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Imagine being beamed into a chamber deep within the Earth, such as depicted in the 
Jules Verne cavern of FIGURE 1. Is the acceleration due to gravity stronger or weaker 
in the chamber than at the surface of the Earth? If the reader is hesitant in answering 
immediately, here's how Leonard Euler answered the question in 1760 [3, volume I, 
Letter L, p. 182]: 

We are certain ... that gravity ... acts with the greatest force at the surface of 
the earth, and is diminished in proportion as it removes from thence, whether by 
penetrating towards the centre or rising above the surface of the globe. 

Figure 1 Frontispiece for Verne's 1871 publication of Journey to the Center of the Earth, 
100 miles below Iceland 

To answer this question, we consider various models of the Earth's structure that 
have been proposed over the years. We show that 

? for homogeneously dense planets-Euler's implicit model-gravity weakens with 
descent from the surface; 

? for a planet possessing a homogeneous mantle that is less than 2/3 as dense as its 
core, a local minimum for gravity intensity exists within a sufficiently thick mantle; 

? for our own Earth, having a solid inner core, a less dense liquid outer core, and an 
extensive even less dense mantle, gravity intensifies with descent from -9.8 m/s2 at 
the surface to an extreme of -10.8 m/s2 where the mantle meets the core. 

We also give a condition involving only surface density and mean density that deter- 
mines whether gravity increases or decreases with depth from the surface of a planet; 
and we conclude with an analysis of a body falling through a classically envisioned 
hole through the Earth. 

VOL. 75, NO. 5, DECEMBER 2002 335 



336 MATHEMATICS MAGAZINE 

Some preliminary classical mechanics 

To find the gravitational acceleration induced by the Earth on a particular point P, we 
follow Newton and first find the gravitational acceleration induced by each point of the 
Earth on P, and then take the aggregate of these accelerations as the total acceleration 
induced by the Earth. With this idea in mind, let the mass m of a body be condensed 
to the single point Q = (x, y, z). We wish to determine the gravitational acceleration 
a(s) induced by the mass at Q in the direction k = (0, 0, 1) on point P = (0, 0, s). 
See FIGURE 2. 
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Figure 2 The pull a(s) by Q on P 

We start with Newton's law of gravitation, telling us that the force of gravity be- 
tween two single-point masses a and b separated by r units is Gab/r2, where G ; 
6.67 x 10-1 Nm2/kg2, the universal gravitation constant. Since the force on a mass 
is equal to mass times acceleration, the gravitational acceleration on the point P in 

the direction PQ is Gm/(x2 + y2 + (z - s)2). But we want only the portion of this 

attraction in the direction k. Note that if f is the angle between P Q and k, then 

(x,y,z-s). (0,0, 1) z -s 
Cos l = = 

x2 + 2 + (z - s)2 /x2 + y2 + (z - s)2 

Therefore a(s) = cos / Gm/(x2 + y2 + (z - s)2), which we write as 

Gm(z-s) 
a(s) = + (1) 

(X2 + y2 + (z - s)2): 

A point mass at (x,y,z) 

Ideal planet models 

To apply (1) to calculate the gravitational acceleration a for a heavenly body at distance 
s from its center of mass, we focus on ideal planets, those with radius R for which 
each of its concentric spherical shells is of constant density. Though our planet is 
best described as an oblate spheroid which, when compared to the best approximating 
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sphere, is flattened at the poles by about 14 km and bulges at the equator by about 
7 km, and though its shells have only approximately constant density, the Earth is 
viewed as an ideal planet for the purposes of this paper. For each ideal planet we let 
a(s) be the outward radial gravitational acceleration induced by the planet at s units 
from its center. For each ideal planet, we presently show that a(s) < 0 for all s > 0. 
Therefore, the greatest magnitude for acceleration occurs when a(s) is a minimum. 

The simplest ideal planet is a single nonzero dense onion layer, or a soap bubble. 

