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REMARK 2. If the triangle T in Problem 3 is replaced by any convex polygon,
it is clear that the proofs of the properties of y still hold except that the intersection
of y with a given side of the polygon may be a single point or empty. However, it
is still true that y is composed of circular arcs of equal radii each tangent to each
side that it meets together with line segments contained in sides of the given polygon.
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VENN DIAGRAMS AND INDEPENDENT FAMILIES OF SETS

BRANKO GRUNBAUM, University of Washington, Seattle

1. Introduction. Let & = {4,,---,4,} be a family of n simple closed curves
in the Euclidean plane. We shall say that &/ is an independent family provided the
intersection

™ - X, NX,N--NX, is nonempty

whenever each set X ; is chosen to be either the interior or the exterior of the curve A;.
For example, the family of 3 circles and the families of 4 or 5 congruent ellipses
in Figure 1 are independent.
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Independent families and their higher dimensional analogues are interesting from
several points of view; for example, Marczewski [1947] considers them in connec-
tion with certain extension problems in measure theory. We are more interested in
their geometric properties, and in particular with the special types of independent
families that are usually called Venn diagrams. Introduced by Venn [1880], the
Venn diagrams are meant to facilitate and make visually accessible the relations of
classes in first-order predicate calculus; various markings, hatching, etc., that are
occasionally used for such purposes are of no importance for our discussions. Venn
diagrams have been widely popularized by many texts on elementary logic and set
theory, starting with Venn [1881]; among more modern ones we may mention
Quine [1950], Birkhoff-MacLane [1953], Rosser [1953], Suppes [1957], Kenelly
[1967], Gardner [1968], Roethel-Weinstein [1972]. Unfortunately and quite iron-



14 MATHEMATICS MAGAZINE [Jan.-Feb.

ically, logicians and set theorists are mostly not interested in geometry and as a
consequence their definitions are rather vague as to the precise requirements on an
independent family to be considered a Venn diagram. In many of the books the
discussion is limited to n < 3, and a few even express doubts in the possibility or
the feasibility of Venn diagrams with large n. Moreover, insofar as the definitions
can be interpreted at all, different authors appear to have different limitations in
mind when speaking of Venn diagrams, and even individual authors seem to vary
their interpretations from instance to instance. For example, Venn [1880; 1881]
seems to require that each A4; be a simple closed curve, but one of the examples he
gives for n = 5 fails to have that property. In Austin [1971] each of the sets in (*)
is required to be connected, but the last two illustrations fail to have that property.
While Austin [1971] requires that no point should belong to 3 of the curves A4;,
Henderson [1963] definitely allows that. ‘

We find it convenient, and agreeing in spirit with Venn and many other authors,
to define a Venn diagram of n curves in the plane as an independent family
o = {Ay,-,A,} such that each of the sets X; N X, N--- N X, in (¥) is an open,
connected region, called a cell of the Venn diagram. It is easy to verify that all the
bounded cells (that is, all cells except the single unbounded one) are even simply
connected, as is also the complement of the unbounded cell.

FiG. 2

The independent families in Figure 1 are easily seen to be Venn diagrams, but
it is not completely obvious that Venn diagrams exist for arbitrarily large n. How-
ever, as observed already by Venn [1880, p. 8] (see also Venn [1881], Baron [1969])
a simple inductive construction may be used to establish the existence of such Venn
diagrams. In Figure 2 we show Venn’s inductive construction of diagrams with up
to 6 curves, which should suffice to indicate the pattern Venn [1880] had in mind.
Other constructions with the same purpose have been described by Berkeley [1937],
More [1959], and Bowles [1971].
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In the next section we shall investigate a number of questions dealing with
independent families and Venn diagrams from the point of view of combinatorial
geometry; two of them correct erroneous assertions found in the literature. In Sec-
tion 3 we shall discuss a number of related results and open problems.

2. Venn diagrams formed by convex curves. We start with a simple observation
which has several interesting consequences.

LEMMA. If an independent family of n curves is such that each two curves
meet in at most j points, then

jz@-2[(5) =@ - vintn - .

Proof. If no 3 curves have a common point, then the curves define in the plane
a network with v < j(3) nodes (intersection points) and e = 2v edges (arcs); there-
fore, by the Euler relation, the number of regions determined by this network is
e—v+2 < j(3)+ 2. But if the curves form an independent family the number of
regions is at least 2", and the assertion follows for this case. The general case may be
reduced to the one just considered by observing the possibility of deforming the
curves so that each two still meet in at most j points, no three have a point in common,
and no region is obliterated.

We may remark that the Lemma remains valid even if its assumptions are weak-
ened to require each two curves to have an intersection consisting of at most j
connected components.

