troubled him.

At first Heisenberg hoped to remove the need for non-commutative amplitudes
from his theory. Unable to ‘improve’ the paper, he decided to come out with it and
handed it over to Max Born shortly before leaving for England, where he would
speak at the Kapitsa Club in Cambridge.

3. MATRIX MECHANICS. Born did not look immediately at Heisenberg’s
manuscript. It was the end of term, he felt tired and ‘afraid of hard thinking’ [22,
p. 8 ffl. However, when he read through it a few days later, he was fascinated.
Born immediately began to work on Heisenberg’s ideas. By simplifying Heisenberg’s
notation and re-writing the formulae for the multiplication of amplitudes he
immediately realised that it was formally like the product of matrices. It is
interesting to note that at the time matrices were not in the toolkit of every
physicist. Luckily Born still remembered matrices from his student days in Breslau,
twenty years back.

Soon Born began his own ‘constructive work’. Denoting by p and q the
momentum and position variables of Heisenberg’s picture, Born realised that pq
and qp were different because p and q were matrices. He also noted that
Heisenberg’s formulae gave only the diagonal entries of the commutator [p, q] =
Pq — qp, which had to be ifi. Here % denotes Planck’s constant divided by 2.

In Born’s own words: ‘repeating Heisenberg’s calculation in matrix notation, I
soon convinced myself that the only reasonable value of the non-diagonal elements
should be zero’ [27, p. 37]. Thus he arrived at the formula

pq — qp = ifil, (3.1)

where 1 denotes the identity matrix. In his words, this formula was ‘only a guess,
and my attempts to prove it failed’.

A few days later, Born met Pauli, on the train between Gottingen and Hanover.
Unable to resist his enthusiasm, he told Pauli about his matrices and his difficulties
with the proof of (3.1). Instead of showing interest, as Born had expected, Pauli
accused him of spoiling Heisenberg’s idea with ‘futile mathematics’ [27, p. 37].

Having failed to engage Pauli’s interest, Born turned to his former student P.
Jordan. Working together, they developed Heisenberg’s idea in the context of
matrix calculus. This is the first time that (3.1) appears in print, with a ‘proof’ due
to Jordan [27, p. 277].

The version of quantum mechanics that follows from the work of Heisenberg,
Born, and Jordan is called matrix mechanics. In it the momentum and position are
represented by matrices. Denoting these matrices by p and q, respectively, the
equations of motion for an electron moving in one dimension, under a potential,
take the form

9q/dt = 9H/ap

(3.2)
ap/dt = —dH/dq

where H is a function of p and q. These are Hamilton’s equations of motion, to
which we return in the next section. The point to note here is that the equations
involve two kinds of differentiation: by a scalar (time) and by matrices (p and q).
The first poses no problem, but the same cannot be said of the second. We return
to this question in §5.
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4. HAMILTONIAN MECHANICS. Let us briefly review a few facts about hamil-
tonian mechanics that we will require. Consider a particle of mass 1 moving along
a straight line. Let ¢ and p denote the position and momentum of the system.
Since we have a classical system, these are numbers: the coordinates of phase
space. Suppose that the particle is subject to a force F(q,t), which depends on
position and time.

Since the system is one dimensional, F can be derived from a potential V(q, t),
given by

V(g.t) = - fq"F(q,r)dq.

Hence the total energy of the system, which is the sum of the potential and kinetic
energy of the particle is
2

p
H(q,p,t) = 5 +V(q,1).

This is called the Hamiltonian or Hamiltonian function of the system. By Newton’s
second law

ap oH
m =F(q,t) = s
On the other hand, a direct calculation shows that
aq oH
P T o
The equations
ap oH
at aq
sq  oH (4.1)
ot ap’

are called Hamiltorn’s equations of motion.

We have thus obtained Hamilton’s equations for a system that consists of a
particle of unit mass moving on a straight line under a force F(q, ¢). In general, a
Hamiltonian system of one degree of freedom is a second order system whose
motion is determined by equations of the form (4.1).

