
Isoperimetric and Isoparametric Problems 

Tom M. Apostol and Mamikon A. Mnatsakanian 

1. INTRODUCTION. Two incongruent solids with remarkable properties are shown 
in Figure 1. One is a slice of a solid hemispherical shell with inner radius r and outer 
radius R cut by a plane parallel to the equator and at distance h < r from the equator. 
The other is a cylindrical shell with the same radii and altitude h. The surface of each 
solid consists of four components: an upper circular ring, a lower circular ring, an 
outer lateral surface, and an inner lateral surface. The two solids share the following 
properties: 

(a) The solids have equal volumes. 

(b) The solids have equal total surface area. 

(c) Every plane parallel to the equator cuts both solids in cross sections of equal 
area. 

(d) The two inner lateral surface areas are equal. 
(e) The two outer lateral surface areas are equal. 
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Figure 1. Incongruent solids sharing the five properties (a) through (e). 

These two solids were introduced in [1], where it is shown that the five properties 
(a)-(e) are also shared by an entire family of incongruent solids, each of which has 
polygonal rings as cross sections, rings formed by similar polygons circumscribing 
the inner and outer circular cross sections of a spherical shell. These solids, in turn, 
are part of a more general family with polygonal rings as cross sections (described in 
section 8) that is even more remarkable because it satisfies these five properties and a 
sixth property not shared by the two solids in Figure 1: 

(f) Every plane parallel to the equator cuts both solids in cross-sectional rings 
whose inner perimeters are equal and whose outer perimeters are equal. 

The last property implies that the two cross-sectional rings also have the same total 
perimeter. This observation motivated the present paper, which is concerned with plane 
regions having equal areas and equal perimeters. Because two global parameters (area 
and perimeter) are to be equal, we call such regions isoparametric. The first problem 
we posed was: 

How can we construct incongruent isoparametric plane regions? 
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With no further restrictions on the regions, it is easy to produce such examples at will, 
as shown by the regions in Figure 2. A chord divides each region into two pieces. 
One piece is flipped to produce an incongruent isoparametric region. It is clear that 
infinitely many such regions can be produced in this way by cutting and flipping a 
piece from any given region, unless it is a circular disk, in which case flipping one of 
the pieces results in a congruent disk. 

(a) Oval and heart (b) Isosceles triangle and parallelogram 

(c) Regular pentagon and hexagon (d) Parallelogram and kite 

Figure 2. Incongruent isoparametric plane regions formed by cutting and flipping. 

Traditional isoperimetric problems compare different plane regions having equal 
perimeters and ask for the region of maximal area. It is known [3], [5] that among all 
regions with a given perimeter, the circle encloses the largest area. This follows from 
the isoperimetric inequality, 

p2 
4s (1) 
4s 

which relates the perimeter p and area s of any planar region bounded by a simple 
closed curve. Equality holds in (1) only for the circle. 

Isoperimetric problems have been a source of important mathematical ideas and 
techniques since classical antiquity. A result arising from mythology is Dido's prob- 
lem: in the half-plane bounded by a given line, find a curvilinear arc of prescribed 
length with its extremities on the line and enclosing the maximum area. The solution, 
a semicircle whose diameter is on the given line, is obtained by reflecting the curve 
in the line and invoking the isoperimetric property of the circle. Archimedes treats a 
three-dimensional analog in Proposition 9 of his Sphere and Cylinder II, which states 
that of all spherical segments having equal spherical surface area, the hemisphere has 
the greatest volume. Today, isoperimetric problems and their extensions are alive and 
well. They continue to nourish mathematical imagination, as evidenced by a recent 
proof of the double bubble conjecture [4]. Interesting historical perspective on isoperi- 
metric problems is given in [3], which also describes the relation to a host of other 
maximum-minimum problems dealt with by a method called the calculus of varia- 
tions. 

This paper treats a different type of problem: find incongruent plane regions that 
have equal perimeters and equal areas. Hence the new name: isoparametric problem. 
The problem becomes more interesting, and more difficult, if we seek incongruent 
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isoparametric regions of specified shapes. It cannot be solved if one of the regions is a 
circular disk because of the isoperimetric inequality. Also, it cannot be solved for two 
regular polygons with different numbers of sides, although the reason for this may not 
be obvious (see section 2). 

The authors were pleasantly surprised to discover numerous cases where it can be 
solved. Figure 3a shows three incongruent isoparametric regions: two circular sectors 
and a rectangle, each with area 0 and perimeter 2 + 20. Because 0 is arbitrary, this pro- 
vides an infinite family of examples. When 0 = 1 the rectangle is a square and the two 
sectors are congruent. Figure 3b shows three more examples: two isosceles triangles 
and a rectangle, each with area 12 and perimeter 16. Such examples show that the gen- 
eral problem of finding incongruent isoparametric regions of specified shapes opens 
a door to many possibilities worth exploring. Section 3 gives a systematic treatment. 
Section 4 treats the same type of problem for rings bounded by two similar closed 
curves. Introducing "holes" makes the problem more interesting and allows more pos- 
sibilities. 

2 (V13 
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(a) Two circular sectors and a rectangle (b) Two isosceles triangles and a rectangle 
Figure 3. Examples of incongruent isoparametric regions. 

