TOM M. APOSTOL

What Is the Most Surprising

The first installment of this article described how one
could conjecture the prime number theorem by exam-
ining a table of primes. The prime number theorem
states that
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Here 7(z) is the number of primes < x, and log z is the
natural logarithm of z. Gauss and Legendre conjectured
this theorem after studying tables of prime numbers, but
neither made any progress toward obtaining a proof.
The first positive step was made by Chebyshev in 1849
when he showed that if the ratio 7(z)(log z)/x has a limit
as £ — oo, then this limit must equal 1.

The next significant step was made by G. F. B. Rie-
mann in 1859. He attacked the problem with a new
method, using a formula that Euler had discovered
more than a century earlier in 1737 relating prime num-
bers and the infinite series

Every beginning calculus student learns about this series
in studying convergence tests. The series converges for
s > 1 and diverges for s < 1. Euler discovered that
this series could also be expressed as an infinite product
extended over all the primes as follows:
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also written more briefly as
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where the product runs through all the primes p. Dis-
playing the first three factors corresponding to the
primes 2, 3, and 5 we have
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It is not hard to see why Euler’s formula is true. The
key is our old friend the geometric series:
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which is also familiar to every freshman. The series con-
verges if |2] < 1. If we expand each factor in the infinite
product as a geometric series, taking z = pl—,,, we get
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When you multiply all these series together and arrange
the terms according to increasing denominators you end
up with 37 | - because of the fundamental theorem of
arithmetic, which states that every integer greater than
1 can be factored in one and only one way as a product
of prime powers, apart from the order of the factors.
(There are some delicate questions of convergence here
because we are multiplying together an infinite number
of infinite series. Euler ignored these questions but the
steps can be justified.)

Euler didn’t do much with this formula, but Rie-
mann realized that it had possibilities because the prod-
uct on the right involves only primes. Riemann’s main
contribution was to replace s by a complex variable and
to connect properties of the complex-valued function
¢(s) to the distribution of prime numbers. Because he
did so much with the function ¢(s) it is now called the
Riemann zeta function.

Riemann came close to proving that w(z)(logz)/x
approaches 1 as a limit, but didn’t succeed. In fact, in
his lifetime not enough was known about the theory of
functions of a complex variable to successfully carry out
his ideas.

Thirty years later the necessary analytic tools were at
hand, and in 1896 the French mathematician Jacques-
Salomon Hadamard and the Belgian mathematician
Charles-Jean de la Vallée Poussin independently and
almost simultaneously succeeded in proving that
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This remarkable accomplishment was one of the crown-
ing achievements of a new branch of mathematics called
analytic number theory, where methods of calculus and
analysis are brought to bear on problems concerning the
integers.



Result in Mathematics? Part II

Some applications of the prime number theorem

In the first installment of this article we asked: How
does the nth prime p,, grow as a function of n? The
prime number theorem enables us to answer this ques-
tion. Start with the prime number theorem as stated in
(1) and take logarithms of both sides of the equation.
We obtain

lim {log7(z) + loglogz — logz} = 0,
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Since log £ — oo the last factor multiplying log z must
tend to 0, so

lim <log7r(z) + loglog = - 1) =0.
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The quotient 081082 tends to 0, hence

log =
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Multiply this relation by (1), cancel logz, and we get
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Now let = p,, so that 7(z) = n. Then the last formula
becomes
lim nlogn _
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In other words, the nth prime p,, is asymptotically equal
to nlogn as n — co. This is the answer to our original
question. For large n the nith prime grows like n log n.
It can be shown that this also implies the prime num-
ber theorem, so it is logically equivalent to the prime
number theorem.

As a consequence we see that the sum of the recip-
rocals of the primes ) pin diverges because its terms

are asymptotic to 1/(nlogn), and ¥ ;- is a well
known divergent series. However, you don't need the
full power of the prime number theorem to prove this
result, which was known to Euler. There are many di-
rect proofs that the sum Z% diverges. The proof in

the next section also displays the order of growth of its

partial sums. This proof reveals the interplay between
calculus and number theory, and gives you a glimpse
into the methods of analytic number theory.