The quantities of classical mechanics are described in terms of infinitely
differentiable complex-valued functions of p and g. For the sake of simplicity we
shall restrict ourselves to polynomial functions. Thus we shall be concerned with
the space C[ p, g] of polynomials in two commuting variables, which we denote by
S. The system of equations (4.1) can be written in a very compact form using an
operation called the Poisson bracket which is defined, for f, g € S, by

This is clearly a polynomial in p and gq. The vector space § is a Lie algebra with
respect to the Poisson bracket; but this will not be needed here.

Returning to (4.1), an easy calculation shows that if we write x for the vector
(p, @), the equations can be re-written in the form

i={H,x) (4.2)
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where the bracket with H is calculated coordinatewise. At this stage this may seem
just a little trick. In fact, the Poisson bracket is the algebraic counterpart of the
symplectic structure that gives phase space its peculiar geometry; see [2]. More-
over, this formalism guided Dirac in his formulation of quantum mechanics, as we
shall now see. For more details about the Hamiltonian formalism see [26] or [1].

5 DIRAC. In the meantime, in Cambridge, Heisenberg mentioned his ideas on
matrix mechanics at the end of his talk to the Kapitsa Club. One of the physicists
present at the lecture was R. H. Fowler. In September 1925 Heisenberg sent the
proofs of his paper to Fowler, who promptly handed them to his student Paul
Dirac. Dirac looked at the paper but ‘at first could not make much of it’. Returning
to it two weeks later, he realised that it ‘provided a clue to the problem of
quantum mechanics’. Unaware of the developments in Germany, Dirac proceeded
to work out his own version of quantum mechanics.

Instead of interpreting the quantum variables as matrices, Dirac calculated with
them formally. To use the Hamiltonian formalism he had to find an interpretation
for the operation of differentiation with respect to a quantum variable, as we have
already observed at the end of §3. Dirac’s solution was to point out that the
quantum analogue of differentiation by q say, is taking the commutator with p.
Thus, if f is a function of p and q in the quantum algebra, then df/dq = [p, fl.

One of Dirac’s great contributions was his identification of the classical ana-
logue of the quantum commutator. According to Boht’s correspondence principle
the results of quantum mechanics should converge to the analogous classical
results when Planck’s constant tends to zero. This weird ‘constant tends to zero’
really means that the numerical value of the constant should be small when it is
expressed in the units of action characteristic of the class of systems under
consideration.

Guided by this principle, Dirac discovered that the commutator divided by i# is
the quantum analogue of the Poisson bracket of classical mechanics. The analogy
allowed him to derive formula (3.1). Furthermore, defining H to be the Hamilto-
nian of the system, and assuming that ‘the orders of the factors of the products
occurring in quantum motion are unimportant’ he wrote the fundamental quantum
equation in the form

x=[H,x],

in complete analogy with (4.1).

This analogy also helps to explain Dirac’s formula for differentiation by q.
Indeed, if f is a polynomial in the (commutative) variables p and g, one
immediately checks from the formula of the Poisson bracket that {p, f} = df/dq.
The corresponding quantum formula is obtained by replacing {,} with [, ].

As his papers show, Dirac clearly understood that the quantum mechanical
quantities defined a new sort of algebra, for which the multiplication was not
commutative. He later called these quantities g-numbers—as opposed to c-num-
bers, which are the ordinary complex numbers. Dirac’s papers can be found in [27,
p. 307 and 417].

6. QUANTUM ALGEBRA. Let us consider the algebraic background of the two
interpretations of quantum mechanics that we have surveyed. Dirac assumes that
he has ‘quantities’ that behave in a certain way. In other words, symbols that are
subject to relations. In the one dimensional case two symbols p and q are required
to represent momentum and position. They are related by pq — qp = if - 1—where
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1 denotes the identity of the quantum algebra &. To avoid unnecessary complica-
tion we normalize this relation to the form pq — qp = 1.

Algebraically, Dirac’s quantum algebra is constructed beginning with the com-
plex free algebra & in two generators x and y. The elements of the free algebra are
linear combinations (with complex coefficients) of words in x and y. The product
of two words is obtained by juxtaposition. The quantum algebra & is the quotient
algebra of & by the two-sided ideal generated by xy — yx — 1. Thus p and q are
the images of x and y in this quotient.

Every element of & is a linear combination of words in p and q—a property
that . inherits from its parent free algebra. Now, from [p, q] = 1 one deduces that

[p,a*] =kq*~! and [p*,q] = kp*!