For example, Figure 4a shows three such rings formed from the sectors and rect- 
angle in Figure 3a. The holes are obtained by shrinking each figure by the same size 
factor X(< 1). For any size factor X, each of the three rings has area (1 - _2)0 and total 
perimeter (1 + k) (2 + 0), so they are isoparametric. In Figure 4b a circular ring and 
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12 
2 0 

1 4 

(a) Sectorial rings and rectangular ring (b) Circular ring and square ring 
Figure 4. Examples of incongruent isoparametric rings. 
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a square ring have the same area 3.r and the same total perimeter 6rr. For the circular 
ring the size factor X (ratio of inner to outer radius) is 1/2. But if X < 1/9, it turns 
out that there is no isoparametric square ring. Sections 5 and 6 explain why there is 
a restriction on X in Figure 4b but not in Figure 4a. Section 7 discusses isoparametric 
rings that have property (f) mentioned earlier. 

2. CONTOUR RATIOS. In this paper, a contour is any plane region that has asso- 
ciated with it a perimeter p and an area s. For a given region, the ratio Q = 

4res/p2 is called the isoperimetric quotient. The isoperimetric inequality states that Q < 1 for 
regions bounded by simple closed curves, with Q = 1 only for the circle. Some prop- 
erties of Q are given in [5]. 

For our purposes, it is more useful to study the quotient 

p2 
K = -, (2) 

4s 

which we call the contour ratio. It has the pleasant feature that K = -r for any circle and 

ic = 4 for any square. Isoparametric contours have the same contour ratio. A regular 
n-gon has contour ratio Kc = n tan(rr/n), a decreasing function of n that approaches 7r 

as n -- oo. That is why regular polygons with different numbers of sides cannot be 
isoparametric. 

For all contours with s = 1, the contour ratio is the square of the semiperimeter. 
Qualitatively, the contour ratio indicates the dominance of the semiperimeter over the 
square root of the area. 

Similar contours have the same contour ratio because the scaling factor cancels 
in (2). Figure 5 shows various shapes arranged by contour ratios. The size of a region 
plays no role. All circles are located at rr, and all squares at 4. 

Figure 5 also provides a spectrum of contour ratios for families of various shapes. 
Regular polygons serve as discrete bench marks. For example, an equilateral triangle 
has contour ratio 3/3 = 5.1961 .... All other triangles have larger contour ratios, so 
their images are distributed continuously to the right of the equilateral triangle. The 
square, another bench mark, has the smallest contour ratio of all quadrilaterals. More 
generally, for each fixed n the images of all n-gons lie to the right of the regular n-gon, 
which has the smallest contour ratio among all n-gons. 

3:4:5 5:12:13 1:6 1:7 
9:40:41 

7 8 9l1 12 :3 4 5 6 7 8 9 10 11 12 

Figure 5. A spectrum of contour ratios of various shapes. Relative sizes are irrelevant. 

An isosceles right triangle is also a bench mark. Its contour ratio is 3 + 2/2 = 
5.8284 ..., which is the smallest K that occurs among all right triangles. In particu- 
lar, any right triangle with integer sides (a Pythagorean triangle) has a larger K. The 
3 : 4 : 5 triangle has K = 6, and the 119 : 120 : 169 triangle, which is nearly isosceles, 
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has K = 5.8285 .... We offer as a challenge to the reader to show that Pythagorean 
right triangles exist with K arbitrarily close to 3 + 2V/2; thus, no Pythagorean triangle 
exists with smallest K. 

On the other hand, two regions can have the same contour ratio even though their 
shapes are quite different. In Figure 3a the rectangle has a different shape than the two 
sectors, but each has area 0 and perimeter 20 + 2, so their contour ratios are equal. 
The pentagram in Figure 5 has contour ratio 10 /3_-0 = 11.7557...., 

where 4 = 

(3/5 + 1)/2 is the golden ratio. A special long thin rectangle of some base b - 9.6521 
and height 1 has the same contour ratio, even though its shape has no resemblance to 
a pentagram. Although the perimeter and area of this rectangle are not equal to those 
of the pentagram, there is a similar rectangle with exactly the same area and the same 
perimeter as the pentagram, as revealed by the following theorem. 

Theorem 1 (Isoparametric Contour Theorem). Two contours can be scaled to be- 
come isoparametric if and only if they have the same contour ratio. 

Proof If two contours can be scaled to become isoparametric, then the scaled contours 
have the same contour ratio, hence so do the original contours because K is invariant 
under scaling. Conversely, assume that contours 1 and 2 have equal contour ratios, 
p2/(4s) = - /(4s2). Then s2/S - (P2/Pl )2. If we scale contour 1 by the scaling fac- 
tor t = P2/Pl we obtain a similar contour with perimeter tp, = P2 and area t2SI - S2 

This scaled copy of contour 1 is isoparametric to contour 2. In the same way, if we 
scale contour 2 by the scaling factor p /P2 the scaled copy will be isoparametric to 
contour 1. U 

In terms of the traditional isoperimetric quotient, Theorem I states that two regions 
with the same isoperimetric quotient can be scaled to have equal perimeters and equal 
areas. 

We call two contours parametrically similar if they have the same contour ratio. 
Isoparametric contours are always parametrically similar, whereas parametrically sim- 
ilar contours can be scaled to become isoparametric. Stated another way, isoparamet- 
ric contours scaled differently are parametrically similar. A pentagram and the special 
rectangle of base b 9.6521 and altitude I are parametrically similar but not isopara- 
metric. 

For later reference, we find the contour ratios of some specific shapes, with some 
simple consequences. 