A soap bubble model Let S be a spherical shell of mass M with constant density, 
center O = (0, 0, 0) and radius r. Then the gravitational acceleration on the point P 
due to the shell S is 

O, ifO <s <r, 

GM ifsr, 
a(s)= -- 

22 
ifs 

GM -s , ifs > r. 
s2 

A spherical shell 

The derivation of (2) is probably in every classical mechanics text, such as Fowles and 

Cassiday [5, pp. 207-209]. For completeness and because the derivation herein is a 
bit simpler than the ones in the mechanics texts surveyed by this author, we derive (2) 
by integrating (1) over the shell S. Let r = (r cos sin , r sin sin e, r cos 0) be a 

parameterization of S, where 0 < 0 < 2rr and 0 < 0 < r. Then the area element for S 
is Il ar x ar II dO dq, which simplifies to r2 sin 4 dO do. Since surface area of a sphere 
of radius r is 47rr2, the point-mass m of (1) can be taken as 4-r2 sin m d dq = 
M sin 0 dO do). Therefore from (1), acceleration a(s) by S on point P is 

r 2 7r G 4M (r cos 0- s) sin0 G (rcos -s) sin 
a(s) - dO do 2= do. 

o o (r2 +2 - 2rs cos )2 Oo (r2 + S2 -2rs cos 0)) 

(3) 

The change of variable u = cos 0 gives 

GMC1 ru-s 
a(s) = -- I 3 du, (4) 

2J-1 (2 + ( 2 - 2rsu)2 

which, via integration by parts and simplifying, gives 

GM (r 
- s r + s \ 

a(s) = G- - ? (5) 
2s2 V/(r-s)2 V(r + )2 

If 0 < s < r then (5) gives 0; if s > r then (5) gives -GM/s2. To obtain the anoma- 
lous result for s = r, first simplify (4) before integrating. 

Since a general ideal planet is simply a series of concentric soap bubbles, when 
s exceeds R, (2) is the familiar principle that when dealing with forces exerted by 
heavenly bodies, one can treat their masses as being concentrated at their centers. 
Furthermore, when 0 < s < R, (2) is a well-known result of electrostatics, which has 
features in common with gravitation; that is, for a hollow, metal sphere carrying a 
surface charge, the electrical field within the sphere is 0. Similarly, for any void within 
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a charged metal object, the field is zero as well [4, chapter 5], which is not the case for 
the gravitational field within an arbitrary void of a planet. 

As a simple example showing that neither of these two properties necessarily holds 
if a heavenly body is not an ideal planet, let S be a hollow, right circular cylinder 
with mass M, height 2, radius 1, center at the origin, and central axis aligned with the 
z-axis. Since the surface area of S is 67T, assume that S has uniform density of M/6rr. 
To calculate the gravitational acceleration induced by S at the point (0, 0, s) where 
s > 0, use (1) and integrate over the top, the bottom, and the sides of S, giving a(s) as 

GM(jIj2r (I-s)r f f27F (?+s)r 

67 \ (r2 + (1 - )2) o o (r2 + (1 + S)2) 

+ | | (z-s) dO ) 
+ 3 dOdz 

-1 J (+(z - s)2)2 

which simplifies to 

GM / s+^-2 s-2 

GM(3 - 23) 

V/ +(1 +s)2 V/I +(l s)2 i 

a(s) GM(3 - 2 ) if s = 1, 
15 

GM s + 2 
+ 

- 
2 ifs > 1. 

3 /1l+ (1 +s)2 V1 +(1-S)2 ifs 

Observe that for 0 < s < 1, a(s) > 0, which means that if a particle is on the z-axis 
between 0 and 1, then it is attracted towards the top of the cylinder. To see that this 
formula conforms asymptotically to an inverse square law, observe that limsoo s2a(s) 
is a constant. 

In general, when calculating the gravitational acceleration induced by a heavenly 
body at a certain point, any nonspherical symmetry of the body promulgates night- 
marish integrals. But fortunately for astrophysics, planets and stars are more or less 
ideal planets; furthermore, many of the central problems of celestial mechanics in- 
volve forces of gravitation at many radii from the heavenly bodies in question, so that 
the inverse square law can be used with confidence and relief. 

To find the cumulative gravitational acceleration induced by the point-masses of a 
nontrivial ideal planet, it is convenient to sum them layer by collective spherical layer. 
With this idea in mind, we integrate (2) appropriately to find a(s). 