This agrees with Dirac’s observation that commutation is analogous to differentia-
tion. These commutation relations allow us to write every word in p and q as a
linear combination of monomials q*p™. Thus every element of . is a linear
combination of monomials of this form.

Working a little harder, we can show that the monomials qp™, with k, m > 0,
form a basis of & as a complex vector space [6, Proposition 1.2.1]. This can be used
to define the degree of an element of . First define the degree of a monomial
q“p™ to be k + m. Now write d €. as a linear combination of monomials of this
form: the maximum of the degree of these monomials is called the degree of d and
is denoted by deg(d).

The degree of & behaves in many ways like the degree of polynomials. For
d,,d, €,

(1) deg(d; + d,) < max{deg(d,), deg(d,)},
(2) deg(d,d,) = deg(d,) + deg(d,), and
(3) degld,,d,] < deg(d,) + deg(d,) — 2

The proof of (1) is immediate, but the proof of (2) uses (3) and is somewhat
convoluted. An immediate consequence of (2) is that & is an integral domain: it
does not have any zero divisors. See [6, Ch. 2, §1].

The degree can be used to prove several properties of /. For example, in §2 of
[7], Dirac characterizes all the derivations of .. Recall that a derivation D of & is
a C-linear operator of & that satisfies D(d,d,) = d,D(d,) + D(d,)d,, for every
d,,d, €. With Dirac, we note that the order of d; and d, in the formula cannot
be changed. An easy way to produce derivations of & is to use the commutator.
Given f €., define P(d) =[d,f], for d €%. As one checks easily, this is a
derivation of . Derivations of this form are called inner derivations of .

Dirac showed that all the derivations of & are inner. Let us sketch the proof.
Let D be a derivation of . Since commutation by p and q behaves like
differentiation, we can find f €.« such that D(p) = [f,p] and D(q) = [f, q]. The
actual calculation is reminiscent of the way one finds a potential function for a
conservative polynomial vector field on the plane. Now, using induction on the
degree of d €., one can check that D(d) = [f, d].

Another very important property of & is that it has no proper two-sided ideals,
except zero. In other words, &7 is a simple algebra. However, it is not a division
ring: p cannot have an inverse because, when multiplied by any element of & it
gives rise to an element of degree at least 1. Actually, the only invertible elements
of &/ are the constants.

The proof that & is simple goes as follows: suppose that J is a non-zero
two-sided ideal of .. Choose a non-zero element d €.&/. Commuting with p is
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formally equivalent to differentiation by q. Hence commuting d with p enough
times we obtain an element d’ €./ that does not involve q. But J is a two-sided
ideal of &. Thus every time we commute an element of J with p, we get an
element of J. Hence d' € J. Now repeat the process with d’, this time commuting it
as many times as necessary with q, until we arrive at a non-zero constant. Thus J
contains a non-zero constant, and so J =.; this is what we wanted to prove. For
details see [6, Theorem 2.2.1].

We can also describe in a mathematical way the relation that Dirac found
between the quantum commutator and the Poisson bracket. Quantum mechanics is
represented by ., and classical mechanics is represented by the complex algebra S
of polynomial functions on the variables p and g, which stand for momentum and
position. Thus § is a commutative algebra.

Let B, be the set of elements of & of degree < k and let S(k) be the set of
homogeneous polynomials of degree k in S. We define a map oy: B, — S(k) as
follows: If d € B, has degree k, ignore the monomials of degree < k, and replace
p by p and q by g in the monomials of degree k. This gives a homogeneous
polynomial of degree k, which we denote by o,(d). For example, if d = q*p° +
7q°p® + 6p° + 3pq, then d has degree 9 and oo(d) = g*p° + 7¢°p®. This is called
the symbol map of degree k of & it is a linear map of vector spaces, no more.
Note that if d € B, has degree < k then its symbol of degree k is zero. This
construction is well-known from partial differential equation theory.

Now to the relation with the Poisson bracket. Let d;, d, be elements of & of
degrees k, and k, respectively. By (2), the commutator [d,, d,] has degree at most
k, + k, — 2. One can now check that

Uk1+k2—2([dl’d2]) = {Ukl(dl)’ ‘Tkz(dz)}'

This is one way to express the relation discovered by Dirac. We will come across
another way, more in the spirit of the correspondence principle, in §11.