Example 1 (Polygons circumscribing a circle). Consider a polygon with perimeter 
p and area s that circumscribes a given circle of radius r. The polygon need not be 
regular. Then s = rp/2, so the contour ratio of the polygon is 

p2 p Kpoly = (3) 
4s 2r 

Note that this is the ratio of the perimeter to the diameter of the inscribed circle (just 
as 7r is the ratio of the circumference of a circle to its diameter). For polygons with n 
sides, the minimum value of Kpoly occurs when p is minimal, which means when the 
polygon is regular. In this case K = n tan(7r/n), a bench mark for all n-gons. 

The perimeter and area of any circumscribing polygon can, in turn, be calculated in 
terms of the contour ratio. Using (3) we find that 

p = 2rKpoly, S = r2Kpoly. (4) 
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These generalize the classical formulas p = 2rnr and s = r27r for the circumference 
and area of the circumscribed circle. From the formulas in (4) we conclude: 

Polygons with equal contour ratios that circumscribe the same circle are isopara- 
metric. 

Polygons with equal perimeters that circumscribe the same circle are isoparamet- 
ric. 

Polygons with equal areas that circumscribe the same circle are isoparametric. 

Figure 6 shows an equilateral triangle and a rhombus that circumscribe the same unit 
circle. Each has perimeter 6/3 and area 3V3. A given circle can be circumscribed by 
a regular n-gon and by a regular m-gon. If m - n, these regular polygons necessarily 
have different perimeters, different areas, and different contour ratios. But an n-gon 
can be isoparametric to an m-gon if the one with the larger number of sides is not 
regular, as illustrated by the example in Figure 6. 

2,/ 

1- 1 _32 

2 

Figure 6. An equilateral triangle and an isoparametric rhombus circumscribing the same circle. 

Polygons that circumscribe circles have a number of remarkable properties, some 
of which are alluded to in Example 1. A more comprehensive list of such properties is 
given in [2]. 

Example 2 (Rectangle). A rectangle of base b and altitude a has area ab and perime- 
ter 2(a + b), so its contour ratio is 

(a + b)2 a b 1 
Krect =2 2 + - = 2 + y + -, (5) 

ab b a y 

where y is the ratio of the two edges. The minimum occurs when y = 1, which gives 
a square with Kc = 4, a bench mark for all rectangles. 

From (5) we find that two rectangles with edge ratios yi and y2 have the same 
contour ratio if and only if yl = y2 or y y2 = 1. In both cases the rectangles are similar. 
Therefore, dissimilar rectangles cannot be isoparametric. 

Example 3 (Circular sector). A circular sector of unit radius subtending an angle of 
20 radians has area 0 and perimeter 2 + 20. Therefore its contour ratio is 

(2 + 20)2 1 
Ksect 2 + 0 + - (6) 

40 0 

It is both surprising and remarkable that this has the same form as (5), with y replaced 
by 0. As illustrated in Figure 3a, each sector is isoparametric to a rectangle. Again, the 
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minimum is Kc = 4, the contour ratio of a square, and it occurs when 0 = 1. A circular 
sector subtending an angle of 2 radians appears as a bench mark in Figure 5. Sectors 
subtending angles greater than or less than 2 radians have contour ratio greater than 4. 

Example 4 (Isosceles triangle). An isosceles triangle with equal legs d and vertex 
angle 20 has area s = d2 sin 0 cos 0 and perimeter p = 2d + 2d sin 0, so its contour 
ratio is 

4d2(1 + sin 0)2 1 
2 + sin (7) isos - 4d2 sin 0 cos0 cos ( sin sin (7) 

As expected, the right-hand side has its minimum value when 0 = 7r/6, giving Kc 

3V3 for an equilateral tria'ngle, a bench mark for all isosceles triangles. 

3. ISOPARAMETRIC CONTOURS OF DIFFERENT SHAPES. This section 
solves some special cases of the following type of problem: 

Isoparametric contour problem. Given a contour of specified shape (such as a rect- 
angle), under what conditions can we find an isoparametric contour of another speci- 
fied shape (such as an isosceles triangle)? 

A necessary condition that the specified shapes be isoparametric is that they have 
the same contour ratio. If the contour ratios are equal the shapes are parametrically 
similar, and they can be scaled to become isoparametric. 

Example 5 (Square, pentagon, and hexagon). Given a square, whose contour ratio 
is 4, we wish to find an isoparametric pentagon, which necessarily has contour ratio 4. 
A general pentagon involves many parameters (such as angles and lengths of edges). 
We can restrict some of them and still satisfy the requirement that the pentagon have 
contour ratio 4. It is easier to find a pentagon that circumscribes the same circle as 
the given square and has the same perimeter. (A regular pentagon will not do because 
it has contour ratio smaller than 4.) Figure 7a shows an example that works. A circle 
of radius 6 is circumscribed by a square of side-length 12. Two Pythagorean 3 : 4 : 5 
triangles are cut off at two comers of the square by tangents to the circle and flipped to 
form two edges of a circumscribing pentagon. Because the square and pentagon have 
equal areas, they are isoparametric. In fact the circumscribing pentagon has two edges 
of length 10, two of length 8, and one of length 12, so its perimeter is 48, the same as 
that of the square. Both the square and pentagon have area 144. 

2 4 2 4 

3 i 
5 5 

(a) Isoparametric square and pentagon (b) Isoparametric square and hexagon 

Figure 7. Isoparametric square, pentagon, and hexagon circumscribing the same circle. 
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If the other two corners of the square are cut off in a similar manner, we find an 
example of a circumscribing hexagon, shown in Figure 7b, that is isoparametric to 
both the square and pentagon. 

