JAMES TANTON

A Dozen Areal Maneuvers

have put together a collection of twelve curiosities all

to do with areas, and, in some cases, the perimeters
that contain them. The questions about slicing pie and cake
are technically ones about volumes, but we’ll assume here all
desserts are of uniform thickness so they may be reduced solely
to analysis of area! Many of these results are classic (one even
known by Archimedes) but hopefully the few extra twists I've
put in shine these gems in a new and interesting light. I hope
you have as much fun thinking about these as I did.

Your dozenal correspondent is at it again! This time I

1. Plucky Perimeters

What curious property do the following figures share?
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2. Irregular Pizza

Much to their dismay, Sam and Maggie receive from their
local pizza parlor an irregularly shaped pizza. Both being
mathematicians, they realize the Intermediate Value Theo-
rem assures them the existence of a straight line cut that
divides the pizza exactly in half: By sliding the knife across
the pizza, first from a position with all the area of the pizza
sitting to the right of the knife, to one with all the area
sitting to the left, there must be some intermediate posi-
tion where the area is split precisely in two.
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[s there necessarily a straight line cut that not only divides
the area of the pizza precisely in half but also the pizza crust
(that is, the perimeter of the figure) in half as well?

3. Square Pie

Cutting a wedge emanating from the
center, Beverly wants to take precisely
one-seventh of a square pie. She
doesn’t like crust. Where should she
position her cut so as to receive the
minimal length of perimeter?

4. Hexagonal Pie

Beverly cut eighteen slices into a hexagonal pie. She missed
the center of the pie but managed to ensure that each wedge-
shaped piece possessed the same length of perimeter.




Prove that the total area of the shaded regions (every sec-
ond piece) equals the total area of the unshaded pieces, and
that this is always the case no matter where the “center”
point P is placed.

5. Cake Sharing

Is it possible to share a cake among three people so that
cach person honestly believes she is receiving more than one-
third of the cake?

6. Creating Area

Who said area is always preserved? Take an 8 X 8 inch square
piece of paper and subdivide it as shown on the left.
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Now rearrange the pieces to form a 5 X 13 rectangle as
shown on the right. (Try it!) This transforms 64 square inches
of paper into 65 square inches.

What’s going on?

1. Capturing Area

It is always possible to capture any given shape within a
rectangular box. Simply slide in four straight lines, one from
each direction of a compass, north, south, east and west,
until they each just touch the given region.

[s it always possible to capture a region within a perfectly
square box?

8. Rational Replication

Four squares stack together to form a larger copy of them-
selves, as do four equilateral triangles, and four bent
trominoes. The larger figures are scaled versions of the origi-
nal tiles, each with rational scaling factor 2.

Is there any figure in the plane that replicates itself with
fewer than four copies to produce a larger copy still with
rational scale factor?

9. Bicycle Tracks

Abicycle of length r (measured as the distance between the
points of contact of the two wheels with the ground) moves
along a closed convex loop.

=

What is the area between the two tracks it leaves?

10. Spherical Bread

A spherical loaf of bread, n units in diameter, is sliced into
n pieces of equal thickness.

Which piece has the most crust?

11. Circles on Spheres

Which is greater: The area of a circle of radius » drawn on a
g
plane, or the surface area of a circle of “radius” » drawn on

By doing math
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a sphere? (Here “radius” is the length of the straight line
segment passing through the interior of the sphere con-
necting the center of the circle to its perimeter.)

12. Soap Film on Cubical Frames

A classic problem asks what system of roads connects four
houses situated on the vertices of a square (one mile wide)
using minimal total road length. The answer, surprisingly,
is the wing-shaped design below. It uses 1 + V3 =~ 2.732
miles of road.

My aim here is to take this problem up a dimension.
What design of surfaces, meeting somewhere in the center,
connects the skeleton of a cube (namely its 12 edges and 8
vertices) with minimal total surtace area?

This problem is very difficult to analyze mathematically,
but with the aid of soap solution the answer can be deter-
mined experimentally. Using pliable wire make a cubical
frame and dip it into soap solution. The surface tension of
the film acts to minimize surface area and so careful dip-
ping (making sure the film is attached to every edge of the
cube and meets in the center) will result in the desired solu-
tion. Try it! What’s the answer?

Answers, Comments, and Further Questions

1. Their perimeters equal their areas! Of course this is just an
artifact of scale. With the appropriate enlargement or reduc-
tion it is theoretically possible to scale any figure so that its
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perimeter equals its area. (Challenge: Use a photocopier to
produce a reduced copy of this very page with perimeter equal
to area, measured in inches and square inches.)