7. MATRIX REPRESENTATIONS. Let us now turn to the Heisenberg-Born-
Jordan version of quantum mechanics. In it p and q are matrices. First of all notice
that there cannot be two finite matrices whose commutator is 1. The easiest way to
see this is to observe that the trace of a commutator is always zero, while the trace
of the identity matrix is always non-zero. Therefore any such matrices must be
infinite.

Thus we are led to a representation of & into the algebra M, (C) of infinite
matrices with complex coefficients. In other words, we must construct a homomor-
phism of algebras of & into M,(C). This is easy, given that we have defined .« as a
quotient of a free algebra. It is enough to find two matrices P and Q in M, (C)
such that PQ — QP = 1; for example

0 1 00 0
0 0 1 0 0
P=19 o 0 1 0

O OO

2.0 -
0 3 and Q=

First define a map 6: % - M(C) by 6(x) =P and 6(y) = Q. Since PQ — QP =1,
it follows that xy — yx — 1 belongs to the kernel of 6. Thus 6 induces a map 6:
& — M,(C). But we have already seen that .« is simple. In particular, the image of
ker(#) in ./ must be zero. Hence 8 is injective. In other words, the subalgebra of
M (C) generated by P and Q is isomorphic to &.
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Thus we have two ways of describing the quantum algebra .: as a quotient of a
free algebra (Dirac’s way) or as a subalgebra of a matrix algebra (the Heisenberg-
Born-Jordan way). A third scheme for doing quantum mechanics leads into yet one
more description, perhaps the most fruitful, in terms of differential operators.

8. WAVE MECHANICS. It has long been known that light shows phenomena that
are better explained in terms of waves, and others that make better sense if it is
thought of as a stream of small particles. Quantum theory reached a compromise,
affirming a dual nature for light, both wave and particle. In 1924, Louis de Broglie,
then a student working towards his doctorate in Paris, understood that the
wave-particle dualism ought to be truly universal. If that were so, then a ‘particle’
such as an electron should also present the same dual nature of wave and particle.
Langevin sent a copy of de Broglie’s thesis to Einstein, who wrote in reply: ‘he has
lifted a corner of the great veil’.

De Broglie’s work was the starting point of a third version of quantum mechan-
ics, developed by the Austrian physicist Erwin Schrédinger in 1925. Schrédinger’s
starting point can be best summed up in the aphorism where there is a wave, there
must also be a wave equation. Actually this was reportedly said by P. Debye at the
end of a colloquium in Zurich, in which Schrédinger explained de Broglie’s work to
his department; see [23, Ch. 6]. Using de Broglie’s formulac and a reasonable
heuristic argument, Schrodinger arrived at a very neat partial differential equation.
For an electron of mass m moving in one dimension under a potential V, the
equation is

ay  —ht N

h— T o + V. (8.1)
At first this equation was hailed as a return to the good old days, with some
physicists hoping that it would drive out those strange matrices and non-commuta-
tive quantities. Moreover, it was deterministic. However, what did the function ¢
represent? It takes complex values, for a start. Max Born once again came to the
rescue, and proposed that the wave function, as  came to be called, did not
represent any physical quantity whatsoever. Only the square of its modulus
ly(x, £)|* had a physical interpretation. It represented the probability of finding an
electron at x at the moment ¢. Despite much initial dispute, this became the
accepted interpretation.

This also rescued the uncertainty principle, which affirms that one cannot
measure at the same time and with arbitrary precision, the position and momen-
tum of a particle. In its mathematical form, it is a consequence of the quantum
commutation relation (3.1). Since ¢ is a solution of a differential equation, it
behaves deterministically. But ¢ cannot be measured. What one can measure is
|y|*, a mere probability.

