GENERALIZATIONS OF THEOREMS ABOUT TRIANGLES
CARL B. ALLENDOERFER, University of Washington

1. Introduction. Since one of the most powerful methods in mathematical
research is the process of generalization, it is certainly desirable that young
students be introduced to this process as early as possible. The purpose of this
article is to call attention to the usually untapped possibilities for generalizing
theorems on the triangle to theorems about the tetrahedron. Some of these, of
course, do appear in our textbooks on solid geometry; but here I shall describe
two situations where the appropriate generalizations seem to be generally un-
known. The questions to be answered are: (1) What is the generalization to a
tetrahedron of the angle-sum theorem for a triangle? (2) What is the correspond-
ing generalization of the laws of sines and cosines for a triangle? Expressed in
this form, the questions are certainly vague; for surely there are many general-
izations. From these we are to select the ones which are most satisfying and
which have a clear right to be called the generalizations. In attacking these prob-
lems we will need to reexamine the theorems as they are stated for a triangle,
and perhaps to reformulate them so that the generalizations appear to be natu-
ral. Thus we have a bonus in that we learn additional ways of thinking about
triangles.

2. The angle-sum theorem. Since this theorem is one of the most familiar
in Euclidean geometry, it is strange that its three-dimensional generalization is
not part of the classical literature on geometry. I ran across this generalization
some years ago and have been putting the question to mathematicians wherever
I find them. Only one of them, Professor Pélya, knew of it. He attributes it to
Descartes [1].

The first question to be settled is that of the type of angles in a tetrahe-
dron to be considered. It would be most natural to consider the inner solid angles
and their sum. I remind you that the measure of a solid angle is the area of the
region on the unit sphere which is the intersection of the sphere with the interior
of the solid angle whose vertex is at the center. Thus the measure of the solid
angle at a corner of a room is 47/8 =7m/2, and the measure of a “straight” solid
angle is 47/2 =27. By considering a few cases, we conclude that the sum of the
measures of the inner solid angles of a tetrahedron is not a constant. For example
consider the situation in Figure 1, where all the points lie in a plane. If D is raised
slightly, we have a tetrahedron the sum of whose interior solid angles is very
near to 27. On the other hand let us raise segment AB in the plane Figure 2 a
small amount. Then we have a tetrahedron the sum of whose inner solid angles
is very near to zero. Hence the obvious generalization is incorrect. As a matter
of fact it has been proved [2] that the sum of the solid angles of a tetrahedron
can take any value between 0 and 2.

In order to make a fresh start, let us reformulate the triangle theorem in the
statement: The sum of the outer angles of a triangle equals 2w. There are two
possible definitions of an outer angle. The usual one is that it is the angle be-
tween a pair of successive directed sides (Fig. 3). This clearly does not general-
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ize to three dimensions. Less familiar is the definition that an outer angle at a
vertex is the angle between the two outward drawn normals to the two edges
which meet at this vertex (Fig. 4).

Using this second definition, we can construct an elegant proof of the theo-
rem. Choose any point P in the interior of the triangle and draw the perpendicu-
lars from P to the three sides (Fig. 5). Then the outer angles «, 38, and v are equal
to the three angles formed at P. Hence a4y =2w.

Now we can generalize at once. To find the corresponding theorem on the
tetrahedron, first define the outer angle at a vertex as the trihedral angle formed
by the three outer normals to the three faces meeting at this vertex. Choose an
interior point P and draw the perpendiculars from P to the four faces. By the
same argument that we used for the triangle, we find that

TuEOREM 1. The sum of the outer angles of a teirahedron is 4m.

By a straightforward generalization of the notion of an outer angle, we can
similarly prove that

THEOREM 2. The sum of the outer angles of any convex polyhedron is equal to 4.
There is also an immediate generalization to higher dimensions.

3. The Laws of Sines and Cosines. Before considering the generalization of
these laws to a tetrahedron, let me give unfamiliar proofs of them which will
suggest the proper generalization.

First, consider the Law of Sines. At each vertex (Fig. 6) draw the unit outer
normals to the sides meeting at that vertex and complete the parallelograms
determined by these pairs. By a familiar theorem of trigonometry the areas of
these parallelograms are respectively sin (7 —ai) =sin a1, sin (r—a,) =sin a,
and sin (m —as) =sin as. We shall proceed to compute these areas in terms of the
coordinates of the vertices of the triangle (Fig. 7), choosing the notation ap-
propriately so that 414,43 are labeled in a counterclockwise fashion.

The equation of side 4,45 is

1 1
aN + yNy + (%2ys — ®3y2) = 0
where N} and N, are respectively the cofactors of x; and y; in the determinant

2 1
A= X2 Y2 1
X3 Y3 1

Thus the vector N! with components (IV;, ;) is normal to 4;4;; —N'is an outer
normal; and Ul= —N!/g,; is the unit outer normal (where a; is the length of
Aq43). More generally Ui=—Ni/a, (i=1, 2, 3) are the three outer normals,
where N and N} are the cofactors of x; and y, respectively and a; is the length
of the side to which U? is normal.

The area of the outer parallelogram at 4; of which two sides are U2 and U? is
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. v, U, 1N N
sin a; = = .
! Uz U: 203 N: N:

By aclassical theorem on determinants (Bécher, Introductionito Higher Algebra,
p- 31) it follows that

2
N, N,
3 s | = A-1
N, N,
Hence
. A sin a3 A
sin a; = an = .
2 a; 18203
In a similar fashion we prove that
sina; sina; sinag A
a as as a10203

which is the familiar Law of Sines.
To arrive at the Law of Cosines, we begin with a theorem of M&bius.