The partial sums of the series of
reciprocals of the primes

Let S, denote the sum of the reciprocals of the first n

primes:
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We'll show that S, — oo as n — oo. The asymptotic
value of S, for large n is known to be log(logn) (see
Apostol, Introduction to Analytic Number Theory, Theorem
4.12.) By contrast, the asymptotic value of the nth par-
tial sum of the harmonic series is logn. This is easily
deduced from the inequalities
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log(n + 1) < - < 1+logn,
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which follow by comparing the area of a hyperbolic seg-
ment with inscribed and circumscribed rectangles.
Using only a few basic ideas from elementary calcu-
lus we can show that

S, > log(logn) — 1. (2)

Although this is not as strong as saying that S, is asymp-
totic to log(logn), it does show that S, — oo as n — oo.
The proof requires a knowledge of the sum of the geo-

metric series
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valid for |z| < 1, and the inequalities
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—log(l—z)<a+2® f0<z<i. (5)

Inequality (5) follows easily from the power series ex-
pansion for —log(1l —z), obtained by integrating (3), but
it can also be deduced at once from the equation

|
—log(l — x) = / dt.
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Just estimate the integrand. Simply note that if 0 < ¢ <
3. then 0 < 2t <1s01—2¢t>0and t(1—2¢t) > 0. Hence
1+t—2t2>1, or (1—¢t)(1+2t) > 1. This gives us the
inequality

1

= <1+ 2%

Integrating this last inequality from 0 to z gives us in-
equality (5) if 0 <z < 1.

The proof also uses the fundamental theorem of
arithmetic, which states that every positive integer can
be factored uniquely (apart from order) as a product of
prime powers, and the simple inequality p, > n, which
follows from the fact that not all integers are primes.
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Very little is known of the life of Euclid,
who flourished around 300 B.c. and whose
13-volume Elements distills most of the
mathematical wisdon of his day. Gauss
deduced the fundamental theorem of
arithmetic from Proposition 30 in Book 7.
Proposition 20 in Book 9 of the Elements
states that there are infinitely many
primes. Many proofs of this theorem exist,
but Euclid’s original proof is the most
elegant. He founded a school at
Alexandria, in Egypt, and was a personal
tutor to King Ptolemy I. When asked by
Ptolemy if there was no shorter way to
learn geometry than reading all 13 books,
Euclid is said to have replied, “There is no
royal road to geometry.”

Courtesy of The Huntington Library, San Marino, California.

To prove inequality (2) we consider the finite prod-

uct
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This is like the Euler product for the Riemann zeta func-
tion, but it involves only a finite number of factors. Each
factor in the product P(n) can be expressed as a geo-
metric series




and hence
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This is a product of a finite number of absolutely con-
vergent series. When the series are multiplied together
and the terms are rearranged according to increasing
denominators we find

P(n) = Z I.l
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where, because of the fundamental theorem of arith-
metic,

T, = {k: all prime factors of k are < p,}.

Now T, includes all positive integers < p, because if
k < p, then every prime factor of k is < p,, . Hence

E Z > log p, > logn.
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We’'ll use this later. Now let’s take the logarithm of the
product defining P(n). We get
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At this stage we use the inequality in (5) with 2 = 1/p;
and sum on k to obtain

log P(n) = )n:—log(l - L)
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In other words, log P(n) < S, + 1, so

Sp > log P(n) — 1.

But P(n) > logn, so S, > log(logn) — 1.

Elementary proof of the prime number theorem

The first proof of the prime number theorem given by
Hadamard and de la Vallée Poussin was simplified by
Landau and others in the early part of the 20th century,
and new proofs were later discovered, all using sophis-
ticated methods of real and complex analysis. In 1949
Atle Selberg and Paul Erdés discovered an elementary
proof that makes no use of complex function theory.
And in 1956 one of my PhD students, Basil Gordon,
showed that you could also deduce the prime number
theorem in an elementary way from Stirling’s formula

for n!l. If you take the logarithm of Stirling’s inequality
you get the relation
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This implies a weaker asymptotic formula:
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Gordon showed that this asymptotic formula for logn!
implies the prime number theorem.

A probabilistic argument involving primes

In discussing the ubiquity of 7 we mentioned the fol-
lowing result:

The probability that two integers chosen at random have no
prime factor in common is 6/m>.

Here’s a heuristic argument that explains where this re-
sult comes from. Given an integer z and a prime p ,
divide = by p to get a quotient and a remainder z, . If
p divides = the remainder z, = 0. If not, the remainder
is one of the numbers 1,2,...,p— 1. Choose another in-
teger y, and do the same to get a remainder ¥y, . There
are p? possible pairs (z,, yp).

The pair (zp,y,) = (0,0) if and only if both = and
y are divisible by p. So, the probability that both z and
y are divisible by the same prime p is 1/p?. The com-
plementary event is that at least one of z or y is not
divisible by p, and the probability of the complementary
event is 1 — 1/p?. This event depends on the prime p.
It’s reasonable to assume that for different primes these
events are independent, so the probability that no prime
divides both z and y is the product of all these proba-

bilities:
1 1 6
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This formula reveals another surprise: the ubiquitous =
has a connection with prime numbers!