Taking it Further Find a non-square rectangle with integer
side lengths whose perimeter equals its area. Are there any
more such rectangles? There is only one other right triangle
with integer side lengths having this property. What is it?

Taking it Even Further Is there a rectangular box whose
volume equals both its surface arca and the total sum of its
edge lengths?

2. Sam and Maggie’s argument using the Intermediate Value
Theorem shows for any given angle 6 there is a unique directed
line tilted at that angle dividing the area of the pizza pre-
cisely in half. (We regard a line at angle 6 and a line at angle
0 + 180° as distinct lines pointing in opposite directions.) Let’s
measure how successful these lines are in cutting the perim-
eter in half as well. For each angle 0 set f(8) to be the total
length of the crust to the right of the line minus the length of
the crust to its left. Our goal is to find a line with f(8)=0.

Notice that f(0°), whatever its value, equals —f(180).
These angles represent the same line but pointing in oppo-
site directions. Since f varies continuously with the angle 8,
the Intermediate Value Theorem tells us there must indeed
be an angle 6 with f(6)=0. (The continuity of fis subtle.)
This does the trick.

Taking it Further Prove there is always a (very long) single
straight line cut that simultaneously slices any fwo irregu-
larly shaped pizzas in half, no matter where they are placed
on the table top. Can one always simultaneously divide three
pizzas in half in a single straight cut?

3. It does not matter where she places her cut: All wedges
from a square pie possess the same portion of perimeter!
Pieces of pie are either triangular or a union of two tri-
angles. As all these triangles have the same height, the area
of any wedge is directly proportional to the length of pe-
rimeter it contains. Thus one-seventh of the area always
means one-seventh of the perimeter. Note there is nothing
special about the fraction “one-seventh” nor the square
shape. The same phenomenon occurs when taking slices
from the center of any regular polygon.

4. Assume the hexagon has unit side length. The height of
the hexagon (shortest diameter) is thus v/3. By the regularity
of the situation, if A% of the top edge length belongs to shaded
wedges, (1-~4)% of the opposite edge length belongs to them
too. In fact, the portion of edge belonging to shaded regions
alternates between 1% and (1~ 4)% around the figure.
Changing track for the moment: Let ¢, b, and ¢ be the
distances to every other side of the hexagon. See the figure
below. View these as line segments in the interior of a large
equilateral triangle. A result from geometry says that the
sum of these lengths equals the height of the triangle. Thus
a + b + ¢ = 3J3/2, no matter where P happens to lie. (1o
establish this, first consider the case where P lies on the base



edge of the triangle. The result is clear from drawing a re-
flected image of the triangle across this edge. To establish
the general case, raise the base of the triangle so that P lies
on the base edge of a sub-equilateral triangle.)

Regarding the shaded pieces encompassing a corner of
the hexagon as a union of two triangles, we have that the
total area of the shaded triangles touching the top and bot-
tom edges is Yeia + Y(l - M3 - a). Similarly for the
remaining two pairs of edges. Summing and simplifying
thus gives the total area of the shaded regions to be:

él((z+b+c)+%(l—l)(?)x/g—a—b—c)
1.3J3 1 343

= A (-
2 2 2 2
_ 138
2 2

which is precisely half the area of the hexagon.

Taking it Further Every third region of the eighteen slices
is selected. Prove these sum to one-third of the area of the
hexagon. Suppose instead Beverly makes just 12 cuts. Prove
every second piece, and then every fourth piece, account
for precisely one-half and one-quarter respectively of the
pie. Can you extend these results to other numbers of cuts?
To other regular polygons?

9. If everyone possesses a different estimation of “one-
third,” this seemingly impossible task is then indeed pos-
sible! Here’s one scheme: First have each person score a
straight line across the cake, in parallel, at a position she
honestly believes cuts off one-third of the cake from the
left. Then make a cut anywhere between the two leftmost
lines and hand that piece to the person who marked the
line closest to the end. This person is receiving more than
one-third of the cake in their estimation, and the two re-
maining folks believe more than two-thirds remains.

cut

Have these two folks then each mark a line dividing the
remaining portion precisely in half'in their estimation. Cut-
ting the cake between these two lines lands each person
with more than half of more than two-thirds of the cake!
This does the trick.

Taking it Further Devise a cake cutting scheme between
three people that not only assures everyone at least one-
third of the cake in his estimation, but also the biggest (or
tied for biggest) piece ever cut!