The general density model Let S be a ball of radius R, mass M, and center O 
whose density at s units from O is given by 8(s). That is, S is spherically symmetric 
with respect to its density. Then 

j47rG f p2(p) dp if0 < s < R, 
a(s)- Gs (6) GM 

5-^2 'if s>R. 

An ideal planet with general density 

To derive (6) from (2) note that the mass of the shell at radius p is 47tp28(p). 
Therefore. 
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S 4Gnp2S(p) - os 4Grp28() dp, if0 < s < R, 

a(s) = 

- 4) dp ifs > R 
J 

2 s2 

which simplifies to (6), since fR 4nrp28(p) dp = M. Furthermore, note that the two 
formulas of (6) agree at s = R. 

Constant acceleration: an old implicit model 

When reading of mythical heroes venturing off into the underworld, such as Orpheus 
seeking to reclaim his lost love or Hercules throttling Cerberus, the watchdog of Hades 
with three heads, one forms the impression that no matter how deep the heroes descend 
into the Earth, gravity remains constant. To catch a bit of the flavor of these tales, here's 
a snippet of Ovid's Metamorphoses [11, Book X], describing Orpheus and his wife's 
ascent from Hades: 

Now thro' the noiseless throng their way they bend, 
And both with pain the rugged road ascend; 
Dark was the path, and difficult, and steep, 
And thick with vapours from the smoaky deep. 

The drawings in FIGURE 3, based on two old Grecian urns, show these two heroes 
in Hades; Orpheus is serenading the lords of the underworld and Hercules is about to 
chain Cerberus, depicted with only two heads. Turner [15] enumerates other literary 
characters who frequented the underworld. 

Figure 3 Hercules and Orpheus in Hades (renditions by Jason Challas) 

Such an impression is especially vivid when reading Dante (in The Divine Comedy 
written about 1300 C.E.), who journeys with his ghost guide Virgil from the Earth's 
surface, down through 24 levels of Hell, down through the very center of the Earth. 
FIGURE 4 [2, p. 84] shows one artist's rendition of Dante's model of the Earth. When 
Dante scrambles over a broken bridge deep within Hell it is with the same effort he 
would have used along a road to Rome. Arrows and other projectiles lofted in Hell 
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Figure 4 Levels in Dante's Earth 

appear to follow the same trajectories as at the surface of the Earth. When he clam- 
bers about the hip of a somewhat immobilized, gargantuan, and hair-covered Satan at 
the literal center of the Earth on his way to the antipodes, Dante changes directions, 
maneuvering with a degree of exertion akin to that of reversing one's bodily position 
while clinging to a root-covered, vertical rockface in the Apennines. 

And when we had come to where the huge thigh-bone 
Rides in its socket at the haunch's swell, 
My guide, with labour and great exertion, 

Turned head to where his feet had been, andfell 
To hoisting himself up upon the hair, 
So that I thought us mounting back to Hell. 

Canto xxxiv, lines 76-81 [2, p. 287] 

Up and down reverse dramatically. Dante's Satan, more precisely, Satan's crotch, 
is thus a veritable singularity. After climbing on a bit more, Dante takes a rest, looks 
back, and sees Lucifer's legs sticking up. 

And if I stood dumbfounded and aghast, 
Let those thick-witted gentry judge and say, 
Who do not see what point it was I'd passed. 

Canto xxxiv, lines 91-93 [2, p. 287] 

Dante may have borrowed a similar image from the prolific, first-century writer, 
Plutarch, who mentions this same singularity, although less graphically so, conjectur- 
ing 

... if a man should so coalesce with the earth that its centre is at his navel, the 
same person at the same time has his head up and his feet up too. [12, p. 67] 
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Such literary evidence suggests that the implicit density model of the Earth used in 
these imaginings is that density function 8(s) which generates a constant gravitational 
acceleration. For 0 < s < R, such a density function satisfies 

4rG s - 
2j Jp2( p)dp = C, 

where C is some constant. Multiplying the above equation by s2 and then differentiat- 
ing, and simplifying yields 8(s) = k/s, where k is some constant. That is, the ancient 
model of the Earth appears to be one wherein density and distance from the Earth's 
center vary inversely! Note that even in such a model, where the density at the center 
is unbounded, the mass of the Earth is yet finite. 

