A Case Study in Mathematical Research:
The Golay-Rudin-Shapiro Sequence

John Brillhart and Patrick Morton

1. INTRODUCTION. The case study we are presenting here is a re-creation of
our original investigation into the Golay!-Rudin-Shapiro sequence [3]. We are
particularly fond of this investigation, because of its unexpected simplicity and
elegance. It contains a nice balance between reasonable and thought-provoking
questions that lead us through the development of the subject and answers that
arise from examining pertinent data as we go along. These answers lead in turn to
more questions, etc. Our main purpose in re-creating this investigation is to show
the evolution of questions and ideas that originally led us to our results. Thus, we
are especially interested in highlighting some of the stances that mathematicians
take in the middle of their work.

The standard and time-honored practice in mathematics—to erase all hint of
the development of a subject or proof—usually makes it hard for students to see
into the minds of mathematicians at work. Theorems and arguments seem to come
from nowhere. Very seldom in textbooks or in research papers is there a hint of
the original questions that motivated the researchers, or what special turns their
understanding took in the middle of developing their subject. For us, that is one of
the most exciting things about doing mathematics. We hope that students will see
that the thought processes mathematicians engage in are much the same as the
normal human process of asking questions and being alert to hints suggested by
the subject itself. This questioning and following leads are at the heart of
successful mathematical endeavors.

A secondary purpose of this paper is to provide an introduction to the subtleties
of the Golay-Rudin-Shapiro sequence, a sequence that has motivated many inter-
esting developments in the last 25 years. (See [1],[4],[5],[7], and the references
contained in those papers.)

We kept an undergraduate audience in mind as we wrote this study. We
envision it being used for its examples in elementary real analysis: for the empirical
investigation of maxima and minima, arguments involving limit points, lim sups and
lim infs, experimenting with inequalities, even for the experience of a frustrated
attempt to solve a problem. This paper also serves as an introduction to topics that
more advanced students can read in [4]. We think it might be suitable as an
introduction to research methods for students involved in summer research pro-
grams or independent study.

'The sequence was originally named after Shapiro and Rudin, who were the first to study its
properties (see [9] and [8]). Golay’s contribution was recently pointed out to us by Andrew Odlyzko. See
[6], bottom of page 469.
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2. GETTING STARTED: THE INITIAL QUESTION. Many investigations begin
with a question. In our case, we are looking at the terms of the Golay-Rudin-Shapiro
sequence {a(n)}. This sequence can be defined recursively by the equations

a(2n) = a(n),
(D) a2n + 1) = (-1)"a(n), n=0,
a(0) = 1.

We know from work completed five years earlier [2] that the solution to this
recurrence is
k

(2) a(n) = (=1)°"" "% wheren= Y e,2", e, =0orl,

r=0
so this is clearly a sequence of +1’s. The exponent on —1 in (2) counts the number
of pairs of consecutive 1’s in the binary representation of n. Thus if n = 115,, =
1110011,, we have a(115) = (-1)* = —1.

The first eight terms of the sequence, starting with n = 0, are 1,1,1, —1,1,1,
—1, 1, and the obvious question is: does the number of + 1’s exceed the number of
—1’sas we go out in the sequence? It’s fine to ask this question, but now what? We
might try rephrasing the question: “If we add up the terms, do the successive sums

remain positive?”” Being mathematicians, we make up some notation. Let
n

3) s(n) = Y a(k), n=0.
k=0
The question now becomes: “Is s(n) > 0 for n > 0?”

To get some idea of what is going on, we do some computing. Working by hand
and using the binary for n in (2), we readily find the values listed in Table 1. Since
the answer to our question is “yes” for n up to 15, let’s use a computer to extend
Table 1 to, say, n = 32,000, and look at s(n) over a larger range. We find when we

TABLE 1
n a(n) s(n) n a(n) s(n)
0 1 1 8 1 5
1 1 2 9 1 6
2 1 3 10 1 7
3 -1 2 11 -1 6
4 1 3 12 -1 5
5 1 4 13 -1 4
6 -1 3 14 1 5
7 1 4 15 -1 4

do this that s(n) > 0 up to n = 32,000, so we begin to believe that the answer is
“yes” for all n. Now what do we do?? Let’s look at the long table more closely, and
see if it suggests an obvious next question. The first thing we notice is a general
growth in size of s(n), with minor local variations. We can see this in the next part
of the table (see Table 1A). Besides staying positive, the values of s(n) roughly rise
up to a peak of 15 (at n = 42) and then drop back down again, like a wave.
Examining the long table to the end, we find that s(n) cycles through four more
such “waves,” and that these waves seem to increase in “amplitude” and “wave-
length.”

*This question is the hallmark of having temporarily run out of steam.
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TABLE 1A

n s(n) n s(n) n s(n) n s(n) n s(n) n s(n)
16 5 24 7 32 9 40 13 48 11 56 9
17 6 25 6 33 10 41 14 49 10 57 10
18 7 26 5 34 11 42 15 50 9 58 11
19 6 27 6 35 10 43 14 51 10 59 10
20 7 28 7 36 11 44 13 52 9 60 9
21 8 29 8 37 12 45 12 53 8 61 8
22 7 30 7 38 11 46 13 54 9 62 9
23 8 31 8 39 12 | 47 12 55 8 63 8

The obvious next question is: does this wavelike behavior continue? How do we
turn this qualitative question into a precise mathematical question that we can
actually work with?