Example 6 (General contour and rectangle). Assume that we are given a general 
contour with contour ratio K, and that we seek an isoparametric rectangle. If K < 4 
there is no rectangle isoparametric to the given contour because Krect > 4 for every 
rectangle. So for this problem, K > 4 is a constraint on the general contour. A neces- 
sary condition that they be isoparametric is that Krect = K, and from (5) we find that 
y 2 + (2 - K)y + 1 = 0, where y is the side ratio of the rectangle. For given K > 4 
this quadratic equation for y has positive roots given by 

1 1 1 
-(K- 2) 

• 
- 

K(K-4)=• 
(/ K-4)2. (8) 2 2 4 

The product of the roots is 1, so the roots are reciprocals. If K = 4, then y = 1 and the 
rectangle is a square. If K > 4 there are two distinct roots, y and 1/y, but geometrically 
they are obtained by interchanging the base and altitude of the same rectangle. The 
rectangle is parametrically similar to the given contour. By Theorem 1 the latter can 
be scaled to become isoparametric to the former. 

There is an equivalent way to treat this problem. Suppose that the rectangle has 
base b and altitude a, and that the given contour has area s and perimeter p. There is 
no loss of generality if we take p = 2, which makes K = 1/s. Equating perimeters and 
areas we find a + b = 1 and ab = a(1 - a) = s = 1/K, so 

1 
a(1 - a) = -. (9) 

Equation (9) is quadratic in a with two roots (1 ? /1 -4/K)/2, whose sum is 1. 
The constraint Ic > 4 ensures that both roots are positive. If we take a < b, then a is 
given by 

a 
4 

- - 1- - 
-= 1 4s, (10) 

2 2 Kc 2 2 

and b = 1 - a. We will use this relation in Example 9. 

Example 7 (General contour and circular sector). We take any contour with con- 
tour ratio K and try to find an isoparametric circular sector of unit radius. Denote the 
central angle of the sector, measured in radians, by 20. If K < 4 there is no sector 
isoparametric to the given contour because Ksect > 4 for every sector. Therefore, as in 

Example 6, Kc > 4 is a constraint on the general contour. A necessary condition that the 
two be isoparametric is that Ksect = K, hence by (6) we find that 02 + (2 - K)0 + 1 = 0, 
the same quadratic equation satisfied by y in Example 6, whose roots are given by (8). 
We know from Example 3 that the sector is isoparametric to a rectangle with edges 1 
and 0, so this problem is equivalent to Example 6. For each K > 4, the quadratic has 
two positive roots that are reciprocals. If K = 4, then 0 = 1 and there is one circular 
sector of unit radius subtending an angle of 2 radians. It is isoparametric to the unit 
square and can be scaled to become isoparametric to any contour with K = 4. 

If ic > 4, there are two dissimilar circular sectors of unit radius with the same K; one 
subtends an angle of 20 radians, the other an angle of 2/0 radians. The two sectors are 
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parametrically similar, but (except for the case 0 = 1) they are not isoparametric. But if 
we scale the second sector by a factor 0 we obtain a similar sector that is isoparametric 
to the first sector and also to any given contour of contour ratio K. 

In particular, if the given contour is a rectangle with edges 1 and 0, there are two 
sectors isoparametric to the rectangle. They are shown in Figure 3a. Because having 
contour ratio 4 is a common bench mark for both sectors and rectangles, there are no 
restrictions on the parameter 0 that defines the sector or the rectangle. 

Example 8 (General contour and isosceles triangle). Here we start with a contour 
of contour ratio K and seek an isoparametric isosceles triangle with parameter t = 
sin 0, where 0 is half the vertex angle. Because Kisos > 3-/'3 this problem places the 
constraint K > 3v3 on the general contour. A necessary condition that the given con- 
tour and a specific isosceles triangle be isoparametric is that Kisos = K. Use (7) for Kisos 
with sin 0 replaced by t to obtain 

1 (1 + t)2 l+t l+t 
,f/1-t2 t -t t 

Now square both sides and rearrange terms to get 

(1 +K2)t3 +(3- K2)t2 + 3t + 1= 0, 

a cubic equation for t in terms of K. When t = 0, the cubic polynomial on the left has 
the value 1, and when t = -1, it has the value -2K2, SO it always has a root in the 
interval (-1, 0). A negative root t does not correspond to a possible vertex angle 20, 
so we ignore it. 

When K = 3/3 the cubic equation becomes (2t - 1)2(7t + 1) = 0, which has a 
double root t = 1/2 (and a negative root). The root t = 1/2 corresponds to 0 = 7r/6, 
which makes the triangle equilateral. When K > 3v-, it can be shown that the cubic 
has two positive roots in the interval (0, 1). 

For example, when K = 3 + 2V/2 the equation becomes 

t - [(18 + 12)t2 - (2 + 3v/2)t 
- 

] 0. 

This cubic has a root at t = V2/2, corresponding to 20 = 7r/2, which gives an isosce- 
les right triangle. The quadratic factor has only one positive root t = 0.3093..., cor- 
responding to another isosceles triangle with a vertex angle of approximately 360. 

Example 9 (Rectangle and specified triangular shape). Suppose we want to find an 
isosceles triangle that is isoparametric to a given rectangle. If the isosceles triangle has 
base c and equal legs of length d, then d + c/2 = p/2 and s = ch/2, where h is the 
altitude of the triangle, given by 

h2=d2 
2 

=d -c d + . 