A common-notion constant density model 

Insisting that gravity remain constant on descent into the Earth requires a singularity 
in its density. Much simpler and more natural is to take this density as constant. In 
this author's informal survey of colleagues both in mathematics and physics, their 
almost universal and emphatic answer, "Gravity decreases with descent!," subsumes 
this model. Perhaps one of the reasons for such ardent responses from physicists and 
mathematicians is that almost all of us in our undergraduate differential equation days 
solved an exercise very much like this one, (which we solve in general at the end of 
this paper): 

Inside the earth, the force of gravity is proportional to the distance from the 
center If a hole is drilled through the earth from pole to pole, and a rock is 
dropped in the hole, with what velocity will it reach the center? [13, p. 24] 

A tempting reason to guess that gravity wanes with depth is the following, incor- 
rect, intuitive argument: "As we go down, the portion of the Earth above will exert an 
upwardforce on us, hence lessening the downwardforce on us exerted by the remain- 
der of the Earth." But as (2) makes abundantly clear, at s units from the center, only 
the mass within s units of the center determines a(s). 

Taking a ball S of uniform density 8, mass M, and radius R, gives by way of (6), 

4r GSs 
if O < s < R, 

a (s)= (7 
ifs > R. s2 

A planet of constant density 

That is, gravity and distance from the center are directly proportional up to the surface 
of the Earth. See FIGURE 5a. 

The reader may enjoy contrasting (7) with the acceleration functions of nonideal 
planets of constant density. For example, let S be a right circular cylinder of radius 1, 
height 2, mass M, center at the origin, and central axis aligned with the z-axis. In- 
tegrating (1) over S using cylindrical coordinates gives the gravitational acceleration 
a(s) induced by S at the point (0, 0, s) for s > 0 as 

a(s) = MG (/1 + (1 + s)2 - / + (1 - s)2 + I1- s - I + sl), 

(7) 
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a. Constant density 

c. Two-tier Earth 
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e. Two-tier core, Linear Mantle 
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b. Hollow Earth 

a(s) 
d. Homogeneous Core, 

Linear Mantle 
r R 

a(s) 

f. A gaseous planet 
s 

a(s) 

Figure 5 Simple earth models (R = radius of Earth) 

whose graph qualitatively looks much like FIGURE 5a. This particular application in- 

jects life into the surprising, but otherwise artificial limit limxo, /1 + (1 + x)2 - 

V1 + (1 - x)2 = 2. 

Halley's hollow Earth model 

Edmond Halley, the "Father of Geophysics" and the financier behind Newton's publi- 
cation of the Principia, viewed Newton's (erroneous) calculation in 1687 of the rela- 
tive densities of the Earth and the Moon being 5 to 9, as one of the more significant 
of the discoveries presented in the Principia. Believing Newton to be correct and yet 
wanting to conclude that solid chunks of the Earth and Moon should be equally dense, 
Halley proposed that the Earth must be 4/9 hollow. Since his study of magnetic com- 
pass variations suggested that the Earth had four separate north poles, he went on to 
claim that the Earth's outer shell was 500 miles thick; inside were three more concen- 
tric shells, being the radii of Venus, Mars, and Mercury. FIGURE 6 shows Halley in a 
1736 portrait, holding his hollow Earth sketch. Furthermore, just as the aurora borealis 
phenomenon illuminates the northern skies, he postulated that the atmospheres over 
each of these shells were alive with magnetic lightning-like flashes; and he went on to 
speculate that life existed on these inner surfaces [7, 8]. 

Such musings prompted inane and romantic science fiction tales in years to come. 
One spurious legacy of Newton's error is a Hollow Earth Society, which apparently 
loves to speak of UFOs and superior creatures haunting the inner circles of our planet. 
On their web page [14], you may view a purported map of this inner world, shown in an 
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Figure 6 Halley at 80 with sketch of hollow Earth model 

artist's rendition on the cover of this issue. A well-known science fiction tale inspired 
by Halley's model is by Tarzan's creator, Edgar Rice Burroughs; in At the Earth's Core, 
written in 1908, two heroes within an out-of-control tunneling machine burrow from 
the surface of the earth, and emerge three days later and 500 miles down in the inner 
world of Pellucidar. The MAGAZINE cover also portrays one charming depiction of 
this earth ship, looking not too distantly different from the great earth-eating machines 
that tunneled out the Chunnel under the English Channel. At the halfway point, 250 
miles deep, up and down switch for Burroughs in the same manner as when Dante 
climbed down Satan's torso at the center of the Earth. But is such a scenario possible, 
walking upright on the inside of the Earth's outer layer? 