Concluding Remarks

The prime number theorem is important not only be-
cause it makes an elegant and simple statement about
primes and has many applications but also because
much new mathematics was created in the attempts to
find a proof. This is typical in number theory. Some
problems, very simple to state, are often extremely dif-
ficult to solve, and mathematicians working on these
problems often create new areas of mathematics of inde-
pendent interest. Another example is the Fermat con-
jecture, which has received more publicity as an un-
solved problem than any other result in mathematics.
But Gauss himself considered the Fermat conjecture to
be of only minor importance in mathematics and re-
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Leonhard Euler (1703-1783) lost the
use of his right eye to overwork when
only 28. A cataract robbed him of his
other eye at age 51, but his work
continued undiminished with the
assistance of his sons, an excellent
memory, and a remarkable knack for
mental computation.

fused to work on it. The best thing that can be said about
Fermat’s last theorem is that it is largely responsible for
the theory of algebraic numbers, which was created in
an attempt to prove the Fermat conjecture.

Perhaps the most surprising result about mathemat-
ics is the profound impact that a few unsolved problems
have had on the development of mathematics. The Fer-
mat conjecture is just one of countless examples of math-
ematical problems that attract the intellectual curiosity
of many individuals but resist efforts at solution. Re-
peated failure by eminent mathematicians to settle these
problems by known procedures stimulates the invention
of new methods, new approaches, and new ideas that,
in time, become part of the mainstream of mathematics
and even change the way mathematicians think about
their subject. This is certainly true of the prime num-
ber theorem. Early attempts to prove the prime number
theorem stimulated the development of the theory of
functions of a complex variable, a branch of mathemat-
ics that is the life blood of mathematical analysis. Efforts
to prove Fermat’s last theorem led to the development
of algebraic number theory, one of the most active areas
of modern mathematical research, with ramifications far
beyond the Fermat equation. One unexpected applica-
tion of algebraic number theory is in designing security
systems for computers.

In number theory alone there are hundreds of un-
solved problems. New problems arise more rapidly than
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Pafnuty Lvovich Chebyshev (1821-1894)
was fascinated by mechanical toys as a boy.
His quest to understand machinery led to
an interest in geometry and ultimately to
the rest of mathematics.

Charles-Jean de la Vallée Poussin (1866—
1962) studied religion and engineering
successively before turning to mathematics.

the old ones are solved, and many of the old ones have
remained unsolved for centuries. Progress of our knowl-
edge of numbers is advanced not only by what we al-
ready know about them, but also by realizing that there
is much we do not know about them.

Addendum;
Distribution of primes in arithmetic progressions

An arithmetic progression of integers with first term h
and common difference & consists of all numbers of the
form kn + h as n runs through all the nonnegative inte-
gers 0,1,2,... . If A and k have a common prime factor
p then each term of the progression is divisible by p and
there can be no more than one prime in the progression.
In 1803 Legendre considered whether there must be in-
finitely many primes in the progression if h and £ have
no common prime factor. For example, all odd num-
bers fall into two progressions, one containing numbers
of the form 4n — 1, and the other containing numbers
of the form 4n + 1, so at least one of these progression
must contain infinitely many primes. In fact, both of
these progressions contain infinitely many primes.

In a celebrated memoir published in 1837, Dirichlet
showed that every arithmetic progression kn + h, where
h and k have no prime factor in common, must contain
infinitely many primes. Guided by Euler’s proof of the



-

infinitude of primes, Dirichlet used an ingenious argu-
ment to show that the sum of the reciprocals of all the
primes in the progression kn + h diverges. He did this
by showing that the partial sums of this series containing
the reciprocals of all primes < z in the progression has
the asymptotic value ﬁlog(logm), where ¢(k) is the
number of integers from 1 to k that have no prime fac-
tor in common with k. Since log(logz) — o0 as z — oo
this shows that the series diverges.

Dirichlet’s proof of the infinitude of primes in arith-
metical progressions was the first major triumph of
analytic number theory. The ideas introduced in this
proof laid the basis for areas of mathematical research
that have had profound applications to both analytic
and algebraic number theory. For example, there is a
prime number theorem for arithmetic progressions first
proved by de la Vallée Poussin. It states that the number

of primes < z in the progression kn + h is asymptotic to
1 x
o(k) logz*
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