Perhaps a first step would be to focus on one aspect of this wave, say its
“wavelength.” What does “wavelength” mean? In a strictly periodic wave, the
wavelength is the distance between consecutive abscissae at which high points
occur, for example. How shall we think about'wavelength in the present context,
where the wave is not periodic? The high points may still give us some indication,
so let’s look at the high points in the long table, and see what they tell us. (At this
point the reader may want to make his or her own table; it may also be helpful to
create a plot of the values s(n), say, for n in the interval [1, 64].)

As we look at the table, we notice a “strong” local maximum at various places.
For example, s(10) = 7 is a clear local maximum. If we look further in the table,
we notice an obvious sequence of these strong local maxima: s(42) = 15, s(170) =
31, and s(682) = 63. We see the beginning of a pattern. The s-values at these
strong local maxima are 1 less than consecutive powers of 2, and each correspond-
ing n-value is 4 times the previous one plus 2. Now we’re getting somewhere! Next
question: Does this pattern continue? We think it might, so we state our guess
more formally.

Conjecture 1. The n-value for a strong local maximum is 2 more than 4 times the
previous one; the s-values at these points are 1 less than successive powers of 2.

The first thing to do after making the conjecture is to test it. According to the
conjecture, the next strong local maximum should occur at n = 4 - 682 + 2 = 2730,
and we should have s(2730) = 2’ — 1 = 127. An examination of the table shows
this is true, and this strengthens the conjecture. We now find ourselves being
distracted from the original question by our conjecture, which is interesting in its
own right. Let’s indulge ourselves and pursue this pattern question, ignoring the
original question for the time being. Experience shows that such side questions
often connect back to the original question and give information that is important
to the overall development.

To state a more precise conjecture, we need to develop a formula for the
n-values at which these strong local maximum values seem to occur. Extending the
sequence n = 10,42, 170, 682, 2730 backwards, we find that s(2) = 3 is also a local
maximum. If we set M, = 2, M, = 10, and in general, M, equal to the n-value of
the k-th local maximum, then the sequence {M,} is defined recursively by

(4) M., =4M, +2, M,=2.
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Using standard techniques we find that the solution to this recurrence is M, =
2(22k*2 — 1)/3, for k > 0. We can now make our previous conjecture more
precise.

Conjecture 1'. The points M, = 2(2%¥*2 — 1) /3, k > 0, are the n-values of local
maxima for s(n), and s(M,) = 2¥*2 — 1,

Now what? Now that we have a conjecture about the high points, what can we
say about the wavelength? If we take our definition of wavelength to be the
difference between abscissae of successive strong local maxima, then the wave-
length of the k-th wave cycle is M, ., — M,. Using (4) (still unproved), we find that
M., — M., =4M,, — M) Hence, our wavelengths increase by a factor of 4
from one wave to the next!

While staring at Conjecture 1’, it occurs to us that we should probably examine
local minima, as well. It seems natural to think of a wave cycle beginning at a high
point and ending at the next high point, so we decide to create a table (Table 2) of
the absolute minima between high points, that is, in intervals of the form
[M,, M,,, — 1], k > 0. In successive intervals there appears to be a doubling of
the number of n-values at which the minima occur. At this point we begin to
wonder if this choice of interval will really lead to the simplest description of the
behavior of the function. What would happen if we considered a different set of
intervals? We notice that the last minimum in each interval of Table 2 occurs just
before a power of 4. Putting this together with the fact that the wavelength
increases by a factor of 4 from one wave to the next, we decide to make a list
(Table 3) of the extrema in intervals of the form [4%,4%*! — 1], k > 0.

TABLE 2. n-VALUES FOR MINIMA IN [M, M, ,; — 1]

Minimum
Interval of s(n) n-values at which minimum occurs
[2,9] 2 3
[10, 41] 4 13,15
[42,169] 8 53,55,61,63
[170, 681] 16 213,215, 221, 223, 245, 247, 253, 255
[682,2729] 32 853, 855, 861, 863, 885, 887, 893, 895,

981, 983, 989, 991, 1013, 1015, 1021, 1023

TABLE 3. n-VALUES FOR MINIMA AND MAXIMA IN [4%, 41 — 1]

Minimum n-values at which Maximum n-values at which
Interval of s(n) minimum occurs of s(n) maximum occurs
[1,3] 2 1,3 3 2
[4,15] 3 4,6 7 10
[16, 63] 5 16,26 15 42
[64, 255] 9 64,106 31 170
[256, 1023] 17 256,426 63 682
[1024, 4095] 33 1024, 1706 127 2730
[4906, 16383] 65 4096, 6826 255 10922

There is a surprising simplification here: there are now exactly two minima and
one maximum in each power of 4 interval. Moreover, the sequence of n-values
6, 26,106, 426, ..., at which the second minimum occurs in each interval, satisfies
the same recursion formula (4) that the numbers M, did. This choice of interval
has yielded gold!
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Note the irrational element in the step we have just taken. There was no reason
other than a desire for simplicity (or curiosity, or laziness?) for changing the
interval. It turned out to be a good guess, but such a simplification may not always
happen. In the present case, it seems quite remarkable that a simple shift of the
interval has such a dramatic effect in cutting down the number of minima.