That is, let S be a shell of inner radius r and outer radius R, uniform density 8, 
mass M, then (6) gives, 

0, if0 <s < r 

-Ga(s) =s - -)' if rs<R, (8) 
a(s)= 3 -) 

i 
2 (8) 

GM 
ifs > R. 2 

A planet with a hollow core 

FIGURE 5b illustrates this acceleration. Note that the entire empty core is a zero- 
gravity haven! 

But on Pellucidar, worse than having zero gravity on the surface, or a marginal 
attraction due to the spin of the Earth, the situation is grim, for its sky is illuminated by 
both a moon and a central sun, so any object not clinging to the surface of Pellucidar 
would fall into this sun. Lest we be overly critical of Burroughs's model, he does 
have his character sense "a certain airy lightness of step" on Pellucidar [1, Freedom 
chapter], and explains, "The force of gravity is less upon ... the inner world ... due 
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... to the counter-attraction of that portion of the earth ... directly opposite the spot 

... at which one's calculations are ... made," which is probably a good rendition of 
how the typical man-in-the-street might reason. 

Hooke's onion model 

Robert Hooke is credited with positing an Earth of multiple layers, one reason for 
which was to explain why the magnetic north pole appears to wander. His idea was 
that the magnetic source might be embedded in a separate layer, which rotated at a 
rate slightly different than the surface layer. As a simple representative example of 
this model, suppose that the Earth consists of two homogeneous layers, the inner one 
called the core and the outer one called the mantle, a term coined by E. Wiechert in 
1897. Let S be a ball consisting of an inner core of density l6, mass M1, radius r, and 
of an outer mantle, density 82, mass M2, inner radius r and outer radius R, then two 
applications of (6) yield 

4rcGSls -4rG8ls ,ifO <s < r, 
3' 

a(s) -= 5-G- 
- - G82 s- , if r <s < R 

s2 3 + s) 

G(MI + M2) 
~s~ ~ifsR. 

(9) 

An onion model with two layers 

In this case, the mantle contains a local extremum for gravitational acceleration at 
sc = r /2(8i -- 2)/82, provided r < Sc < R, which means that a necessary condition 
for the existence of a local extremum is for 82/81 < 2/3. That is, a planet's mantle 
must be no more than 2/3 as dense as its core in order for an extreme to exist. See 
FIGURE 5c where 81 = 282 and R = 2r. 

A molten core, variable density mantle model 

To account for volcanic activity, geophysicists of the nineteenth century postulated that 
the Earth's central region was molten, a thick pea soup of convective rock currents, 
which in turn suggested that the core might be homogeneous. Being solid, the mantle 
was presumed to have a density that increased with depth. As a simple representative 
member of this model, let S be an ideal planet with a homogeneous core of density 8, 
mass M1, radius r, and a variable mantle of density 8(s) = ,u + Xs, where r < s < R, 
mass M2, and where ,/ and X are constants. Then 

4 
--7rG8s, ifO < s < r, 

3 

GM,1 / s )s2 r3 r4\ 
a(s)= - 2 -47rG( + -32- 2) if r < s < R, 

s2 3 4 3s2 4S... 

' GMIM2)if 
s > R. 

Homogeneous core with mantle of variable density 

(10) 
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FIGURE 5d shows the case when 8 = 1, Iu = 2, X = -1, r = .82, and R = 1.2. Note 
that for these values, there are two local extrema within the mantle, the reason being 
that solving the equation a'(s) = 0 for r < s < R involves finding the roots of a quar- 
tic polynomial. Nevertheless, it is a bit surprising that a(s) can display such exotic 
behavior when 8(s) is so tamely monotonic. 

