Turan’s Graph Theorem

Martin Aigner

One of the fundamental results in graph theory is the Theorem of Turan, proved
in 1941, which initiated extremal graph theory. (See the book [2] by Bollobas as a
standard reference.) Turdn’s theorem was rediscovered many times, and it is the
purpose of this article to discuss some of the most beautiful older and more recent
proofs.

Let us fix some notation. We consider graphs G on the vertex-set V =
{1,2,...,n} and edge-set E C (‘2’) If i and j are neighbors, then we write ij € E.
A k-liqgue in G is a complete subgraph of G with k vertices, denoted by K,.
Turén posed the following question: Suppose G does not contain a k-clique, how
many edges can G maximally have? Let us denote this number by t(n, k). We have
t(n,2) = 0, and t(n, k) is clearly an increasing function in k.

We readily obtain examples of such graphs by dividing V' into k — 1 pairwise
disjoint subsets, V=V, U--UV,_,, Vl=n,n=n, + - +n,_,, joining two
vertices if and only if they lie in distinct V,, V.. Let us denote the resulting graph by

K, ..., Figure 1 shows the graph K, , ;.
Figure 1.
The graph K,  ,  contains ¥, n;n; edges, and it is clear that we obtain a

maximal number of edges among these graphs if we divide the numbers n; as
evenly as possible, ie. [n; — nj| < 1 for all i, j. If, in particular, k — 1 divides n,
then we may choose n; = n/k — 1 for all i, obtaining
(k - 1) n? k-2 n?

2 J(k-1?% k-1 2
edges. Turdn’s theorem now states that this number is an upper bound for the
edge-number of any graph G on n vertices without k-cliques.

Theorem of Turan. Let G(V, E) be a graph on n vertices without a k-clique, then

|El < M. (1)
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More precisely, the theorem states that the graph K, , with|n, —nl<1
for i # j is the unique graph without a k-clique with the maximal number #(n, k)
of edges. These graphs are therefore called Turdn graphs T(n, k). In the following,
we will restrict ourselves to showing (1), but in some of the proofs we will
demonstrate that the graphs T(n, k) attain the maximum for arbitrary k. The
uniqueness is then supplied by an easy argument.

As a warm-up let us look at the first interesting case k = 3: A triangle-free
graph contains at most n?/4 edges, and the unique extremal graph is K, sans2 ifn
is even, respectively K,_y) /5 (a+1y,2 if 7 is odd. For this special case, proofs were
known before Turdns work. Before we look at two of them we need some more
notation.

The degree d; of vertex i is the number of edges incident with i. By counting in
two ways we obtain

n
Y d; =2|E| (2)
i=1
Aset A C V is called independent, if A contains no edges. As an example, all the
defining vertex-sets V; in the graph K,  , = are independent. The number
a(G) = max(|U|: U c V independent) is called the independence number of G.

k = 3: First Proof (Mantel 1906). Let ij € E. Since G contains no triangles we
have (d; — 1) +(d; — 1) <n — 2 (see Figure 2), hence d; +d; < n. Summing
over the edges we obtain

L (d,+d;) < nlE| (3)
ijEE
) J

di — 1 d; — 1

Figure 2.

The number d; clearly appears d; times in the sum of (3), and we conclude

n
Y (d;+d;)= Y d?<nlEl (4)
ijEE i=1
By the Cauchy-Schwarz inequality (Zx;y;)* < Tx?- Ly? applied to x; = d,, y, =

=1
we obtain by (2) and (4)

n n 2
wiElz Bt La) -asr, ®)
i=1 i=1
and thus |E| < n?/4. O

Let us demonstrate how the uniqueness of the extremal graph K, sans2 18
established for n even. (The case n odd is analogous.) If |E| = n?/4, then we must
have equality in (5). Now, we have equality in the Cauchy-Schwarz inequality iff
the vectors are multiples of each other. For the vector (d;) this means d; = d for
all i, and we conclude n?|E| = n’d® and hence d = n/2 because of |E| = n?/4.
But this immediately implies G =K, ,, ,, .
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k = 3: Second proof (Folklore). Let A be a largest independent set, | 4| = a. Since
G is triangle-free, we have d; < a for all i. The set B = V'\ A meets every edge of
G, whence we obtain |E| < ¥, zd; by counting in two ways. Setting |B| = 8 =
n — a we obtain by the inequality of the arithmetic-geometric mean

a+ B\: n?
|E| < Zd,.Sa-Bs( B) =—. 0
i€B 2 4

Now we turn to the proofs of the general case (1).
First proof (Turéan 1941). We use induction on n. (1) is trivially true for small n.
Let G be a graph on V = {1,..., n} without k-cliques with a maximal number of

edges. G certainly contains (k — 1)-cliques, since otherwise we could add edges.
Let A be a (k — 1)-clique, B = V\ 4, |B| =n — k + 1 (Figure 3).

|Al=k-1

IBl= n—k+1

Figure 3.