The first n-value of the pair giving the minimum in Table 3 is a power of 4. If
we denote the second n-value of this pair by m,, for k > 1 (starting with the
second interval), we have the recursion m, , = 4m, + 2, with m; = 6. Then we
find easily that m, = (5-4% — 2)/3, for k > 1. This leads to a more complete
conjecture.

Conjecture 2. a) For k > 1, the minimum value of s(n) in [4%,4%*! — 1]is 2% + 1,
which occurs at just the points n = 4 and n = m,. b) For k > 0, the maximum
value of s(n) in [4%,4¥*1 — 1]is 2¥*2 — 1, which occurs only at the point n = M,.

Notice that if Conjecture 2 is correct, then it follows immediately that s(n) > 0
for n > 0. Notice also that we haven’t yet proved anything!

How shall we go about trying to prove Conjecture 2? The fact that M, and m,
satisfy the same recursion, suggests that we try finding a formula for s(4n + 2).
Such a formula might be useful in proving the conjecture. Finding this formula
turns out to be fairly simple, if we take a hint from (1) and first look for formulas
for s(2n) and s(2n + 1). Using (1) to manipulate the sum which defines s(2n)
gives

2n n n—1
s(2n) = Y a(k) = Y a(2k) + Y a(2k + 1)
k=0 k=0 k=0
n n—1
= La(k) + ¥ (-D'a(k) =s(n) +t(n = 1),
k=0 k=0
where #(n) is the new function defined by
(5) t(n) = ¥ (-1)*a(k), n=o0.
k=0
In the same way we can establish the following recursion formulas.
Lemma 1.
(6) s(2n) =s(n) +t(n—-1), n>1,;
(7 s(2n + 1) =s(n) + t(n), n = 0;
(8) t(2n) =s(n) —t(n-1), n=1;
9) t(2n + 1) =s(n) —t(n), n=0.

Using this lemma, we can work out a formula for s(4n + 2). Replacing n by
2n + 1 in (6) gives

s(4n +2) =s(2n + 1) +t(2n) =s(n) +t(n) +s(n) —t(n - 1)
=2s(n) + (-1)"a(n).
The lucky thing is that this recursion involves only the s-function, the ¢-function
having dropped out. While we’re at it, we give the formulas for s(4n + d), where

d =0,1,2,3 (there are similar formulas for #(4n + d)). The proofs are equally
simple.
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Lemma 2.

(10) s(4n) = 2s(n) — a(n), n=1;
(11) s(4n + 1) =s(4n + 3) = 2s(n), n=0;
(12) s(4n +2) =2s(n) + (-1)"a(n), n = 0.

It seems now that we might have enough relations to attempt an inductive proof
of Conjecture 2. Since the assertions we have to prove concern the interval
[4%,4%*1 — 1], it makes sense to carry out the induction on the variable k. Let’s
look at the simpler statement in part b) of Conjecture 2: “For k > 0, the maximum
value of s(n) in [4%,4%*1 — 1]is 2%¥*2 — 1, which occurs only at the point n = M,.”

For k = 0 this assertion is true, since the maximum of s(n) in [1,3] is 3,
which occurs only at M, = 2. Assume the assertion is true for the interval I
= [4% 4k*1 — 1] and try to prove it for I, .

We first show that 2*3 — 1 is an upper bound for s(n) in I,,,. If n lies
in I,,, =[4**1,4%*2 — 1], then we can write n =4m + d, for some m in
[4%,4%*1 — 1] and for some d in the set {0, 1, 2, 3}. Formulas (10)—-(12) of Lemma 2
give:

(13)  s(n) =s(4m +d) <2s(m) +1 <2(2¥*2 — 1) + 1 = 2k¥3 — 1,

which establishes the upper bound. Note that equality holds in (13) at most when
m = M,, by the induction assumption.

To finish the proof of b), we have to prove that M, , is the only place in I,
where the value 2¥*3 — 1 is actually achieved. This is really an “if and only if”
statement. First we note from (4) and (12) that

(14) S(Mesr) = s(4M, + 2) = 25(M,) + (= 1) a(M,).

Using (4) it is not hard to see that the binary expansion of M, is 1010... 10, with
k + 1 occurrences of the pattern “10,” an expansion that contains no consecutive
I’s. Thus, a(M,) = +1, and M, is even, so the last term in (14) is +1, and the
induction hypothesis leads to s(M,,,) = 22%*2 — 1) + 1 = 2k*3 — 1,

Conversely, suppose that s(n) = 2¥*3 — 1, for some n in I, ,. We have to show
that n = M,,,. From the comment following (13) we get that m = M,, so
n = 4M, + d, for some d = 0, 1, 2, or 3. Since s(n) is odd, equation (11) shows
that d # 1 or 3. If d = 0, formula (10) gives the contradiction

2k*3 — 1 =5(n) =s(4M,) = 2s(M,) — a(M,) =2(2%*2 = 1) — 1 =2k+3 - 3,

Hence we must have d = 2, so n = 4m + 2 = M, ,,. This proves everything!
We leave it to the reader to prove part a)—the same technique works. So we
have a theorem:

Theorem 1. a) For k > 1, the minimum value for s(n) in [4%,4%*1 — 1] is 2% + 1,
and this value occurs only at the points n =4% and n=m, = (5-4* — 2)/3.
b) For k > 0, the maximum value for s(n) in [4*, 4%+ — 1] is 2%*2 — 1, and this
value occurs only at the point n = M, = 2(22k*2 — 1),

Corollary. The sum s(n) is positive, for alln > 1.
3. GOING FURTHER: A NEW QUESTION. Having proved more than we needed

to settle the original question, we’re hooked! Finding the answer to one question
often suggests new questions. In our case the first new question was: what is the
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asymptotic behavior of s(n); that is, can we find an elementary function f(n) so
that the ratio s(n)/f(n) stays bounded away from 0 and o, or even approaches a
non-zero limit, as n — ©?