A seismic model 

From earthquake analysis and from the understanding that seismic waves are trans- 
mitted differently in liquids versus solids, today's thinking suggests that our Earth 
consists essentially of three layers. We'll simplify matters, and assume that it consists 
of a solid central core of uniform density Al = 13 units (where a unit is 1000 kg/m3), 
radius 1275 km; a liquid outer core of uniform density 82 = 10, thickness 2225 km; 
and an affinely dense mantle of thickness 2900 km, with density varying from 6 to 3.3 
at the surface. We ignore the thin crust and tenuous atmosphere. Let rl = 1.275 units 
(where a unit is 1000 km), r2 = 3.5, and R = 6.4; let M1, M2, and M3 be the masses 
of the inner core, the outer core, and the mantle respectively. Then within the mantle, 
8(s) = ,t + Xs ; 9.26 - 0.93 1s, where s is in thousands of km, and 

4 
- -rG31s, ifO < s < rl, 

3 

GMI 4 / r\ 
- 2 3-rG(2 is- j ifrl <s <r2 

a(s) = 
_G(M + M2) G if4 2<s 

s2 3 
0.75 s 2 - 0.75s2 

i 

G(M + M2 + M3)if> R. 
S 2 

Solid center, molten outer core, variable mantle (11) 

FIGURE 5e gives a graph of a(s). Note that the Earth has no local extremum within 
the outer core because 82/81 = 10/13 > 2/3, a violation of the necessary condition 
given in Hooke's model. The overall extreme value of gravitational acceleration for 
this model of the Earth is approximately -10.2 m/s2 at the juncture between the outer 
core and the mantle. In retrospect, the graph of FIGURE 5e also supports the intuition 
of those who spun the Greek legends, for Hades could not have been more than 1000 
km below Greece; and the acceleration of gravity within this level of the Earth is 
approximately constant! 

Studies from 1989 on the interplay between data and models give a density model 
as in FIGURE 7, which in turn gives an acceleration curve qualitatively much like 
FIGURE 5e; the current best guess of gravity's extreme within the Earth is -10.8 m/s2 
at the core-mantle boundary [9, p. 155]. 

A gaseous model 

To complete a list of simple planetary models, imagine a gas ball of uniform temper- 
ature and uniform composition; the density of such a ball is exponential [17, p. 68], 
that is, 8(s) = 8oe-ks, where 8o is the density at the center and k is a positive constant. 
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13 

s (1000 km) 

Figure 7 Earth's density 

To be faithful to the definition of an ideal planet, we say that R = oc. Then by (6) for 
positive s, 

eks (k2s2 + 2ks + 2) - 2 

1.275 3.5 6.4 

s (1000 km) 

Figure 7 Earth's density 

To be faithful to the definition of an ideal planet, we say that R = xo. Then by (6) for 
positive s, 

a(s) = -4nrrG 8 (12) 
k3s2 

Gaseous model 

See FIGURE 5f. The extreme for gravity occurs at Sc ~ 1.45123/k, at which point the 
mass of the ball of radius Sc is 4.508o/k3. (Over 98% of the mass is contained within 
a ball of radius 3Sc.) More realistic density models for gas balls are complex and lead 
to elaborately grand models for the stars. 

Concluding remarks 

As we have seen, given the global density function for an ideal planet, integration 
tells us how gravity changes with descent. However, even without knowing the global 
density function, we can determine whether gravity increases or decreases with descent 
from a planet's surface; all that is needed is the mean density of the planet and its 
surface density. Surface density of the Earth is easy enough to compute-just measure 
some representative surface rock. But in Euler's day determining the mean density of 
the Earth was not yet possible; the product GM was known, but not its component 
parts; it was not until 1798, fifteen years after Euler's death, that Henry Cavendish 
experimentally determined G, which then gave the scientific community M and the 
mean density of the Earth. The following theorem, foreshadowed by the watershed 
2/3 ratio for extrema in the simple Hooke model, shows how local density data can 
answer the question of how gravity changes with descent. Let planet P have radius R 
and density 8(s), 0 < s < R. Let m(s) be the mass of P up to radial distance s; that is, 
m(s) = 4r fS p28(p) dp. Define the mean density 8(s) of P at s as m(s) divided by 
the volume of a sphere of radius s; that is, 

8(s)= I p2 8(p)dp. 
S3 n 
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Define the normalized density A(s) at s as A(s) = 8(s)/8(s). For example, if 8(s) is 
constant, then P's normalized density is A(s) = 1. If as in the constant acceleration 
model 8(s) = k/s, where k is some constant, then the normalized density of P is 
A(s) = 2/3. 