A contains ("; ‘) edges, and we now estimate the edge-number e, in B and the
edge-number e, p between 4 and B. By induction, we have e, < (k — 2/
2(k — DXn — k + 1)* Since G has no k-clique, every j € B is adjacent to at most
k — 2 vertices in A, and we obtain e, z < (k — 2Xn — k + 1). Altogether, this
yields

_ k-2 ,
IEls(k21)+m(n—k+1) +(k=2(n—k+1), (6)

which is precisely (k — 2/2(k — 1))n?. )

Second proof (Erdos 1970). This proof makes use of the structure of the Turdn
graphs. Let m € V' with d,, = max, _;_, d;,, We denote by S the neighbors of
m,|S|=d,, and set T = V'\ S. As G contains no k-clique, and m is adjacent to
all of S, we note that S contains no (k — 1)-clique. We now construct the following
graph H on V (see Figure 4). H corresponds to G on S and contains all edges
between S and T, but no edges within 7.

In other words, T is an independent set in H, and we conclude that H has
again no k-cliques. Let d; be the degree of j in H.If j € S, then we certainly have
d; = d; by the construction of H, and for j € T, we see d;=|S|=d, = d; by the
choice of m. We infer |E(H)| > |E|, and conclude that among all graphs with a
maximal number of edges, there must be one of the form of H. Applying induction
on §, we thus infer that among the graphs with a maximal number of edges there is

a graph K, which implies |E| < L, , ;n;n; and therefore (1). a

,,,,, ng_yo J
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Figure 4.

We note that this proof yields the full statement |E| < |[E(H)|, H = Turan graph.

Third proof (Moon-Moser 1962). This proof generalizes the idea of the first proof
for k = 3 and yields a quantitative estimate for the number of h-cliques. Let G be
any graph on V' =(1,...,n} and denote by %, the set of h-cliques in G with
|&,| = C,. As examples we have C, = n,C, = |E|,C; = number of triangles. For
A € %, we denote by d(A) the number of (h + 1)-cliques containing A. Counting
in two ways we obtain

Y d(A4) = (h+1)Cpyy(h21), @)

A€@,

in generalization of (2). For A € &,(h > 2) let us denote by AY,..., A the
(h — 1)-cliques contained in A.

Claim. For any graph G

Ch+1 > 1 ( hz Ch

Ch h* -1 Ch—l

Consider A € &,, B =V \ A,|B| =n — h. Among the vertices j € B there are

precisely d(A) vertices which are adjacent to all of A. Every other vertex in B is

adjacent to at most one (b — 1)-clique A“), thereby forming an h-clique (Figure 5).
We thus obtain (note — 1 because of A“) c A)

(h>2). (8)

- n

i (d(AP) -1 -d(A)) +d(A) <n—h,
i=1

(1)

d(A) -1-dA) d(A)

Figure 5.
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hence
h .
Y d(AD) = (h = 1)d(A) < n.
i=1
Summation over 4 € € yields
> Zd(A(')) - (h=1) ¥ d(A) <nC,. (9
AEE, i=1 A€,

As in (4) we conclude

h
r Xda")= ¥ d(B), (10)
Ac#,i=1 Be¥,_,
and by (7) we have
(h—=1) L d(4) = (K - 1)Cy,. (11)
A€E,

Substituting (10) and (11) into (9) gives us

¥ d(B)' <nC,+ (h* = 1)Cyyy. (12)
Be¥€,_,

By the Cauchy-Schwarz inequality applied to the vectors (d(B)), (1) of length
C, -, we finally obtain

1

NGy + (R =1)Cppy = L d(B)'z — ( T d(B)
BEFE, Ch

h-1

which is precisely (8).
In order to prove (1) we must find a relationship between (8) and the edge-num-
ber |E|. Let us set

1 2
E| = (1—3)%(66[@. (13)

Since the right-hand side of (13) is increasing in ¥, we must thus prove & < k — 1
for graphs without k-cliques.