Finding such a function is not difficult, since Theorem 1 shows that s(n) is
roughly 2k when n lies in the interval I, = [4%,4¥*1 — 1]. Hence, a reasonable
choice is f(n) = Vn . Looking at Theorem 1 more closely gives a good bit more. If
n lies in the interval I, part a) shows that

s(n)  2¢+1 1 1 1
> =5t 5mr ” 5
Vn ‘/4k+1 2 2
while part b) gives that
s(n)  2%?2 -1 s 1 s
< =4 - — <4,
Vn Vak 2*

Thus, 1< s(n)/ Vn < 4, for n > 1, and so s(n) is roughly a constant times vr .
This shows that Vn is the “right” order of magnitude of s(n). However, this leaves
open the question whether s(n)/ Vn actually approaches a limit as n — . We can
investigate this question using the sub-sequences {rm,} and {M,}. Using Theorem 1
we easily calculate that

s(m 2"+1\/— 3
lim S0 _ lim (————)— 5 =775

kom yfmy = 5 4k -

and

oM (22 -1)V3

im ———— = /6 =2.44%....
k—»w k k—x 2(22k+2 _ 1)
Therefore s(n)/ Vn certainly does not approach a limit as n — .

Having determined that the sequence has at least two limit points, two more
questions occur to us: 1) how many limit points does the sequence have; and 2)
what are the extremal limit points, i.e., the liminf and lim sup of {s(n)/ Vn ¥_y?
Such questions are often difficult to answer explicitly for the usual garden variety,
pathological objects in real analysis. However, we have an intuition about the first
question: since the denominator of s(n)/ Vn is steadily increasing with n, while
the numerator varies up and down by steps of 1, the difference between consecu-
tive terms of the sequence is roughly

s(n+1) s(n) s(n+1)—s(n) +1

mtl  Vm Vi TV

so the difference tends to 0 as n increases. Thus, an increasing number of smaller
and smaller steps will be required to pass from the neighborhood of one limit point
to the other. It is reasonable to guess, then, that every point of the interval
[y3/5,V61is a limit point of {s(n)/ vn ¥._,. This is true, in fact, and it isn’t hard to
turn our intuition into a formal proof.

Theorem 2. Every point of the interval [\/3/5 V61 is a limit point of the sequence
{s(n)/Vn¥_,.
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Proof: Let /3/5 < ¢ < V6, and suppose & > 0 and N > 0 are given. The asser-
tion is: there is some n > N for which

< 6.

(15)

‘/’7_5

Choose m, > m, > N so that both s(m,)/ \/m; < & < s(m,)/ ym, and Vn > 1/8
for n > m,. Then, as we now show, (15) will be satisfied for some n between m,
and m,. Suppose to the contrary that there is no n with m, < n < m, for which
(15) is satisfied, i.e., for which & — 6 <s(n)/vn < £+ 6. Then there must
be a largest n, in [m;,m,) for which s(n,)//n; < &— 6. This implies

s(n; + 1)/ y/n, +1 2 £+ 8, and therefore, s(n, + 1)//n, + 1 —s(n,)//n; >26.
On the other hand,

s(n; +1) s(ny) s(ny + 1) —s(ny) - 1

N R N e

The contradiction 28 < & shows our supposition to be false, i.e., there does exist
an integer n > N for which (15) is true. .

This answers question 1). To get some idea about question 2), we go back to the
computer and compute the terms s(n)/ Va to n = 32,000. (Again, the reader may
want to create a table or a plot of s(n)/ Vn to follow along in this discussion.) We
see the high points at n = 10,42,170 and low points at n = 15,26,106. The
maximum of s(n)/ Vn in I, occurs at exactly the same point n = M, that it does
for s(n). Except for n = 15—an unruly initial exception—the minimum in I,
occurs at n = m, and is unique.

If extremal points for s(n) remain extremal for the quotient s(n)/ Vn, it is
plausible to think that the limit points y/3/5 and V6 might be the liminf and
limsup of the quotient sequence. Moreover, as is easily shown, the terms
s(my)/ \/m, decrease monotonically to y/3/5 and the terms s(M,)/ /M, in-
crease monotonically to V6. Hence it is also plausible that y/3/5 and V6 might be
upper and lower bounds as well. Polya encourages us to be bold,* so we take the
leap:

Conjecture 3. For n > 1, {/3/5 < s(n)/ Vn < V6.

If this is true, then it certainly follows that y/3/5 and V6 are the liminf and
lim sup, respectively, since we already know they are limit points. Hence we can
focus all of our attention on Conjecture 3.