THEOREM: THE CRITICAL CONDITION. If a(s) is differentiable, then gravity in- 
tensifies with descent at s whenever A (s) < 2/3 and wanes with descent at s whenever 
A (s) > 2/3. IfA (s) = 2/3, gravity remains constant with descent at s. 

To verify this condition, note that (6) for 0 < s < R can be written as 

s 
-47G p28(p) dp = s2a(s). 

By the fundamental theorem of calculus, 

-4nrGs28(s) = 2sa(s) + s2a'(s), 

which means that 

2a (s) 
a'(s) = -47rG8(s) - 2(s 

(13) 
s 

Note that a(s) intensifies with descent precisely when a'(s) > 0; that is, recall that a(s) 
is negative, so that the phrase "intensifying with descent" translates into the phrase "a 
is increasing at s." This condition is equivalent, via (6) and (13), to 

-4G f p28(p) dp = a(s)(s) <-2Gs(s), 
s2 

which is equivalent to A(s) < 2/3. Similarly, the alternate conditions follow. 
For our Earth, since its mean density 8(R) is about 5515 kg/m3 and since crustal 

rock density 8(R) is about 2800 kg/m3, then A(R) ; 0.51 < 2/3. So by the theorem, 
gravity intensifies with descent from the Earth's surface. If the several thousand Moon 
rock specimens brought back to Earth are accurate indicators, the surface density of 
the Moon is comparable to that of Earth; since the Moon's mean density is about 
3330 kg/m3, then A(R) m 0.84 > 2/3, where R is the Moon's radius, which means 
that gravity weakens with descent from the Moon's surface. 

As promised, we now solve the generalized problem of falling through a hole in the 
Earth: 

If a hole is drilled through the Earth from pole to pole, and a rock is dropped in 
the hole, with what velocity will it reach the center, and how long will it take? 

Plutarch posed a version of this problem when he has a debater catalog various reasons 
as to why some folks chose not to believe in a spherical Earth [12, p. 65]: 

Not that ... masses ... falling through the ... earth stop when they arrive at 
the centre, though nothing encounter or support them; and, if in their downward 
motion the impetus should carry them past the centre, they swing back again and 
return of themselves? 

Euler played with this problem as well, explaining in his popular letters to a German 
princess [3, p. 178] that 
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You will remember how Voltaire used to laugh at the idea of a hole reaching 
to the centre of the earth, ... but there is no harm in supposing it, in order to 
discover what would be the end result. 

To solve this problem, we neglect air resistance and any relativistic concerns. Let s, 
v, a, and t be the distance of the rock from the Earth's center, the velocity of the rock, 
the acceleration of the rock, and time, respectively, where at t = 0, s = R, v = 0, and 
a = -g, where R is the radius of the Earth and g x 9.8 m/s2. Note that acceleration 
times velocity can be written two ways as 

dv ds 
v- =a-. 

dt dt 

Integrating this expression as time t goes from 0 to T gives 

Jr dv U ds 
v-dtt = I a-dt. 

JO dt J dt vt d7 

Since both s and v are monotonic functions in terms of t as the rock falls from the 
Earth's surface to its center and since the initial velocity of the rock is 0, then the 
above equation simplifies to 

v2(s) rs 
^=I a dr, 2 JR 

where v is a function in terms of s, and r is a dummy variable representing distance 
from the Earth's center. Since the rock's velocity during fall is negative, 

I s 
v(s)=- 2 a dr. (14) 

Thus the speed of the rock as it passes through the Earth's center is v(0 km). To find 
a formula for the time T it takes for the rock to reach the center, obtain a uniform 
partition of the interval [0, R]: 0 = so < s < ... < s = R, so that As = R/n, for 
each positive integer n. Approximate the time for the rock to fall from si+l to si by 
-As/vi, where vi = v(si) for each i, 0 < i < n - 1. The approximate value of time 
T is therefore E oi=0 -As/vi. That is, 