TaHEOREM 3. N4+ N24-N3=0,

This theorem follows from the facts that N;+N;+N;=0 and N,;+N;+N;
=0. These may be computed directly, or they may be proved by expanding the
determinants

1 Y1 1 X1 1 1
1 9 1{=0 and |2 1 1|=0.
1 ys 1 X3 1 1

This theorem can be rewritten in the form:
Nt = — N2 — N3,

Now take the scalar product of each side of this equation with itself. The resultis

As(2s, s, %)

Ay
(%1, Y4, 24

A1(x1, 1, 21) Ao(xz, 32, 22)

Fi1G. 8.
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N N!= N2.N? 4 N3.N? - 2N2-N3.

Since Né-Ni=aq2, and N2-N3= —a.a3c0s oy, this becomes a? = a2 +a2 — 2a.a;cos a.

4, The Generalized Laws of Sines and Cosines. These generalizations are
due to Grassmann, but are relatively unfamiliar. Their proofs follow the lines
just given in Section 3.

Consider a tetrahedron (Fig. 8) whose vertices are ordered so that

X1 Y1 %21 1

X 2z
SRS PN
X3 Y3 33

[T Y

X4 Y4 24

Then the vector N! whose components (N, N,, N,), are the cofactors of
x1, V1, 21 respectively in A, is normal to the face 4,434 The length of N, namely
a1, is equal to twice the area of this face. The vector Ul= —N1/g; is the unit
outer normal to this face. Other normals N’ and U’ are defined in a similar
fashion.

We now define the generalized sine (“G-sin”) of the inner trihedral angle at
A; to be the volume of the parallelopiped whose edges are U2, U3, and U4 Thus

U, Uy U AR PP YEP
Gsinwy=| Us U, U.|=——|N. N, N:|= = .
U: U: U: 2304 N: N: N: Q20304 AaA3a4

By a continuation of this argument, we obtain the Generalized Law of Sines:

THEOREM 4.
G-sin a; G-sin ay G-sin as G-sin ay A?
ax as as a4 1020304

To establish the Generalized Law of Cosines, we observe that we can prove
the following generalization of the Theorem of Mébius.

THEOREM 5. N14+N24+N3+4+N¢=0.
Then writing
N!= — N2 — N3 — N¢
and f;=a;/2=area of the ith face, we prove as above the result:

THEOREM 6.

fi = fot fo + fi = 2[fafs cos (fa fo) + fofs cos (fas f2) + ffs cos (fs, f2)],

where (fi, f;) is the inner dihedral angle of the tetrahedron between the faces whose
areas are f; and f; respectively.
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We also have another, rather novel, generalization if we start from N!4N?
= —N?*—N¢* The result is

THEOREM 7.
f1+ fo = 21facos (f, f2) = fa + fs — 2fafs cos (fs, f4)-

VA

W

4300, 0, ¢)

F1c. 9.

5. Supplementary matters. Another approach to the Generalized Law of
Sines is to begin with a right tetrahedron (Fig. 9). Then it would be reasonable
to define

Area AzA 3A4 bc

G-sina; = = .
Area A;4,43 {bzc2 + a2 + a2b2}1/2

Let us show that this agrees with our previous definition of G-sin @;. We have:

a 0 0 1
05 0 1
A=
0 0 1
0 0 0 1
Then
. A? a?b’c? be
G-sin o =

020505 (ac) (ab) {b2c? + a2 + a2b2}12 - {b22 + a%c? + a2} .
Also we have the reassuring result that for our right tetrahedron:

(G-sin a1)? + (G-sin a3)? + (G-sin a3)? = 1.
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It is natural to ask whether G-sin «; is actually the sine of the measure of the
inner or the outer solid angle at 4;; the answer is “no”. To give an elementary
counter-example we consider the right tetrahedron with a=b=c=1. Then
G-sin op=1/4/3; sine (measure of inner solid angle at 4,) =1/3; and sine (mea-
sure of outer solid angle at 4) =sin 77/6=—1/2.

As a matter of fact, G-sin « is not even a functon of either the inner or the
outer solid angles at the given vertex. Rather it depends directly on the face
angles of the outer trihedral angle. If these angles are \, u, » and s=\+u+»)/2,
then

G-sina = {sin ssin (s — \) sin (s — p) sin (s — »)}12.
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ON SUMS OF INVERSES OF PRIMES
J. H. JORDAN, Washington State University

1. Let P be the set of prime numbers and let p1=2, p2=3, p3=35, ps=17, etc.
It is a well known and useful fact that the infinite series Z,-nl p;* diverges. It
is further known that the approximate rate at which Y .1 p;* diverges, is

> pit=Inlnx+ K + 0(1/Inx),
D=z
where K is a constant independent of x [1].

It seems natural to ask the following question: If SCP does Zp‘.es pit
converge or diverge?

The answer, of course, depends on .S. For example, if P—.S is finite then
surely D .es ;" diverges; on the other hand, if .S is finite Y ,,,es p; ' converges.
The only case which has interest is when P — S and .S are both infinite.

For integers k and ¢, let S(k, ¢) = {kh—l—t},ﬁ,lﬂP. Dirichlet proved that
S(k, t) is infinite if (&, £)=1, [1]. If >2, then P—S(k, ¢) is also infinite. It is
known that D ,.ese ¢ £;° diverges; in fact

2, pit=(¢(A)'Inlnx + Ky + O(1/In %)
pi€S(k,t)
PisT
where K, is a constant and ¢ is the Euler phi function [2].

It may occur that .S may be so defined that one is not able to say if S is
finite or not. The convergence of Y ,es p~! still allows that .S could be finite
but adds little credence to it being so. To illustrate this point consider Brun’s
Theorem; that is if S* is the set of all twin primes then »_,cs* p~! converges [3].
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