4. THE UPPER BOUND. We decide to focus on the upper bound first, since the
maxima of s(n)/ Vn seem to occur for the same n-values that they do for s(n). In
taking this route, we’re letting ourselves be guided by the sense of internal or
hidden logic that the subject seems to have.

What should we try? Suppose we focus on the interval I, = [4%,45*! — 1], as
before. We would like to show that s(n)/ Vn < V6 for n in I, and we know that

*See George Polya’s lecture in “Let Us Teach Guessing,” an MAA video.
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s(M,)/ /M, < V6.1t is natural to try to show that
(16) s(n)/Vn < s(M,)/ M, for nin I,.

We know that s(n) < s(M,) on the whole interval, but we can only say that
Vn > /M, when n > M,; hence the inequality in (16) is true in the sub-interval
[M,,4%*! — 1]. This is a start.

This is a common situation in mathematics. Working on a problem can be very
much like putting together a jigsaw puzzle. You first try to find pieces you can fit
together, so as to form islands of connections. Having found some of these islands,
you then want to see how they fit together to solve the larger puzzle. The trouble
with a mathematical puzzle is that you don’t always know what all the pieces are;
sometimes you have to create them. Sometimes, they don’t all fit together to make
the picture you want.

To create the next part of the argument we have to try imagining a new piece of
the puzzle, something that will give us another way to look at the inequality (16).
We have proved the inequality in the interval [M,,4%*! — 1], and we want to
prove it in the interval [4%, M, ]. We need some formulas to work with.

What do we know? We have the formulas (10)-(12), which relate values of s in
I, to values in I,_,. It might be worth trying to use these as part of an induction
proof. We try formula (10) first:

s(4n)  2s(n) —a(n) 2s(n)+1 s(n) 1

Van an - 2/ w2

This almost works, except for that annoying term 1/2Vn . On the other hand, we
find that formula (11) really does work, giving us s(4n + 1)/ V4n + 1 < /6 and
s(4n +3)/Van +3 < V6, if s(n)/Vn < /6. We get the desired inequality for
odd values of n in I, if we know it for all values in I,_,. Close, but not good
enough for an induction proof.

It seems as if these formulas don’t quite give us what we want. We decide to go
back to the tables and look for other patterns that might give a clue to some useful
relationships. First we notice the similarity between the first 8 values of s(n) in
Tables 1 and 1A. We list them side by side:

Table1(0<n <7 1 2 3 2 3 4 3 4
Table 1A (16 < n < 23) 5 6 7 6 7 8 7 8

The difference between corresponding numbers in the two rows is always 4. The
next eight values from each table are:

Table 1(8 < n < 15) 5 6 7 6 5 4 5 4
Table 1A 24 <n < 31) 7 6 5 6 7 8 7 8

Now the sum of corresponding numbers is always 12. We summarize these
patterns in equation form:

s(n +16) =s(n) + 4, 0O<n<7,
s(n+16) = —s(n) + 12, 8<n < 15.
When we consider the last four columns in Table 1A we find similar patterns:
s(n +32) =s(n) +38, 0<n<15;
s(n+32) = —s(n) +16, 16 <n < 31.

These four equations show that all the values of s(n) for n in [16,63] are
obtainable from the values in [0, 15]. Looking further in the table we see that these
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elaborate patterns continue, and we are able to guess the general form of the last
term in each of the four equations.

Lemma 3.
(17) s(n + 2%%) =s(n) + 2%, O0<n<2?*!'-1,k>1;
(18) s(n+2%%) = —s(n) +3-2%, 2% 1 <n<2% - 1,k>1;

(19)  s(n+2%) =s(n) + 2%, 0<n<2%—1,k20;
(20)  s(n+ 2%y = —s(n) +2K°2, 2%k < p < 2% — 1 k> 0.

The proof of the formulas, once we have found them, is not hard. The idea is to
prove them by induction on n, for a fixed k (see [3, Satz 5)).

These formulas show that the values of the sequence s(n), for n in I, =
[4%,4%*1 — 1], can be generated from the values in [0,4% — 1]. In this process the
interval I, is divided into four pieces, the last two of which are twice as long as the
first two. The integer M, = 2(22¥*2 — 1)/3 is contained in the third of these
subintervals.

I

]
L v e

4k 3.22/(—1 22k+l Mk 3_221( 4"*‘1 -1

This method of generating the sequence gives us some hope that we can prove
the inequalities we want to. Formula (19) catches our eye first because M, = 2 +
2% + -+ +2%*1 js a sum of odd powers of 2, so that M,_, + 22¥*! = M, (see the
discussion following (14)). Hence we see that if n + 2?**! < M,, then n < M, _,.
This looks promising, but there is a restriction on the values of n for which
formula (19) holds: n must lie between 0 and 22* — 1. Thus we can make use of
(19) only for values of n + 22¥*! lying in the interval

22k+1 S’l+22k+1 S22k_1+22k+1 =3,22k_ 1.