There is no loss in generality in assuming that both the rectangle and isosceles triangle 
have perimeter 2, which means that K = 1/s. Then d + c/2 = 1 and d - c/2 = 1 - c. 
Hence 4s = 2ch = 2c /1 -c, and (10) becomes 
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a 1 1 1 - 2c- -c, (11) 
2 2 

where 0 < c < 1. Figure 8 shows the graph of a, plotted as a function of c. The maxi- 
mal a occurs for c = 2/3 (when the triangle is equilateral) and is given by 

amax =- 1 9 - 4?3 = 0.2601.... 
26 

This upper bound on a also follows directly from (10) by noting that K > 3/-, the 
bench mark for all isosceles triangles. It places a constraint on the rectangle parame- 
ter a. 

a 

0.5------------------------- 

1/4- 

.5 .6 2 3 1 
3 

Figure 8. Graph of a as a function of c, where a is given by (11). 

For each value of a satisfying 0 < a < amax there are two values of c giving the 
same a, say cl < c2. This means that (with one exception corresponding to amax) there 
are two different isosceles triangles isoparametric to the rectangle. An example is given 
in Figure 3b, which shows a rectangle with base 6 and altitude 2, together with two 

isoparametric isosceles triangles. One of them with base 6, altitude 4, perimeter 16, 
and area 12, is formed from two Pythagorean 3 : 4 : 5 triangles. When these are scaled 
by the factor 1/8 we get an isosceles triangle with perimeter 2 and area 3/16, so 
c = 3/4 and a = 1/4. This gives the point (3/4, 1/4) on the graph in Figure 8. The line 
a = 1/4 intersects the graph at a second point (co, 1/4), where co = (1 + -13)/8 = 
0.5757 .... This corresponds to the second isosceles triangle in Figure 3b (scaled by a 
factor 8). 

Similarly, suppose that a rectangle with base b and altitude a is given, and that we 
seek an isoparametric right triangle with base c and altitude h. Again we assume that 
a < b and require the perimeter to be 2, so that a + b = 1 and c + h + c2+h2 = 2. 
The last equation yields h = 2(1 - c)/(2 - c), and equation (10) becomes 

1 1 

1 

4c(1 - c) 
a=----2 2 (12)- 

2 2 2-c 

The graph of (12), with a plotted as a function of c, resembles that in Figure 8. The 
maximal a occurs when c = h = 2 - v/2 (isosceles right triangle) and is given by 
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amax = 8 - 11 = 0.21995... 2 2 

Again, this is a constraint on the rectangle parameter a. For each a with 0 < a < 
amax there are two values of c giving rise to the same a; they correspond to two right 
triangles with their legs interchanged. 

For small a, the graphs of both (11) and (12) are almost linear with slope 1/2. There 
is a geometric reason for this. When a is very small the rectangle's base b is close to 1 
and its area is nearly equal to a. And for small c the triangle's altitude h is close to 1 
and its area is nearly c/2. Equating areas, we have a c/2 for small a and c. 

Each of the foregoing examples involves shapes described by a parameter that can 
be adjusted to make two contour ratios equal. This makes the shapes parametrically 
similar, so they can be scaled to become isoparametric. We turn next to special contours 
called rings that also depend on a single parameter. 

4. RING RATIOS. In this paper we consider the simplest type of ring, the region 
between two similar simple closed curves with similarity ratio X, where 0 <X < 1. 
An example is shown in Figure 9. We call X the size factor because it measures the 
size of the inner contour relative to the outer one. If the outer contour has perimeter 
p and area s, the inner contour has perimeter 4.p and area X2s. The inner and outer 
contours, being similar, have the same contour ratio 

P2 
4s 

perimeter p and area s perimeter Ap and area 
,2s 

Figure 9. A closed curve with perimeter p and area s used to form a ring with size factor k. 

The ring has its own contour ratio P2/(4S), where P = p + 4.p 
is the total perime- 

ter (the sum of the outer and inner perimeters) and S = s - 
.2s 

is its area (the differ- 
ence of the outer and inner areas). The contour ratio of the ring is related to the contour 
ratio of the inner and outer curves by the equation 

P2 p2(1 + k)2 p2(1 + ,) 1 + 
4S 4s(1 - k2) 4s(1 - 

X,) 

1 - K 

We call this the ring ratio and denote it by p to distinguish it from the contour ratio of 
the boundary curves. Thus we have 

1+X 
p = 

--, 
(13) 

where K is the contour ratio for each closed curve forming the ring. 
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Similar rings have the same ring ratio and the same size factor. Moreover, if two 

rings are formed from different boundary curves with the same contour ratio K, then 
from (13) we see that for the same size factor X they also have the same ring ratio. 

Equation (13) also shows that 

p > K, (14) 

and, in fact, the ring ratio is always greater than K by the factor 

1+X1 2X 
= 1+~ 

1 - h 1 -)• 

From (13) we find, as well, that X is uniquely determined by p and K: 

p - K 2K S 
- - =1- + . (15) 

p+K p+K 

Of course, isoparametric rings have the same ring ratio, but not conversely. In fact, 
when Theorem 1 is applied to rings we obtain: 

Corollary (Isoparametric Ring Theorem). Two rings can be scaled to become iso- 
parametric if and only if they have the same ring ratio. 