R -1 
T = ds. (15) 

Jo v 

Case 1. The homogeneous Earth model By (7), a(s) = ks, for 0 < s < R, where 
k is a constant. Since a(R) = -g, then k = -g/R. Therefore by Equation (14) 

v(s) =- /2 f r dr = - (R2 - 2). 
R R 

Thus v(0) = -v/gR x -7.9 km/s. By Equation (15), 

R i RR 71n R 
T = - s ds = ds= - - 21.2 minutes. - v J g R2 - s2 2y g 
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Case 2. The constant acceleration model If a(s) = -g for 0 < s < R then 

v(s) 2 -g dr = -/2g(R -s) 

so that v(0) = -/2gR -11.2 km/s (which also happens to be the escape velocity 
of the Earth from its surface), and 

11R R i f 
T 1 ds =V./2 - 

2 
19.0 minutes. 

T O V2gV/R-s V g 

Case 3. An extreme black hole model We now assume all of the Earth's mass is 
concentrated at its center, so that a(s) = k/s2 by Newton's law of gravitation, for 0 < 
s < R and where k is some constant. As before, since a(R) = -g, then k = -gR2. 
Thus 

v(s) = -/2f ; gr2 dr = 2R (- -1 
r s 

so that v(0) = -oo. Note that v(l cm) is just shy of the speed of light. The time it takes 
for the rock to reach the Earth's center, barring relativistic considerations, is therefore 

R Is sr T = I ds = - - ds 15.0 minutes. 
Jo -2gR R-s 2V2 g ? 

To see that no other ideal planet model either yields a faster falling speed or a less 
fall time, observe that the fastest falling speed in least time will surely occur if the 
acceleration on the rock is always as extreme as is possible, which certainly happens 
if all the mass of the Earth is always nearer to the center of the Earth than is the rock. 
Contrariwise the slowest falling speed and the greatest falling time occur when all the 
mass is on a shell of radius R, in which case the rock is stationary. 

Case 4. Our Earth Using (11), (14), and (15), and wading through all the approxi- 
mating integrals gives a speed of v(0) m -9.8 km/s and a time of T m 19.2 minutes. 
Modifying the density function to mirror the data of FIGURE 7 or whatever new data 
geophysicists generate in years to come should produce more accurate acceleration 
functions, which in turn will influence these values of v(0) and T slightly. 

Lucifer cast down We close with a problem, the details of which the reader may 
enjoy completing. In John Milton's Paradise Lost, published in 1667, Satan is cast 
from Heaven and falls for nine days before landing in Hell. 

Him (Satan) the Almighty Power 
Hurled headlong flaming from th' ethereal sky, 
With hideous ruin and combustion, down 
To bottomless perdition ... 

Book I, Lines 44-47, [10, p. 9]. 

Although Milton used a Ptolemaic model of the universe, it is a fun exercise to 
recast this problem as dropping a rock through a galaxy. We shall allow this rock to 
follow the dynamics of (14) and (15) no matter how large v becomes, since conceivably 
Satan's speed shouldn't be constrained by that of light. Let's take the galaxy as the 
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Milky Way, which has a mass M of about 3 x 1041 kg, and whose radius R is about 
9.3 x 1020 meters. For the sake of simplicity, assume as a first approximating model 
that the Milky Way is a flat, homogeneous pancake, which is positioned on the x-y 
plane with its center at the origin. Assume that the rock falls from rest at (0, 0, R). 
Integrating (1) over the Milky Way via polar coordinates gives 

GM fR 27 -rs 2GM s 

a(s) R2 J (R2 + s2) 
d dr = R2 a(r 2 qR-- s 3 dO dr - 1 . 

By (14), 

v(s)= 2 GM//R2 + 2-s + R(1-2). R 

Note that v(0) is approximately 225 km/s. By (15), the rock will reach the center of 
the Milky Way in about 340 million years; light would make this journey in about one 
hundred thousand years. Since the episode of Satan being hurled out of Heaven took 
place when the galaxy was in chaos, possibly before the Big Bang, the reader may 
wish to toy with the pancake model and the rock's initial velocity, so as to estimate the 
Miltonian distance between Heaven and Hell. 
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