6. If you look carefully at the rectangular arrangement of
the 8 X 8 square you will notice that the pieces don’t quite
line up correctly. We usually deem such discrepancies as
due to imprecise cutting, but in this case the errors are in-
herent to the problem. There is a gap in the middle of the
rectangle that accounts for the missing unit area.

Taking it Further Take any three consecutive integers F,_,
F,, F, . from the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,

[
n’

| A student wisens
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21, 34, 55,... (defined recursively by Fy = F, = 1, F,,| =
F,+ F,_; for n = 2). Show how to transform an F, X F, unit
square into an F, ., X F,_; rectangle. Have you again lost
track of a square inch of paper?

1. Every closed and bounded planar region can indeed be
captured within a square box! For each angle 6 we can cer-
tainly find a rectangular box tilted at that angle that cap-
tures the region.

a(®)

b(6)

Let a(f) and 5(0) be the side lengths of that box and set
f0) = a©) -bB). As f(O+90°) = —f(0), the Intermediate
Value Theorem guarantees an intermediate value 8% with
f(@%) = 0. The rectangle at this angle is a square.

Taking it Further Can every closed, bounded planar re-
gion be captured by an equilateral triangle? By a regular
pentagon?

8. Suppose lengths scale by a factor k. Then area scales as
k2. Suppose there is a figure in the plane that replicates
itself with just two copies. Then
2 X Area (small figure) = Area (large figure)
= k% X Area(small figure).

Necessarily k = \/—2' , an irrational number. Similarly, we must
havek = \/§ for any three-self replicating tile. We need four
(or nine, sixteen, ...) tiles to produce a rational scale factor.

Taking it Further Find examples of self-replicating figures
that replicate with just two and three tiles (necessarily with
irrational scale).

Note If we extend our notion of “planar figure” to include
fractal figures (that is, objects whose “area” scales by a fac-
tor k¢ with d # 2) then it is possible to find self-replicating
objects that produce rational scaled copies of themselves
with fewer than four copies. The Sierpinski triangle is an
example of such an object, replicating itself with just three
copies with scale factor k= 2. (Hered = In 3/In 2 = 1.585.)
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9. Note that because the back wheel is fixed in its frame,
the tangent line to the inner curve (the back wheel track)
always intercepts the front track a fixed distance 7 along
the direction of motion. (See [5].)

First consider the case where the back wheel travels along
the edges of a convex polygon, turning sharply at each cor-
ner (in fact, pivoting about the point of contact.) The front
wheel travels in straight lines as the back wheel follows the
edges, and sweeps out sectors of a circle of radius r at each
corner. These sectors fit together to form a complete circle
of radius 7, and hence the area between the two tracks in
this polygonal case is 772,

Any curve can be approximated by a polygonal curve.
By a limit argument we thus deduce the area between bi-
cycle tracks is always 72,

Taking it Further What can you
say about the area between two
bicycle tracks along non-convex
curves? (See [4].) If a bicycle fol-
lows only a portion of a curve,
turning a total angle @ in the
process, what can you say about
the area between the two curve segments?

10. A sphere (of radius R) is obtained by revolving the graph

f(x)=VR* —x*

about the x-axis. From calculus, the surface area of a seg-
ment between positions x = g and x = a + & is given by:

j:+h an(x)\/]_:f'(T)de _ J-:Jrh 9 Rdx

=27 Rh

Thus all slices of thickness # have the same surface area. In
terms of our spherical loaf of bread this means all slices
have preciscly the same area of crust! (This result was known
to Archimedes.)

11. Suppose the sphere has
radius R. Let h be the dis-
tance indicated. By the
Pythagorean theorem (twice),
r2—h?=R?-(R-h)2 Con-
sequently, 2Rh = 72. Now by
question 10 the surface area
of this slice of sphere of

Continued on p. 34.



Also solved by Georgi D. Gospodinov (student), Mark A. Mills,
Robert Feinglass (student), Nigel Salts, Mark Shattuck (graduate stu-
dent), Anna Sortland (student), Michael Woltermann, and the pro-
poser.

Problem 130. Triangles with /4 = 3/B

Determine an infinite set of non-similar triangles ABC
of integer sides a, b, ¢ such that ZA =3/B.