Claim. We have
Cisi 9—h n h>1 14
> 1).
c, > o neihzD (14)

For n =1 we have C, =|E|,C, = n, and (14) is satisfied with equality by the
definigion of ¥. Using (8) and induction on & we infer

Cior 1 ( ,O—h+1n )= 1 (8-h)(h-1)n
= -1 h

——n

C, 0 h 2-1 0y
9-h n
9 h+1
as claimed.
Now, if G contains no k-clique, then C, = 0, and we infer ¢ < k — 1 from (14)
forh + 1=k a
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EXAMPLE. Consider (8) for A = 2. In this case, the inequality states that any
graph satisfies

—_——n

o, [EI[4IE| Bl 11— )
—_ = — - n%).
32 3 3n
We conclude that a graph G on an even number n of vertices with |E| = n?/4 + 1
not only contains one triangle (as it must by Turdn’s Theorem), but more than
n/3. If we add one edge to X, ,, , ,, then we obtain n/2 triangles, and it can be
easily shown that this holds for any graph with n2/4 + 1 edges.

So far, the proofs have employed counting techniques, the following three
proofs use entirely different ideas.

Fourth proof (Motzkin-Straus 1965). Let G be an arbitrary graphon V' = {1, ..., n}.
By » = w(G) we denote the number of vertices in a largest clique of G, w(G) is
called the clique-number. Now, we associate to each i € V' a variable x; (over R)
and consider the function f(x,,..., x,) = 2L;;c g x;x;.

Claim. We have

1 n
1- —=max|2 } xx;: L x,=1,x20 foralli]. (15)
w

jEeE i=1

Since f is continuous on a compact set, there exists x with f(x) = max. Among
all such vectors x, we choose one with a maximal number of x; = 0. Let C =
{i € V: x; > 0}. We show first that C is a clique. Suppose this is false with 1,2 € C
but 12 ¢ E. For any ¢t € R in the range —x, <t <x, the vector x, = (x; + ¢,
X, —t,X5,..., x,) satisfies the conditions in (15), and furthermore, f(x,) is a linear
function in ¢, since the product (x; + tXx, — t) does not appear in f(x,) because
of 12 & E. Since by the choice of x, f(x,) assumes the maximum at ¢ = 0 (i.e. in
the interior) we conclude that f(x,) is, in fact, constant for all ¢. For t = x,, % =
(x; +x,,0, x5,..., x,), we therefore obtain f(¥) = f(x), contradicting the choice
of x.

We can thus assume f(x) = max with C = {i: x; > 0} a clique. Since

1=(x;+... +)c,,)2 =23 x;x; + ) x}
jel ieC
we conclude that f(x) is maximal if and only if ¥;. x? is minimal. Under the
assumption X, c ox; = 1 this is clearly the case for x; = 1/|C|, and we obtain
1 1
f(x)=1- Y xt=1-—<1-—
ieC ICl w
with equality for |C| = w, which is what we wanted to prove.
Inequality (1) is now an immediate consequence. Setting x, = 1/n, we have
f(x) = 2|E|/n? and therefore

2|E| ) 1 k-2
Bl -y =y
since G contains no k-clique. O

Fifth proof (Li-Li 1981, Kleitman-Lovasz 1994). The basis for this proof is again an
algebraic structure. To every vertex i € V' of the graph G we again associate a
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variable x; and consider the polynomial
p(xys..05x,) = Z (x; —x]). (16)
i<j,ij¢E
The fundamental observation on the polynomial p, is the following obvious fact:
w(G) < k — 1 < the identification x; = -+ =x, ofany k
variables in p yields the zero-polynomial. (17)

Let P(n, k) be the set of real polynomials in n variables which satisfy the
right-hand side of (17). P(n, k) is clearly an ideal in R[x,,..., x,]. Let #(n, k) be
the following family of graphs on V' = (1,...,n}: H is in #(n, k) if and only if the
vertex-set V' can be partitioned into k — 1 disjoint independent subsets (in the
language of graph theory, this means H is (k — 1)-partite or (k — 1)-colorable). In
particular, all our graphs K, are in &# and therefore all Turdn graphs. By

..... Ne_q

our remarks on the graphs K,, """ a,., We can therefore state
2
n
|E(H)|S %forallHeZ’(n,k) (18)

By P(n, k) we denote the ideal in R[x,, ..., x,] generated by {p,: H € #(n, k).
Since we have w(H) < k — 1 for any such graph, we infer P(n, k) C P(n, k).