Since M, is definitely in this interval, we can use formula (19) in the subinterval
[22k*1) M, ]. We find that

(21) s(n+22k+l) B s(n) ‘/; 2k+l B ‘/a +2k+l
\/n + 2k+1 Vn \/n + 2k+1 \/n + Q2k+1 \/n + 2k+1

for 1 <n < M,_,, assuming that the inequality s(n)/Vn < V6 is known for
n < M,,_l.4 We get the inequality we want as long as

‘/a + 2k+l
‘/n + 22k+1

ie., as long as Vén + 2¥*! < V6n + 3-2%%*2 The latter inequality is equivalent
to n <2?**!/3  which is true in the interval we’re considering (n < M,_,).

(22) <6,

“Note that we have to assume n > 1 since we divide by yn in (25).
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We now have part of an induction step. This would prove s(n)/vVn < V6 in
[22k+1 + 1, M, 1.

Note that this analysis is already more complicated than the analysis in Section
2. This is to be expected, since the new question involves a ratio of functions.

The only part of the interval I, we have yet to consider is [22%,2%%*!]. We might
be able to use (17) in a similar way to handle this subinterval, but this formula
would only be applicable for n + 2% < 3-22k~1 — 1 leaving out the subinterval
[3-22k~1 22k+1] However, we also notice from our tables that s(n) appears to be
bounded by 2%*! in [22%,22%*1 — 1], which would give us the estimate

s(n) 2k+1

< — =2<16,

R

for k > 0. The one omitted value in (23), n = 22**!, can be checked using the fact
that s(22¢*1) = 2k+1 4+ 1:

(23)

s(22k+1) 2k+l +1

Vazkel 2 .2k

for k > 0. So all we have to do to make this work is prove that s(n) < 2**!, for n
in [22k,22%*1 — 1]. The proof of this last assertion is very similar to the proof of
Theorem 1b), as long as we also specify the places where s(n) takes on the value
2k*1 This gives the following statement.

(24) <V2 +1< 6,

Lemma 4. For 2% < n < 22%*! — 1 we have s(n) < 2**!, with equality if and only
ifn=2%"1 —1 -5k lg 22+ where &, =0 or 1,k > 0.

Again we leave the straightforward induction proof to the reader (see [3, Satz
9]. The condition for equality in this lemma comes from analyzing the binary
representations of the n-values at which equality holds.

We have all the pieces now!

Theorem 3. Forn > 1, s(n)/ Vn < V6.

Proof: We just sketch the outline, since we have already given most of the details
above. We focus on values of n in the interval [4%,4%*! — 1]. In the subinterval
[M,,4%*! — 1], k > 0, we use the argument in the paragraph containing (16). In
the interval [2%%,2?¥*1], k > 0, we use Lemma 4, (23) and (24). To prove the
inequality in the remaining interval [22¥*! + 1, M, ], for k > 1, we use induction
on k. The assertion is true for k = 1, since the interval in question is [9, 10], and
the inequality can be checked directly. If the assertion is true for k — 1, then (19),
(21) and (22) show that it also holds for k. It is easy to check that this covers all the
integers, and the proof is complete.

There is no way of telling whether this proof for the upper bound is the simplest
proof. Perhaps the reader can find a better one.

5. THE LOWER BOUND. What about the lower bound? Will a similar approach
establish that s(n)/ Vn > /3/5 for n > 1? Looking over what we’ve done, we
observe that we used three different approaches in three different subintervals of
I, to establish the upper bound. In tackling the lower bound, we wonder if a more
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unified approach will work, one that just uses the formulas of Lemma 3 on each of
the four subintervals of I, determined by that lemma. We denote these four
subintervals by I, I, II1, IV.

On interval I, a simple argument using the lower bound s(n) > 1 in (17) gives

s(n+2%)  s(n) + 2% 1+ 2* 1+ 2 [21+2F
= 2 > = -,
Vn+ 2% Yn 422 T Y3.22%01 o T Y302 3 2

and the right hand side is obviously > y/3/5, for k > 1. The same argument
works in interval III, using (19), for k£ > 0. A similar argument using (20) gives the
lower bound we want in interval IV (hint: use the upper bound from Lemma 4).

We’re almost home. The last subinterval II is the trickiest one, since it contains
the minimum point m,. As it happens, we now run out of luck! It doesn’t miss by
much, but formula (18) is apparently not strong enough to allow us to prove what
we believe to be true in the whole of interval II. (The reader may enjoy performing
the calculations.) Unfortunately, we have found no way to finish the proof of the
lower bound by this method, i.e., by piecing together inequalities on subintervals of
I, even though it shows that the inequality we want is true for most integers. The
interval idea leads to a dead end. R.I.P.}

This is a good example of a proof that fails by the slimmest of margins.
However, this was only our first attempt to prove the lower bound. We tried to
imitate what worked nicely for the upper bound, and got stuck. It might be that the
interval method didn’t work to establish the lower bound because the method was
simply too crude. We need to go back and look at the problem again, if possible,
from a different point of view.

How else can we look at the problem of getting a lower bound for s(n)/ Vn ? As
we look at the graph of s(n), we see that there are only a finite number of places n
where s(n) has a fixed value k, since the values of s(n) go to infinity with n (by
Theorem 1a). When s(n) = k, for a fixed k, the ratio s(n)/ Vn will be smallest
when n is largest. This leads us to the following idea: let’s focus on the last
(largest) value of n for which a given integer k appears as s(n) in the sequence
{s(n)};_; call it w(k). If we could prove the inequality

(25) k/\o(k) > 3/5,fork > 1,

then the lower bound would follow for s(n)/ Vn, for any n, because taking
k = s(n) would give s(n)/ Vn = s(n)/ y/w(s(n)) > y/3/5. Thus the subsequence
{k/w(k), k =1} of {s(n)/Vn, n = 1} is the key subsequence to consider in
looking for the best lower bound for s(n)/ Vn . Not knowing what else to do, we
set off to see if we can prove (25). First, we state the definition of « formally.