Figure 10 shows various rings arranged as they would appear in Figure 5. Rings 
of different shapes can have the same ring ratio. Rings joined with sloping lines in 

Figure 10 have the same size factor L. 

0- - -- - - - - - - --- - -1/3 - - - - - - - - - - - 12 - - - - - - - - - n) 3 ...... 

K 2 3 4 5 

0 H 2r 3n 4x 5n 6x 7m 8rE 9k 

0 40 0 1 1 --0-4------ 

- l----0l--- ------- 

4 i 16 2O 24 28 

Figure 10. Ring ratios of various rings. 

When X. tends to zero, the inner contour shrinks to a point, and (13) shows that the 

ring ratio p becomes the contour ratio K, which serves as a bench mark with respect to 
the parameter L. In particular, the ring ratio of every circular ring is greater than 7r and 
can be made arbitrarily close to 7r by allowing the hole to shrink to a point. In the same 

way, the ring ratio of every square ring is greater than 4 and can be made arbitrarily 
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close to 4 by allowing the inner square to shrink to a point. Furthermore, (13) implies 
that p -- oc when X -+ 1. 

5. ISOPARAMETRIC INEQUALITY FOR RINGS. Our next theorem is the ring 
version of the isoperimetric inequality (1). 

Theorem 2. Among all rings with given size factor X, the circular ring has the small- 
est ring ratio. Hence the ring ratio p of any ring with size factor X satisfies 

l+r 
p > r 

- , (16) l-X 

with equality only for a circular ring. 

Proof From (13) we infer that among all rings with a given size factor X the ring ratio 
is smallest when K is smallest, and this occurs when K = r and the ring is circular. The 
isoperimetric inequality (1) can be regarded as the limiting case of (16) when k -) 0. 

A general ring ratio p as defined by (13) is a function of K and ), which we can 
denote by pK(X). Inequality (16) is a universal inequality, p,(K() > p,(j), that holds 
for all rings with given size factor X. There are also local inequalities of the same 
type for specified rings. For example, K = 4 for a square ring, so the ring ratio of any 
ring with size factor X and contour ratio K > 4 satisfies PK,() > p4(W). And, for all 
rings formed from contours with given contour ratio K we also have the inequality 

pK(k) > K = p,(0). 
Inequality (16) tells us when it is possible to have a square ring and circular ring 

that are isoparametric. We can also see this visually by the display in Figure 10. The 
ring ratio of every square ring exceeds 4, but there are circular rings with ring ratio 
arbitrarily close to .r, so no square ring has ring ratio in the interval between 7r and 4. 
For that interval, the hole in the circular ring is too small to make a significant contri- 
bution to the total perimeter and area. This puts a constraint on the circular ring in the 
form of a lower bound on the size factor. If the size factor exceeds this lower bound, 
then for any square ring there is a circular ring with a large enough hole to match ring 
ratios. 

To describe this quantitatively, suppose that we are given a circular ring and that we 
ask for an isoparametric square ring. These rings necessarily have the same ring ratio 
p and, moreover, p > 4. We know from (15) that the size factor of a circular ring is 
given by 

2r 27r 4- r 
p1-- > 1- = 

p+w 4+w 4+w 

In other words, the required square ring exists only if the size factor of the circular ring 
is constrained by the inequality 

4-n 
S> 0.1202 .... (17) 

4+n 

This tells us that the hole in the circular ring should have radius slightly more than 
12% of the outer radius. Moreover, if X satisfies (17) then (as will be demonstrated 
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in section 6) there always exists a square ring isoparametric to the circular ring. The 
example in Figure 3b has k = 1/2, which easily satisfies (17). But X = 1/9 does not 
satisfy (17). 

When we treat the problem in its general form, a constraint of the form 

K2 
- 

K1 

K > (18) 
K2 + K1 

will appear, generalizing (17). If the rings have equal contour ratios, as do the sectorial 
ring and rectangular ring in Figure 4a, inequality (18) becomes X > 0, which puts no 
new constraint on k. This explains the difference between the examples in Figures 4a 
and 4b. 

6. ISOPARAMETRIC RINGS. We turn next to the following general problem mo- 
tivated by the example of the square ring and circular ring in section 5: 

Isoparametric ring problem. Given a ring with contour ratio K1 and size factor X1, 
under what conditions does there exist an isoparametric ring with given contour ra- 
tio K2 and some size factor X2 ? 

The key to this problem is equality of the ring ratios: 

1 + 
h1 

+ 12 
Pi 1 - I 

2 = 
=K2 2 

If pi # P2, there is no solution. Therefore, we seek conditions ensuring that 

1 + 1 1 + 
-x2 KI = K2 

. 
(19) 1 - 1 1 - X2 

The problem splits naturally into two cases: K, = K2 and K7 ' 
K2. 

Case 1: K• 
= K2. In this case, (19) holds if and only if k = X 2, in which event the 

rings can be scaled to become isoparametric. In other words, given any two contours 
with the same contour ratio (for example, a pentagram and the long narrow rectangle 
with the same contour ratio mentioned in section 2), we can scale the rectangle to get 
a similar rectangle isoparametric to the pentagram. This is always possible because 
of Theorem 1. Using these isoparametric contours as outer contours, we scale each 
of them by the same size factor A < 1 to obtain two isoparametric rings. There are 
infinitely many solutions because we can use any X < 1. Therefore, the case K1 = 

-K2 
presents no difficulties and can be regarded as trivial. 