If C is a convex curve (that is, the boundary of a 2-dimensional compact convex
subset of the plane) we shall denote by s(C) the largest number of curves in an in-
dependent family consisting of curves similar to C, and by s*(C) the analogously
defined number for Venn diagrams. By h(C) and h*(C) we shall denote the numbers
similarly defined for families consisting of curves positively homothetic to C. Clearly
8(C) = s*(C) = h*(C) and s(C) = h(C) = h*(C) for all C.

TreOREM 1. (i) If C is a circle then s(C) = s*(C) = 3. (ii) For every ellipse E
we have s(E) = s*(E) = 5. (iii) For every convex curve C we have h(C) = h*(C) = 3.

Proof. Two circles intersect in at most 2 points, two ellipses in at most 4 points,
and the intersection of two positively homothetic convex curves is well known to
have at most 2 connected components. Therefore, we may apply the Lemma with
Jj = 2, 4, and 2, respectively, and find that s(C) <4, s(E) <6, and h(C) < 4. Fig-
ure 1(a) shows that s*(C) = 3 for a circle C, and it is easy to construct similar
examples that establish (iii). The Venn diagram in Figure 1(¢) shows s*(E) = 35;
similar diagrams may be constructed using five copies of any noncircular ellipse.
This completes the proof of Theorem 1.

Remarks. The first part of Theorem 1 has been well known since Venn [1880].
However, the assertion that s*(E) = 4 for ellipses E,— which is contradicted by
part (ii) of Theorem 1 and by the diagram in Figure 1(d)— was also made by Venn
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[1880] and repeated by many authors; among others in the article Logic Diagrams
in Edwards [1967]. For a weak version of part (iii) see Austin [1971].

Let k-gon designate any convex polygon with at most k sides. We shall denote
by n(k) the maximal number of members in any independent family of k-gons in
the plane, and by k(n) the minimal k such that there exists an independent family
of n k-gons. The similarly defined numbers dealing with Venn diagrams shall be
denoted n*(k) and k*(n). We have

¥
THEOREM 2. fim -0 gy R
k-0 1082 K ko 1022 K

= 1.

Proof. Since two k-gons intersect in at most 2k connected components, we may
apply the Lemma with j = 2k and deduce lim,_, ,, n(k)/log, k < 1. In order to com-
plete the proof we shall describe the construction of a Venn diagram «/(n) of n
k-gons showing that n*(k) =2 n = 2 +log, k. For n =4 we take the diagram
o/ (4) consisting of four quadrangles indicated by solid lines in Figure 3; we denote
by P(4) the quadrangle ABCD. For n >4 we obtain &/(n) by adding a polygon
P(n) to &/(n—1). The polygon P(n) is a 2"~ >gon formed by crossing twice each of
the 2" sides of P(n— 1), with vertices situated on the polygons crossing P(n—1)
and sufficiently close to P(n—1) to make P(n) a convex 2"~ %-gon. (Compare Figure
3 in which the dashed polygon illustrates P(5), the dotted one P(6).) This completes
the proof of Theorem 2.

FiG. 3

Remarks. Theorem 2 appears in Rényi-Rényi-Suranyi [1951]; their proof of
the second part uses a diiferent construction than the one just described, and yields
a poorer bound. More importantly, however, Rényi-Rényi-Suranyi [1951] base
their proof of the upper bound on the statement obtained from our lemma by
replacing the inequality of its conclusion by the stronger relation

2n—l

** jz
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Unfortunately, the proof they give for (**) is fallacious, and the assertion itself is
false. A counterexample to (**) with j = n = 6 is shown in Figure 1(f). However,
the Rényi-Rényi-Suranyi proof of Theorem 2 could be salvaged if relation (*¥)
is true or independent families of n k-gons, with j = 2k. If this more restricted
variant of (**) were established, equality could be substituted for the inequalities
in the following result; but we expect that equality holds in Theorem 3 in any case.

THEOREM 3. k(3)=k*(3) = 3; k(4) = k*(4)=3; k(5) = k*(5) = 3; k(6) < k*(6) < 4;
K(T)<6.

Proof. The Venn diagrams in Figures 6(a), 8(b), and 4 establish the first three
parts of the theorem. A Venn diagram of six quadrangles is shown in Figure 5, while
a drawing of an independent family of 7 hexagons will be supplied b the author
to any interested reader.

FiG. 4

3. Variations and open problems. (1) The construction we used in the proof
of Theorem 2 is a modification to convex polygons of the method described in
More [1959]. It may be adapted to obtain other variants of the result, such as the
following:

(i) If the construction is not required to proceed beyond .o/(n), then it is easily
seen that P(n) may even be chosen as a 2" >-gon; therefore we actually have
n(k) =z n*(k) = 3 + log, k.