Let us spell out this scheme in more detail. The wave functions live in the space
Z? of square integrable functions defined on the real line and taking complex
values. This is a Hilbert space. In particular, it is endowed with an inner product; if
¥y, I, €7 then

s ) = [ iy dx.
R
A wave function ¢ must be square integrable because {, ) is equal to the

probability of finding the particle somewhere in the real line, which must be 1.
However not every element of .#? is a wave function: wave functions must be
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differentiable, if they are going to satisty Schrodinger’s equation. The observables
correspond to Hermitian operators on %% Despite the name, these cannot be
observed directly. The magnitudes that are observed correspond to the eigenvalues
of these operators. Since the observables are Hermitian operators, the eigenvalues
are real numbers, which is what one would expect of physical quantities.

In the end, it turned out that Schrédinger’s wave mechanics is equivalent to the
matrix formulation. Note that in both versions one has operators: matrices, in
matrix mechanics; differential operators, in wave mechanics. But in matrix me-
chanics, the matrices themselves change with time. The fundamental equations
(3.2) relate the time derivative of a matrix with the quantum equivalent of the
Hamiltonian. In wave mechanics, it is the wave function that changes with time.
The differentiable operators act on the space of functions in the usual way.

The connection between the two pictures comes through an operator U(¢) that
takes the wave function at ¢, into the wave function at ¢, namely ¢(x,t) =
U@®)y(x, ty). It can be deduced from physical considerations that U(¢) is a unitary
operator. Let X, be an observable in wave mechanics. Mathematically we are
talking about a Hermitian operator in 2. Write X = X(¢) = U(¢)'X,U(¢); this is
the ‘matrix’ that corresponds to X, in matrix mechanics. Differentiating this
formula with respect to ¢ and using Schrodinger’s equation, we arrive at

X(r) = [H, X(1)],

which is the fundamental quantum equation in Dirac’s form. For more details see
[8, Ch. V, §28].

We can recreate the quantum algebra & in the language of wave mechanics.
This time we will be handling differential operators in #2. The operators we want
to consider are d/dx and multiplication by x. For the sake of simplifying the
formulae, let us denote these operators by J and x, respectively. If ¢ is a wave
function, then

[0, x](¥) = a(xy) —xa(y) = .
Since this holds for every ¢, we conclude that [, x] = 1, the identity operator in
#?. Thus, proceeding as in §7, we can show that .o/ is isomorphic to the complex
subalgebra of End.(#?) generated by the operators ¢ and x. In wave mechanics,
these operators correspond to momentum and position, as was to be expected.

9. 2-MODULES. We can represent the algebra & more economically as an
algebra of differential operators if we use polynomial functions. Let us start in a
little more generality. Let R be a commutative algebra over C. We define the ring
of differential operators 2(R) inductively as a subalgebra of End.(R). Since an
element of R gives rise to a linear operator of R by multiplication, the inductive
definition begins with 2°(R) = R, the operators of order zero. The operators of
order k are

9*(R) = {d € End¢(R) : [d,a] €2* '(R) forall a € R}.

Let 2(R) be the union of all Z*(R) for k > 0. This turns out to be a subalgebra
of End(R), though the proof is not quite obvious, see [6, Ch. 3, §1].

It is easy to calculate 9'(R) explicitly. It is generated, as an R-module, by 1
and the C-derivations of R. In particular, if R = C[x], the polynomial ring in one
variable, then 2'(R) = R + RJ, where d denotes the operator differentiation by
x. Thus the quantum algebra & is contained in Z(R) as the algebra generated by
x and 9. Working a little harder, we can prove that & = 2(R); for details see [6,
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Ch. 3, §2]. Hence the quantum algebra is the algebra of differential operators of
the ring of polynomials in one variable.

The preceding definition of rings of differential operators appears in
Grothendieck’s Eléments de geométrie algébrique [14, proposition 16.8.8]. The
notoriety of rings of differential operators nowadays is mainly due to Z-module
theory. A @-module is a finitely generated module over the algebra of differential
operators of the coordinate ring of a smooth affine algebraic variety. To handle
general varieties one must introduce sheaves [3, Ch. VI].

The importance of the theory lies in its numerous applications, which extend
from mathematical physics to number theory. One of the most famous is to the
representation theory of algebraic groups, where 2-modules were used to settle
the Kazhdan-Lusztig conjecture in 1981. A very important Z-module theoretic
theorem used in the solution of the conjecture is the Riemann-Hilbert correspon-
dence. This is a result of the noblest parentage. Its genealogical tree includes
Riemann’s memoir on the hypergeometric function, Hilbert’s 21st problem, and the
work of Deligne on regular connections.