Defimition. For a given k > 1, let w(k) be the largest value of n for which
s(n) = k.

The next thing to do is to go back to our tables and determine w(k) for the
values of k up to 255. The beginning of the table is given in Table 4. In the full
table we are surprised to find that w(k) satisfies recursion formulas much like
those satisfied by s(n), but with some interesting wrinkles.

5 Ending symbol for a proof that didn’t work.
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TABLE 4
k|12345678910

w(k)lO 36 15 26 27 30 63 106 107

Lemma 5.
(26) w(2n) = 4w(n) + 3, nx=1.
27 wo2n+1)=4d4o(n+1)+2, n22,n+1+2",r=2.

Proof: The proof of (26) is not hard. Note first that s(n) and n have opposite
parity, so that (2n) must be odd. Hence we have either that w(2n) = 4m + 1 or
w(2n) = 4m + 3, for some m > 0. The first case is impossible, because by (11),
s(@m + 1) = s(4m + 3) = 2n, so 4m + 1 cannot be the largest argument of s to
give 2n. Thus w(2n) = 4m + 3. Then (11) implies that 2n = s(4m + 3) = 2s(m),
so that s(m) = n. If there were an m, > m with s(m,) = n, then s(4m, + 3) = 2n
and 4m; + 3 > 4m + 3 = w(2n) would contradict the definition of w(2n). Thus
w(n) = m, and w2n) = 4w(n) + 3.

The proof of (27) is much trickier. To see how to approach the proof, let’s first
note one consequence of the formula. If (27) is true, then certainly

s(4o(n+1) +2) =s(w(2n+1)) =2n+ 1.
How might we prove just this much? Formula (12) gives
s(4o(n + 1) +2) =2s(w(n + 1)) + (-1)*"Va(w(n + 1))
=2(n+ 1)+ (-1)"a(o(n + 1)),

and so s(4w(n + 1) +2) =2n + 1 if and only if a(w(n + 1)) = (—-1)"*! (when
n + 1 is not a power of 2). This shows that to prove (27) we must consider the
formula

(28) a(w(n)) =(-1)", n=23,n+2,r>2.

Since induction has worked so often before, it is worth trying to prove (28) by
induction as well. This is what we do now. Formula (28) holds for n = 3, since
a(w(3)) = a(6) = —1 = (—1)*. Assume that (28) has been proved for all the
integers m for which 3 < m < 2n + 1, for some n > 2. We proceed to prove it for
2n + 1 and 2n + 2. There are two cases to consider, because of the excluded
values in (28).

Case 1: Suppose that 2n + 2 # 27, for any r > 3. Since we have already proved
(26), we can use that formula and the defining formulas (1) for a(n) to compute
a(wn + 2)):

a(w(2n +2)) =a(4o(n +1) +3) = —a(Qew(n+1) + 1)
— (_1)1+w(n+1)a(w(n + 1))
_ (_1)1+n(_1)n+1 — (_1)2n+2;

this computation uses the fact that the parities of w(n + 1) and n + 1 are
opposite, and the induction assumption (n + 1 < 2n + 1 and n + 1 is not a power
of 2). This proves (28) for 2n + 2. Before considering (28) for 2n + 1, we need a
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formula for w(2n + 1). From what we have just shown it is easy to find a good
candidate for w(2n + 1), since

s(w(2n+2)—-1) =s(w(2n+2)) —a(w(2n+2)) =(2n+2)-1=2n+1.

Thus we might guess that w(2n + 1) = w(2n + 2) — 1. If there were an m >
o(2n + 2) — 1 for which s(m) = 2n + 1, then because the sequence {s(m), m > 0}
goes to infinity by steps of +1, there would have to be an integer m' > m
for which s(m’) = 2n + 2. But then m’ > m + 1 > w(2n + 2) would give a con-
tradiction. Hence our guess was correct, and w(2n + 1) = w(2n +2) -1 =
4w(n + 1) + 2. This proves (27), since in this case n + 1 is not equal to a power
of 2.
Now (28) follows for the value 2n + 1, since

a(w(2n + 1)) =a(4o(n+1) +2) =aRew(n+1) +1)
= (- Pa(w(n + 1))
- (_1)n(_1)n+1 - (_1)2n+1.

Case 2: If 2n + 2 = 2', for some r > 3, then to complete the induction we have
to prove (28) only for the value 2n + 1 = 2" — 1. Here we need the fact that
w(2" — 1) = 22771 — 2. To see this, first note that

SR -2) =527 - 1) a2 = 1) =27~ 1

by Lemma 4 and the fact that there are 2r — 2 pairs of consecutive 1’s in the
binary expansion of 2%"~! — 1. Furthermore, it can be proved by induction that
s(m) = 2" for 2¥7!' < m < 2% — 1 (with equality if and only if m = 2%" — 1 —
YiZ2£,2%*!, where & =0 or 1). This, together with Theorem 1la (take k > r),
shows that s(m) > 2" when m > 2%~! — 2, and hence that (2" — 1) = 2%""1 — 2,
as claimed.