Claim. We have P(n, k) = P(n, k).
Before proving this claim, let us see how Turén’s theorem follows from it. Let G
be a graph with (G) < k — 1. Then p; € P(n, k) = P(n, k), i.c.

PG = Zq.PH, with H; € #(n, k), q; € R[x,,..., x,]. (19)
i=1

By (16), p; is a homogeneous polynomial of degree (p;) = (;) — |E(G)), and
analogously degree (py) = (") — |E(H))|. We thus infer from (19), ('2') - |E(G)| =

— |E(H,)| for some i, and therefore (1) from (18).

Let f € P(n, k). To prove f € P(n, k) we use induction on n. For n = 2 there
is nothing to prove. For a subset S € {1,...,n — 1} we denote by f; the polyno-
mial which results from f by identifying x, = x; forall i € S. Clearly, f; € P(n, k)
and hence f; € P(n, k) for S # & by induction (note P(n — 1, k) C P(n, k)). Now
consider the polynomial

g= L (-1 (20)
scql,..., n-1}

Cancelling terms we see that every identification x, =x; (i=1,...,n—1)in g

yields the zero-polynomial. We conclude that (x;, — x,)...(x,_; — x,) divides g,
hence

8= (xl Xy "'(xn—l _xn)h' (21)

Since f; € P(n, k) for all S, we have g € P(n, k) by (20), whence h becomes by

(21) the zero-polynomial whenever we identify k of the variables x,,..., x,_, in A.

Expandmg h with respect to x,, we see that every coefficient polynomial p of a
power x| lies in P(n — 1,k) and hence in P(n — 1, k) by induction. We conclude
that the polynomial g is a sum of expressions

Q(xl - X, "'(xn—l _xn)pﬁ’ (22)
with H €#(n — 1,k),q € R[x,,...,x,].
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Adding the vertex n to each such H without edges from n to H, we obtain
(x; = x,)...(x,_; —x,)pg = py with H € #(n, k). This now implies g € P(n, k)
by (22), and thus

X (-1 fs € P(n,k),

S+
as claimed. O

REMARK. We note that this proof again yields the full implication of (1), that the
Turén graphs attain the maximal number of edges, and it can be shown that the
polynomials p,, H = Turé4n graph, already generate the ideal P(n, k).

Sixth proof (Alon-Spencer 1992). Our last and perhaps most elegant proof uses
ideas from probability theory. Let G be an arbitrary graph on V' = {1,..., n}.

Claim. We have
n

G .
o( )Z,».Zln-di (23)
We choose with equal probability 1/n! a permutation 7, 7,,...,m, of V' and

construct the following set C. We put m; into C if and only if ; is adjacent to all
m; (j <i). By definition C is a clique in G. Let X = |C| be the corresponding
random variable. We have X = L"_, X,, where X is the indicator random variable
of i, i.e. X; =1 or 0 depending on i € C or teSC Now we note i € C with
respect to the permutation (7, ..., m,) iff i appears before all n — 1 — d; non-
neighbors of i, or in other words, if i is the first among i and its non-neighbors.
We conclude EX; = 1/n — d; for the expectation and hence

n n 1
E(Cl) =EX= Y EX,= ¥ ——
i=1 i=1 "4

by the linearity of expectation. Consequently, there must be a clique C with at
least E(JC|) vertices, and this is just our claim (23).
To deduce Turdn’s theorem from (23) we use the Cauchy-Schwarz inequality in

the form
= (ZymV5T) < Do !

with x; = n — d,. Indeed, (23) and (2) imply

n? n?
G) > = . 2
w( ) in_d. n2—2|E| (4)
i=1 ‘
If G has no k-clique, then »(G) < k — 1 and (24) reduces precisely to (1). m|

REMARK. Inequality (23) was first proved in Wei [10] by successively removing
vertices similar to the second proof.
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The fact is, although DNA testing may be as foolproof as fingerprint-
ing, it doesn’t cause excitement. It’s difficult to respond to. It’s like
advanced math, brilliant but boring, astonishing but passionless. It
made everyone eager to move on to the next phase of the trial, which
consisted of autopsy pictures. ..

From “If the Gloves Fit” by Dominick Dunne, in Vanity Fair/August 1995.

Submitted by J. Foster
Weber State University

Answer to Picture Puzzle
(p. 797)

A. S. Bessicovitch.
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