10. THE WEYL ALGEBRA. It did not take long for algebraists to notice that the
quantum algebra & was an interesting object of study. In 1933, D. E. Littlewood
wrote a paper [18] in which he proves most of the properties of ./ that we
considered in §6. He also gives several examples of infinite matrices satisfying
(3.1), among them the one of §7.

Littlewood’s language is rather antiquated. But in 1937, K. A. Hirsch published
a paper [16] in which he proves that a class of rings that includes & is a simple
algebra. This is a thoroughly modern paper, written in the language of van der
Warden’s Moderne Algebra. His approach is essentially the one presented in §6.
See also [5].

A great boost to the study of & came with the realization that it appears as a
quotient of enveloping algebras of nilpotent Lie algebras by primitive ideals. This
brought them into the fold of the representation theory of Lie algebras.

In fact & is the first member of a family of complex algebras. It corresponds to
a quantum system with one degree of freedom. The equations for systems with n
degrees of freedom were found by Heisenberg himself, as early as September 1925.
They also give rise to complex algebras that are simple integral domains. J.
Dixmier studied these algebras in a series of papers in the 1960s, and was the first
to call them Weyl algebras, after a suggestion of I. Segal; see [10]. He also
introduced the notation A,(C) for the algebra corresponding to a system of n
degrees of freedom; see [9]. Both the name and notation have become standard.

The importance of the Weyl algebra has grown steadily in the last 30 years; see
[3], [6], [20]. The work on non-commutative Noetherian rings that followed A.
Goldie’s famous theorems on quotient rings of Noetherian rings [12], [13] and the
fact that the Weyl algebra is the simplest (but quite typical) ring of differential
operators has only added to its importance.

11. DEFORMATIONS. It is time to return to quantum mechanics. The three
schemes that we studied in §§6-8 give rise to the method known as canonical
quantisation. First of all, by quantisation we mean the process of turning a classical
system into its corresponding quantum system. This is not a well-defined process.
In canonical quantisation one starts with the Hamiltonian H of the classical system
and systematically replaces the classical variables position and momentum by the
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operators x and d/dx of wave mechanics. One may now write the corresponding
Schrodinger equation and solve it.

Several other methods of quantisation have been proposed: geometrical quanti-
sation, asymptotic quantisation, deformation quantisation. It is the last of these
that we want to study here. It leads us into another way of describing the Weyl
algebra: as a deformation of a polynomial ring.

Let § be a commutative C-algebra. Denote by S[[¢]] the space of power series in
one variable with coefficients on S. Note that we are considering S[[¢]] as a vector
space only, and not as a ring. This is because what we really want to do is to define
a new multiplication in S[[¢]]. To do that, we start with a family of bilinear maps
B;: S X§ — §,for j > 0.1f a,b €S, then their x-product in S[[¢]] is

axb= ) Bja,b)t.
j=0

Extending this linearly to the whole of S[[¢]], we obtain a multiplication in this
space. The multiplication is associative if the B; satisfy

Y. Bi(a,Bj(b,c))= Y, B(B(a,b),c)

i+j=k i+j=k

for kK > 0 and all a, b, c € S. This is not very easy to check for a given family of
bilinear maps. Doing it recursively, one is led to consider Hochschild homology, as
shown by M. Gerstenhaber in [11]. We do not pursue this line here; our aims are
more modest.

Two further assumptions are usually made. Since we want the x-product to be a
deformation of S, we must have By(a, b) = ab, the original product in S. If the
identity of S is to be the identity of S[[¢]] with the product %, then we must also
have B;(a,b) = 0 for j > 0 if either a or b is a scalar.

Let us return to quantum theory. We have seen that one of the key features of
Dirac’s approach to quantum mechanics was the relation between the classical
Poisson bracket and the quantum commutator. He arrived at this relation using the
correspondence principle, which states that a quantum system should tend to its
classical analogue when Planck’s constant tends to zero. This is also the starting
point of the deformation theoretic approach to quantum mechanics.