It follows that a(w(2n + 1)) = a(w(2" — 1)) =aR¥ ! = 2) =(-1D¥3 =
(—1)*"*', and this completes the proof of (28). With (28) we have also completely
proved (27) as well. [ |

Looking back over this proof, we see that we were led to (28) by considering
possible consequences of (27), but then proving (28) gave us a complete proof of
(27) as a by-product: formula (27) is implied by (28) at the value 2n + 2. Actually,
if we think of the induction proof as an argument that proceeds step-by-step
through the positive integers, then the two formulas (27) and (28) are really
intertwined, since (28) at 2n + 2 is used to establish (27), which is used in turn to
prove (28) at 2n + 1. It is surprising that such intricate arguments are required to
establish fairly simple recursion formulas.

After we had found the recursion formulas in Lemma 5, it seemed we were no
closer to a proof of (25). However, we started to look for more patterns in the table
by taking differences between consecutive values of w(n), one of the standard
ways of spotting possible formulas. Taking differences of the first 25 terms of the w
sequence gives:

n 1 2 3 4 5 6 7 8 9 10 11 12
on+1)-w| 3 3 9 11 1 333 43 1 3 1 11

n 13 14 15 16 17 18 19 20 21 22 23 24
on+1)-wm| 1 3 129 171 1 3 1 11 1 3 1 43
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What strange numbers! For long stretches the difference is 1 at odd integers, and
then it skyrockets. At even integers #, the difference takes on the values 3, 11, 3, 43,
except at powers of 2, where it also suddenly increases. Powers of 2! Suddenly we
see that the difference depends only on the power of 2 dividing n, except when n
is 1 less than a power of 2, a wrinkle that fits with the recursion formulas in
Lemma 5. We also see that the values 1,3,11,43,171 satisfy a recursion: each
value is 4 times the preceding value minus 1. When we solve the recursion for
these values and investigate the wrinkle more closely, we find the following
remarkable formulas.

Lemma 6. a) If n =2°QCm + 1), for m>0, a >0, then w(n + 1) — w(n) =
2% +1)/3, unless a =0 andn=2°—-1,s>1.b) Ifa=0 andn = 2° — 1,
s> 1, then wo(n + 1) — w(n) =271 + 1.

We omit the details of the proof, and note only that part a) can be proved by
induction on «, using (26),(27), and the special values w(2* — 1) = 22°"! — 2 and
w(23+2 _ 2) — 22s+3 _ 5

Once we have a formula for the difference w(n + 1) — w(n), we are close to
finding a formula for w(k), since T_Hw(n + 1) — o(n)} = w(k) — (1) = w(k).
Summing up the expressions in Lemma 6 leads to the following explicit formula.

Theorem 4. If 2" <k <2"*!' — 1, r > 0, then

1 2r+1 '« [k-1 2i
w(k)=k—1+§(2 -2)+2Y, S 2%,
i=0

We leave the somewhat technical details of the proof to the reader. This
formula follows directly from Lemma 6, but may also be proved by a straightfor-
ward induction proof (on k) using only Lemma 5 and the fact that w(2" — 1) =
22=1 — 2 r > 0. (See [3, Satz 1].)

Will this formula give us the lower bound we want?

Theorem 5. Fork > 1, k/ w(k) > y3/5.

Proof: Assume that 2" < k < 2"*! — 1, r > 0. By the formula for w(k) we have

r=1TrEk —1 )
3w(k) = 3k — 3 + 22! —2+6'20[ 571 }22'
i=

r-1
<3k —-3+42¥1 —24+3(k-1) ) 2

i=0
=3k —-3+2"1 —24+3(k-1)(2"-1)
<3k—-3+2k*-2+3(k—1)k="5k>—-5<5k?

and the inequality of the theorem follows immediately. It worked!
Corollary. Forn > 1, s(n)/Vn > y/3/5.

To summarize, we may combine Theorems 2, 3, and 5 in the following explicit
result.
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Theorem 6. For n > 1 we have /3/5 < s(n)/Vn < V6, and the sequence
{s(n)/Vn, n > 1} is dense in the interval [\/3/5 V6. In particular,

s(n s\n
lim sup (n) =v6 and  liminf (n) =3/5.
n-owx \/; n—x \/;

Looking back over our development, we find that our original purposes, which
were to introduce the reader to the Golay-Rudin-Shapiro sequence, and to
illustrate how mathematicians are led by their questions, have been realized.
Sometimes, proofs of conjectures are constructed without difficulty and work more
or less on the first attempt, as in Section 2.5 On the other hand, this was not the
case in the investigation of the lower bound, where a leap was required into a
whole new investigation to get past a barrier in our first attempt at a proof. In the
process we broke through into an area that is interesting in its own right, as is
evidenced by the mysterious and elegant properties of the w-function.

Since our main purpose has been to retrace the development of questions and
ideas, we have given priority to these questions over full details of sometimes
technical proofs. We hope the reader will find it an interesting challenge to fill in
these details, or to read them in [3]. The reader can also obtain an expanded
version of this paper by writing to the authors.
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