(ii) Let a Venn diagram &/ = {4, -, 4,} be called convex provided all the 4;
are convex curves and all the bounded cells of &/ are convex sets as is the complement
of the unbounded cell. We shall denote by n**(k) and k**(n) the numbers corre-
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FiG. 5

(a)

FiG. 6

sponding to n*(k) and k*(n) but referring to convex Venn diagrams. (It should be
noted that the existence of k**(n) and of convex diagrams with arbitrarily large
numbers of curves is not self-evident. While the existence of Venn diagrams for
arbitrary n in which each cell is convex may easily be deduced from Steinitz’s theorem
on convex polyhedra (see, for example, Griinbaum [1967, Chapter 13]), the satis-
faction of the additional requirement of convexity of the curves 4; cannot be guaran-
teed by that theorem.) But an easy modification of our construction may be used
to establish n**(k) = 2 + log,(k—1), so that Theorem 2 may be extended to
limy., , n**(k)/log, k = 1. The diagrams in Figure 6 prove that k**(3) =3 and
k**(4) < 4; actually it may be shown that k**(4) = 4, and it is probable that
k**(5) = 5.

(2) A Venn diagram with n curves is called symmetric (Henderson [1963]) if
all the curves are congruent and obtained from each other by rotations through
multiples of 2x/n about a fixed point. The diagram of n = 5 triangles in Figure 4
is symmetric. Henderson [1963] gives two examples of symmetric diagrams with
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n =5, one formed by pentagons, the other by quadrangles; it is easy to modify them
so as to obtain symmetric Venn diagrams consisting of triangles, combinatorially
distinct from each other and from the one in Figure 4. (It is not known whether every
symmetric Venn diagram of 5 triangles is isomorphic with one of these three.) As
observed by Henderson [1963], if a symmetric Venn diagram has n curves then n
is necessarily a prime number. Henderson [1963] mentions that he has found a
symmetric Venn diagram of 7 hexagons. The present author’s search for such a
diagram has been unsuccessful, as have been attempts to clarify Henderson’s claim;
at present it seems likely that no such diagram exists. Concerning the analogously
defined concept of a symmetric independent family of n curves there is no restriction
that n be prime. In Figure 8(a) we have a symmetric independent family of 4 triangles
(compare Austin [1971]), while Figure 7 shows a symmetric independent family of
6 quadrangles. The independent family of 7 hexagons mentioned in the proof of
Theorem 3 is also symmetric. It is not known whether for every n there exists a
symmetric independent family of n k(n)-gons; we conjecture that that is the case.
But it should be stressed that the existence of symmetric Venn diagrams is still
open for each prime n = 7.

FiGc. 7

(3) An independent family, or a Venn diagram, is called simple provided no point
belongs to the boundary of three of the sets. Let k(n) [or k¥(n)] be the smallest k
for which there exists a simple independent family [or a simple Venn diagram]
with n k-gons. The example in Figure 6 shows that kF(3) = 3, and Figure 8(a)
establishes k,(4) = 3; the example in Figure 8(b) proves even kj(4) = 3. No other
values seem to be known.
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(4) Concerning the functions k(n) and k*(n) we venture two guesses:

(i) k(n) = k*(n) for all n.

(ii) k(n) = 12"~ %/(n—1)[ for all n, where ]x[ denotes the smallest integer = x.

(5) Notions of independent families and Venn diagrams may easily be extended
to higher dimensions in several ways (see, for example, Weglorz [1964], Collings
[1972]). We prefer the following definitions, although for d = 2 they are somewhat
more general than the definitions we adopted in Section 1 (all the results of Section 2
remain valid with these definitions). A family «f = {A4,---,4,} of n sets in the
d-dimensional Euclidean space E“is independent provided (*) holds whenever X j
is chosen to be either 4; or the complement ~ A; of A4; in E’. The independent
family o7 is a Venn diagram provided each of the sets int (X; "X, N--- NX,)
is an open d-cell (that is, is homeomorphic to the open d-ball), except that
int(~A4; N~ A4, NN~ A4,)is homeomorphic to the complement of a closed
d-ball B, :

The following generalization of part (i) of our Theorem 1 holds: Each inde-
pendent family of d-balls has at most d + 1 members. More precisely, using the
obvious adaptation of the notation introduced in Section 2, we have s(BY) = s*(B%
= d + 1. This was established by Rényi-Rényi-Surdnyi [1951] (see also Anusiak
[1965]), together with the theorem: An independent family of boxes in E*, with
edges parallel to the coordinate axes, contains at most 2d members.