In this approach we begin with the classical phase space. Since we are consider-
ing only a particle moving in a straight line, phase space is a two dimensional
space. The classical dynamical variables are functions on phase space, and we are
assuming that they are polynomial functions, to keep the going easy. The same is
true in the deformation theoretic scheme. So far, so good. What we have to define
anew is the multiplication of these observables. Furthermore, it must somehow
depend on Planck’s constant.

So let S = C[p, q] be the polynomial ring. We define a new product in S[[#]],
the space of formal power series in 7%, using the deformation theoretic approach
just described. But what does it mean to say that the ‘commutator corresponds to
the Poisson bracket’? Let f, g € S. Suppose we have constructed a deformation of
S[[#]] given by a family of bilinear forms B;, for j > 0. Forming the commutator of
f and g as elements in the ring S[[%]] with this product, we get

frg—gxf= Z (B](f’g) _Bj(g’f))hj' (111)

j=0
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Since B(f, g) = fg, the first non-zero term of the power series in (11.1) is
(B{(f, g) — Bi(g, f)%. But, according to Dirac, the commutator fxg —g* f
divided by i# ought to be equal to the Poisson bracket when % goes to zero. Thus
B{(f,8) — Bi(g, f) = if, g}. An easy way to achieve this is to require that B,(f, g)
= i{f, g} /2, since the Poisson bracket is skew symmetric.

As we saw in §4, the Poisson bracket is really a bidifferential operator in the
arguments f and g. Thus we may boldly propose to extend this assumption to all
the B;s. The question, of course, is: can one define a x-product in S[[#]] satistying
all these conditions?

The answer is yes. This »-product is called the Moyal-Weyl product. 1t was used
by Moyal in [24] to study quantum statistical mechanics from the point of view of
classical phase space. This product can be described in a very compact way if we
use tensor products. First define the differential operator II: S &. § = § & S by
[(f®g)=df/dp ® dg/dq — dg/dp ® df/dq. Now let A: S ®. S — S be the
multiplication map A(f ® g) = fg. One checks easily that the Poisson bracket can
be written using IT and A as {f, g} = AII(f ® g). More generally, the Moyal-Weyl
*-product of f and g is fxg = Alexp(GAID(f ® g)). As an example, let us
calculate the coefficient of the term in %% of fxg. By definition itis — A(TI?)(f ® g).
An easy calculation shows that this is equal to

9%f 9g 9f d%g . 9°f d’g
ap? 9q* dpdq dpdq  dq* Ip* )|

In particular, if either f or g has degree < 1 then this term is zero.

More generally, if either f or g has degree <k, then A(II**'(f® g)) = 0.
Thus fxg is indeed a polynomial. Moreover p x g — g * p = ifi{p, q} = ih.
Normalizing i# to 1 we see that the algebra S with the Moyal-Weyl x-product is
isomorphic to &. This is not quite a proof that these two algebras are isomorphic,
because we have not verified that the Moyal-Weyl product is associative. We shall
not check this here, but leave it, instead, to the conscientious reader as an exercise.
For details see [25] and [28].

The deformation theoretic approach to the Weyl algebra is also interesting from
an algorithmic point of view. Calculations with elements of the Weyl algebra are
not exactly easy. The multiplication of two monomials of relatively small degree
may give rise to a long string of terms. This is awkward to implement in a
computer. The *-product approach bypasses all this and gives a closed formula in
terms of differentiation of polynomials, a calculation that computers can handle.

12. CONCLUDING REMARKS. G. H. Hardy says in 4 Mathematician’s Apology
that ‘a mathematical idea is ‘significant’ if it can be connected, in a natural and
illuminating way, with a large complex of other mathematical ideas’ [15, §11].
Having examined the evidence collected in the preceding sections, we can safely
say that, by Hardy’s criterion, the Weyl algebra is a ‘significant idea’. This explains
why it has been studied so intensely. A lot is known about the one-dimensional
Weyl algebra «. Its right ideals have been classified in [4] and [17], and its
representation theory has been studied very thoroughly [19]. The same cannot be
said of the many-dimensional Weyl algebras mentioned in §10.

But even & still hides some secrets. For example, it is not known whether all
endomorphisms of & are surjective. This first appeared in print as ‘Probleme 11.1°
in [10]; and it is closely related to the famous Jacobian conjecture; see [6, Ch. 4, §4].
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