The solutions by Donald |. Moore, Wichita KS and the Problem
Editor were essentially the same and constitute all possible solu-
tions. Since a = 2Rsin A etc., a/b = 4cos’ B — 1, ¢/b =
4(cos B)(2cos? B — 1) so that ¢ = (a — b)y/1 + a/b. Thus,
1+a/b=(r/s)? where (r,s) = 1. Then a = (r? — s2b)/s?
and ¢ = (r?—2s?)rb/s%. To be integers, b = ns® and then
a = ns(r? — %), ¢ = nr(r? — 2s%). In order that a, b, ¢
be sides of a triangle, we must have 2 > r/s > V2. One
simple example is ¢ = 10, b = 8, and ¢ = 3. Another set
of solutions is gotten by changing n and s to —n and —s,
giving a = ns(r? — s%), ¢ = nr(2s? — r?), b = ns® where
now we must have \,/5 > r/.s > 1.

Also solved by Mark Shattuck (graduate student), and Michael
Woltermann.

Editorial Note. After this issuc the Problem Section will
be back on schedule. There was no Feb. 2000 Problem
Section since I was hospitalized for 95 days. I am grateful
to the guest editors, Titu Andreescu and Kiran Kedlaya,
for the April section. Since in that section there were
many solvers who were not acknowledged (the solutions
had accumulated in my school mail box), I am acknowl-
edging them now:

S-32. The Problem Editor (by vectors), and the proposers.

S-34. Cabral Balreira, Elienne Cupuis, Daniel Hermann, Mica
James, Natasha Keith, Koopa T.L. Koo, Martin Mak, Jason E. Parker,
Tim Pope, Westmount College Problem Solving Group, and the pro-
poser.

Problem 123. Amritpreet Singh, David Vella, Westmount College
Problem Solving Group, and the proposer.

Problem 124. George Delgado, Jason E. Parker, Westmount College
Problem Solving Group, Michael Woltermann, and the proposer.

Problem 125. Angelo State Problem Group, GVSU Problem Group,
Micah James, Tim Pope, Ben Schmidt, Randy K. Schwartz, Skid-
more College Problem Group, Anna Sortland, SUNY Fredonia Student
Group, Westmount College Problem Solving Group, Michael Wolter-
mann, and. the proposer.

Problem 126. Angelo State Problem Group, Michael Woltermann,
and the proposer.

Continued from p. 30

thickness A is 2zRh = mr?. This is the same area as the
planar circle!

Taking it Further What is the area between two bicycle
tracks on a sphere?

12. In analogy to the two-dimen-
sional problem, the soap solution
forms a small square of film hov-
ering in the center of the cube.

What happens if you gently tap
this structure?

Taking it Further Notice that four edges of film meet at
every interior vertex and that any two films meeting at an
edge do so at an angle of 120°. In 1976 F. J. Almgren and J.
. Taylor proved that all such soap film structures behave
this way. With this in mind would you care to predict what
results when the frame of a tetrahedron or a triangular prism
1s dipped in soap solution?

Acknowledgments and Further Reading

Many of these puzzles appear in my forthcoming math-
ematical activities book (see [5]) along with further analy-
sis connecting them to other branches of mathematics.
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Problem 4, in some sense, is a discrete version of a prob-
lem that appears in J. Konhauser, D. Velleman and S.
Wagon's truly wonderful text [2] (problem 63). (How does
the novel solution presented there apply to our situa-
tion?) Problem 11 is also from this text. Areas swept out
by tangent line segments are examined in M.
Mnatsakanian’s delightful piece [4] (though bicycles are
never mentioned). Combining problems 9 and 11 leads
to interesting thoughts about bicycles on spheres. The
sharing of cake is a classic topic in mathematics. For a
very accessible account of this see [1], chapter 13. Other
intriguing soap film questions and experiments can be
found in F. Morgan, E. Melnick and R. Nicholson’s fabu-
lous article [3]. B

1. COMAP Inc., For All Practical Purposes: Introduction to Contempo-
rary Mathematics, 4th ed., W. H. Freeman & Co., New York, 1997.

2. J. Konhauser, D. Velleman, S. Wagon, Which Way did the Bicycle
Go? and other Intriguing Mathematical Mysteries, Dolciani Math-
ematical Expositions No. 18, The Mathematical Association
of America, Washington, DC, 1996.

3. F. Morgan, E. R. Melnick, R. Nicholson, “The soap-bubble-
geomelry contest,” The Mathematics Teacher, 90, No. 9 (1997),
pp. 746-749.

4. M. Mnatsakanian, “Annular rings of equal areas,” Math Hori-
zons, November 1997, pp. 5-8.

5. J. S. Tanton, “A half-dozen mathematical activities to try with
friends,” Math Horizons, September 1999, pp. 26-31.