(6) Let k(n,d) denote the least k such that there exists an independent family
of n sets in E*, each set of which is a d-polytope with at most k facets ((d— 1)-dimen-
sional faces). Theorem 3 shows that k(5,2) = 3, k(6,2) < 4 and k(7,2) < 6, while
the result on boxes in E mentioned above shows k(2d,d) < 2d. Starting from the
Venn diagram of 5 triangles shown in Figure 4 it is easy to deduce that
k(2d +1,d) = d + 1. If we denote by n,; the largest n such that k(n,d) =d+1
then by the remark just made n; = 2d + 1. On the other hand, crude upper bounds
on n; may be obtained by using the well-known result (see Griinbaum [1971] for
details and references) that j hyperplanes in E* determine at most (‘3') bounded
cells. Therefore n; must satisfy the inequality

((d + Dn, — 1

>2" —
)
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Since (%’) = 253 <255 = 2% — 1, this implies that n, < 7 (compared to the con-
jectured value n, = 5). Similarly, since (%)) = 32,509 < 32,767 = 215 — 1, we have
7 £ n3 < 14, and analogously 9 < n, < 22. It would be interesting to learn more
about n, and k(n,d).

FiGc. 9

(7) We denote by h(C) and h*(C) the maximal number of sets in independent
families or Venn diagrams consisting of sets homothetic to the convex set C. As a
generalization of part (iii) of Theorem 1, and of the result of Rényi-Rényi-Suranyi
[1951] on balls, we conjecture that h(C) = h*(C) = d + 1 for every d-dimensional
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compact convex set C. (If negative ratios of homothecy are permitted, part (iii) of
Theorem 1 does not hold; it would be interesting to determine the bounds in that
case as well.)

(8) Another particularly attractive type of Venn diagrams or independent families
comprises those consisting of congruent sets. We denote by ¢(C) [or ¢*(C)] the
maximal number of sets in an independent family [or Venn diagram] consisting of
sets congruent to C. From Theorem 1 and Figure 1(d) it follows that ¢*(E) = ¢(E) =5
for each ellipse E. It is easily seen that there is no fixed bound on ¢(C) when C
varies over planar convex sets. It would be of interest to determine whether —as
seems likely —there exist planar convex sets C with ¢(C) = oo, or even such with
¢*(C) = . For each polygon C the finiteness of ¢(C) follows from the Lemma of
Section 2. The examples in Figure 9 show that ¢(T) = 5 and ¢(S) = Sif T is an
equilateral triangle and S is a square. Probably equality holds in both cases.
Other open problems concern the values of ¢*(T) and c¢*(S), as well as their ana-
logues in higher dimensions.

(9) The author hopes that the facts and the spirit of the above discussion will
be of some assistance to those contending with the unfortunate—though fashion-
able— opinions that ‘‘geometry is dead,”” that it is “‘reduced to linear algebra,”
or that one needs years of postgraduate study to understand nontrivial open problems
in geometry. Many questions of combinatorial geometry provide not only oppor-
tunities to exercise the geometric intuition and a variety of techniques, but also
afford considerable aesthetic gratification.

Research supported in part by the Office of Naval Research under Grant N00014-67-A-
0103-0003.
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LAGUERRE’S AXIAL TRANSFORMATION
DAN PEDOE, University of Minnesota

This transformation, as we remarked in a recent paper (Pedoe, [3]) has been
mostly forgotten by geometers. It is as powerful a tranformation as inversion (trans-
formation by reciprocal radii), being, in a sense, the dual of inversion, and was
named by Laguerre transformation par les semi-droites réciproques. We shall call
Laguerre’s half-lines rays. They are oriented lines, and a ray touches a cycle, an
oriented circle, at a point P if the direction of the ray at P coincides with that assigned
to the cycle.

The geometry of cycles was largely developed during the 19th century, but never
met with the enthusiasm accorded to the geometry of circles, and has been almost
completely forgotten, .Ithough the theory contains many beautiful theorems. In
this paper we have another look at Laguerre’s fundamental theorem:

Given three cycles whose axis of similitude intersects none of them, a Laguerre
axial transformation can be found which simultaneously maps the three cycles
into three points.

In Pedoe [3] we investigated Laguerre’s geometrical proof of this theorem and
remarked that neither Blaschke [1], Coolidge [2] or Yaglom [5] mention it speci-
fically in their respective discussions of axial transformations. Blaschke comes very
near, as we shall see (§8), and it is his discussion of Sophus Lie’s approach to the
subject which has motivated this paper, in which we connect Lie’s work with
Laguerre’s. Some unexpected views of both 2-dimensional and 3-dimensional geo-
metry will appear during this excursion in Euclidean 3-space.
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