Case 2: K1 : AK2. We label the contour ratios so that the smaller one is KI. Now we 
have K2 > Ki, and we want to satisfy (19). If 

•i 
is given, where 0 < ?1 < 1, and we 

solve (19) for A2, then we discover that 

XK(1 + A1) 
- K2(1 - (201) 

KI2 = K2(20) c1(1 + 
•11) 

+ K2(1 - •1) 

But we also need the inequality 0 <A 2 < 1. The denominator in (20) is always pos- 
itive, but the numerator is positive only if K1(1 + A1) > K2(1 - 1). This puts a con- 
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straint on •1, namely, 

K2 
- 

K1 
K2 > + K(21) 
K"2 +K1 

Therefore, if 
.1a 

satisfies the constraint (21), then we can always find X2 to satisfy (19) 
and we also have 0 < 12 < 1. On the other hand, if Xk2 is given and we solve (19) for 
k1, then we arrive at a companion result to (20), 

K2( + 4- 2) - KI(1 - )X2) 
=K2 2) (22) 

K2(1 
,2) - KI(1 

- h1) 

Again, we need 0 < 
•1 

< 1. The denominator in (22) is positive, and the numerator is 
positive only if K2(1 + X2) > K1(1 - k2), which translates to 

KI - K2 

K2 ? K1 

This is automatically satisfied because K1 - K2 < 0, so there is no constraint on z2. 
Therefore, for given X2 we can always find il to satisfy (19), and we get p- 

= P2. 
Moreover, from (14) we have pi > K2, or 

1 + •i 
K1 > K2, 

1 - h 

which, in turn, is equivalent to (21). This means that when we solve for ;I using (22) it 
automatically satisfies inequality (21). Incidentally, because of (15), the relations (22) 
and (20) can be expressed more simply in terms of the ring ratio p = pi = P2: 

P -K p - K2 

p + KI p + K2 

The foregoing results are summarized in the following theorem. 

Theorem 3. Two rings with contour ratios Kl and K2 (K2 > Kl) and size factors X1 and 
,2 can have the same ring ratio p if and only if 

K2 
- 

K1 >K2 - K (23) 
K2 + 

K! 

In this case, the size factor X2 is uniquely determined by the equation 

p 
- K2 

p2 = K(24) 
p + K2 

When K2 = 
KI, constraint (23) is automatically satisfied, and (24) gives X2 = 1i. 

This case is illustrated by the two sectorial rings and the rectangular ring shown in 
Figure 4a. All three rings have contour ratio 4 and equal size factor k. Infinitely many 
pairs of two sectorial rings or of a sectorial ring and a rectangular ring are obtained by 
allowing X to vary between 0 and 1. Another such example comes from the pentagram 
and the special rectangle mentioned in the foregoing proof of Case 1. 

As already noted, when the size factor k -- 0 the hole in a ring shrinks to a point. 
The restriction X > 0 is imposed on the size factor in order to produce an inner closed 
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curve similar to the outer one. But formula (13) that defines the ring ratio p is mean- 
ingful if 

X. 
= 0 and gives p = K in that case. Consequently, the case KI < K2 of The- 

orem 3 is applicable for the limiting value X2 = 0, in which event the constraint on 
1 in (23) becomes an equality. And conversely, if k = (K2 - Ki)/(K2 + KI), then the 

corresponding value of X2 is 0. Thus, for example, if K2 = 4 and K1 = 7r, a circular 
ring with ring ratio 4 and size factor XLi = (4 - 7)/(4 + r) can be scaled to become 
isoparametric to a square, a circular sector, or any other contour with contour ratio 4, 
each of which can be regarded as a limiting case of a ring with .2 = 0. The reader can 
verify that the following examples, which illustrate Theorem 3, also cover the corre- 
sponding limiting cases with ,2 = 0 if the constraint inequality in (23) is changed to 
an equality. 

Example 10 (Circular ring and regular polygonal ring). The problem for circular 
rings and square rings considered in section 5 can be generalized by replacing the 
square with any regular n-gon. Taking Ko = tr and K, = n 

tan(jr/n), 
we have Kn > Ko, 

so if a circular ring has size factor 0o satisfying 

n tan - -7 t 
n tan + 'r 

there is always an isoparametric regular n-gon ring. When n = 4 this is inequality 
(18). As n increases, the lower bound on 0o decreases. For example, 1When n = 4 the 
lower bound is about 0.1202, but when n = 12 it is about 0.0116. This indicates that 
the radius of the hole in the circular ring needs to be at least 12% of the outer radius to 
have an isoparametric square ring, but 1.2% suffices for a dodecagonal ring. There is 
more latitude in finding isoparametric dodecagonal rings because a dodecagon is more 
"circular" than a square. 

Example 11 (Pythagorean 3 : 4 : 5 triangular ring and square ring). Consider a 
triangular ring bounded by two similar Pythagorean 3 : 4 : 5 triangles. An example 
with outer triangle of edges 9, 12, and 15 and size factor 1/3 is depicted in Figure 11. 
All such rings have contour ratio K = 6 and ring ratio p > 6. An isoparametric square 
ring with inner side-length a and outer side-length b has contour ratio 4 and the same 
ring ratio p. Since 4 < 6, we label the square ring as ring 1 and the triangular ring 
as ring 2. Constraint (23) states that isoparametric square rings exist if they have size 
factor X2 > (6 - 4)/(6 + 4) = 1/5. The square ring in Figure 11 has,. 2 = 1/2, which 
suffices. The triangular ring has perimeter 48, so equality of total perimeters dictates 
that 48 = 12a, and we find that a = 4, b = 8. On the other hand, no square ring with 
size factor smaller than 1/5 is isoparametric to any 3 : 4 : 5 triangular ring. 

15 

128 

Figure 11. A Pythagorean 3 : 4 : 5 triangular ring and a square ring that are isoparametric. 
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Example 12 (Two regular polygonal rings). This example compares a ring formed 
by two regular n-gons with one formed by two regular m-gons, where n > m. The 
contour ratio for the n-gon is K, = n tan(7r/n), while that for the m-gon is Km = 

m tan(7r/m). Because Kn is a decreasing function of n, we have Kn < Km, and con- 
straint (23) becomes 

m tan(7r/m) - n tan(7r/n) 
m tan(/m) > n tan(/n)(25) m 

tan(r/m) 
+ n 

tan(r/n)' 

where ,n and ?m replace X1 and X2 in Theorem 3. From the polynomial approximation 
tan x - x + x3/3, valid for small x, we see that for large m and n the quotient on the 
right of (25) has the asymptotic value 

6 
2 1 

6 (m2 n2 

7. ISOPARAMETRIC RINGS WITH EQUAL INNER PERIMETERS AND 
EQUAL OUTER PERIMETERS. Two rings that are isoparametric have the same 
area and the same total perimeter. We can also construct such rings in which both 
inner perimeters are equal and both outer perimeters are equal. For example, take two 
different polygons that circumscribe the same circle and have the same perimeter. 
Then they are isoparametric and have the same contour ratio. Now scale each poly- 
gon by the same size factor X to produce two polygonal rings that are isoparametric. 
These rings have the additional property that both the inner perimeters are equal and 
the outer perimeters are equal. In fact, we have an entire family of such isoparametric 
polygonal rings, one ring for each X. This property will be used in section 8 to generate 
a remarkable family of incongruent solids satisfying the six properties (a) through (f) 
listed in section 1. 

More generally, take any two incongruent isoparametric contours bounded by 
simple closed curves. Scale each of them by the same size factor X to produce two 
incongruent isoparametric rings. Then these rings also have the additional property 
that both the inner perimeters are equal and the outer perimeters are equal. Figure 4a 
shows such an example. We leave it to the reader to verify that a necessary and suffi- 
cient condition for two isoparametric rings to have both the inner perimeters equal and 
the outer perimeters equal is that both the two outer contours be isoparametric and the 
two inner contours be isoparametric. 

8. INCONGRUENT SOLIDS HAVING PROPERTIES (a) THROUGH (f). This 
section describes several families of incongruent solids having the six properties (a) 
through (f) listed in the introduction. Each family is generated by isoparametric cir- 
cumscribing polygons of the type discussed in section 7. 

Start with a smooth solid of revolution whose cross sections by horizontal planes 
perpendicular to the rotation axis are circular rings. Take any polygonal ring of the type 
discussed in section 7 that circumscribes the base, and use a similar polygonal ring to 
circumscribe each parallel circular cross section above the base. The union of all these 
polygonal rings sweeps out a solid, an example of which is shown in Figure 12a. Re- 
peat the process, starting with a noncongruent isoparametric polygonal ring on the 
base to produce a noncongruent solid like the example in Figure 12b. In each hori- 
zontal cross section the two polygonal rings are isoparametric and circumscribe the 
same circle. Moreover, the two inner polygons have equal perimeters, as do the two 
outer polygons. Equality of cross-sectional areas implies equality of volumes of the 
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Figure 12. Incongruent solids sharing the six properties (a) through (f) of section 1. 

two solids, and, because the perimeters are equal, it is not difficult to prove that both 
the inner and outer lateral surface areas are equal. In each solid, the inner lateral sur- 
face is similar to the outer lateral surface by some size factor X.. These families share 
a seventh property, which states that for each solid the intermediate lateral surfaces 
corresponding to the same choice of size factor between 0 and X have equal areas. 

We can choose the polygonal rings in infinitely many ways, so for each given solid 
of revolution we have infinitely many pairs of incongruent solids satisfying proper- 
ties (a) through (f). And we can generate more such families by starting with different 
solids of revolution. In particular, when the solid of revolution is a hemisphere, these 
solids are related to Archimedean shells, which are discussed in [1]. In this case, two 
different Archimedean shells with isoparametric polygonal bases circumscribing con- 
gruent equators of two hemispheres provide examples of noncongruent solids sharing 
properties (a) through (f). 

9. FURTHER RESULTS. The investigations in this paper suggest a host of complex 
and interesting problems that we will pursue in a sequel. First, we can find isoparamet- 
ric rings such that the "hole" in each ring has a shape different from that of the outer 
contour. Although the results of this paper deal with holes similar to the outer contour, 
they can also be extended to treat isoparametric holes that are dissimilar. 

Second, most of the results can be extended to higher-dimensional space, which 
allows many ways to extend isoparametric problems. For example, in 3-space we 
can compare volumes and surface areas, or we can compare surface areas and lin- 
ear sizes such as edge-lengths and perimeters, or volumes and linear sizes. In higher- 
dimensional space we can compare n-dimensional and m-dimensional volumes and 
sizes. 

Third, instead of requiring that the perimeters and areas of two plane regions be 
equal, we could ask that they have prescribed ratios. This more general situation can 
be treated using the theorems of this paper. And there are similar extensions in higher- 
dimensional space. 
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