Niels Hendrik Abel and Equations
of the Fifth Degree

Michael 1. Rosen

This paper is dedicated to the memory of my close friend and colleague Kenneth
Ireland.

In most textbooks it is stated that Abel was the first to prove that the general
equation of the fifth degree cannot be solved in radicals. However, Abel’s proof is
almost never presented. Instead, the theorem is proved by means of Galois theory.

Abel published his first proof of this theorem (at his own expense) in 1824 [1,
Vol 1], and a longer more elaborate version appeared in Crelle in 1826 [1, Vol. 1].
E. Galois was thirteen years old in 1824. His spectacular paper on the theory of
equations was submitted to, and rejected by, the French Academy of Science in
1830. It wasn’t published until 1846, fourteen years after his death. For details of
this sad story the reader can consult the very interesting book of Harold Edwards
[5]. From all this it is clear that Abel’s proof could not have used Galois theory.
How then did he do it? The purpose of this article is to provide an answer to this
question which will be easily accessible to a modern reader familiar with the
elements of the theory of fields. The proof we will give is not identical with that of
Abel, but is in the spirit of his proof and uses nothing that was unavailable to him.
Both before and after the proof we try to put things in historical context, and
indicate how matters developed after 1826. In particular we will discuss the earlier
work of P. Ruffini and the later work of Galois, as well as a pretty contribution of
L. Kronecker.

Of course, other authors have discussed this material. What’s new here is
mainly the mode of presentation and the arrangement of the proofs. R. Ayoub’s
article on Ruffini [2] gives an excellent historical and mathematical overview of the
theorem. J. P. Tignol’s recent book on the theory of equations [7] gives among
other things a history of the subject from ancient times up to the era of Galois.
Both these sources discuss Abel’s contributions. Nevertheless, we feel that a
relatively brief and accessible exposition. of these matters from a somewhat
different point of view may be of interest to readers who are unfamiliar with this
fascinating piece of mathematical history.

SECTION 1. The solution of the quadratic equation x? + ax + b = 0 goes back
to antiquity. The roots are

—a + Va®> - 4b
2

X, Xy =

The solution of the cubic equation x3 + ax? + bx + ¢ = 0 was not discovered
until the 16th century. Around 1515, S. del Ferro found a solution, but did not
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publish it. The solution was rediscovered in 1535 by N. Fontana, nicknamed
Tartaglia, who also kept it a secret until it was coaxed out of him by G. Cardano
and published in Cardano’s famous work “Ars Magna”. The first step is to reduce
the cubic x> + ax? + bx + ¢ to the form x* + px + g by means of the substitution
x — x — %. The solutions of x3 + px + g = 0 are given by

wonans= [T -2 T 6T

This formula must be supplemented by a rule telling how to choose the cube
roots properly.

Soon after Tartaglia found his solution to the cubic equation, a solution was
found to the quartic equation by L. Ferrari, the brilliant assistant to Cardano. We
shall not write it down, but simply note that it involves nothing more than the
rational operations of addition, subtraction, multiplication, and division, as well as
extractions of square and cube roots. At this point it seemed reasonable to believe
that the quintic equation could be solved by similar means, i.e. starting with the
coefficients of the equations one should employ the rational operations together
with the extraction of square, cube, and possibly fifth roots. However, in spite of
much effort on the part of some of the best mathematicians in the world, no
solution was found for over two and one half centuries.

The first mathematician to state definitively that no solution existed was
Ruffini. In 1799, Ruffini published a two volume treatise entitled, “Teoria Gen-
erale delle Equazioni” in which he claims to show that the general equation of the
fifth degree cannot be solved in radicals. For various reasons his results were
received with skepticism, even though as eminant a mathematician as A. Cauchy
found his arguments convincing. It turns out that although Ruffini did prove quite
a lot, and did make important contributions, there was a significant gap in his
proof. For all this the reader should consult [2]. We will discuss the gap in Ruffini’s
proof in Section 4.

While Ruffini’s proof did not find universal acceptance, his work did help turn
the direction of research away from the problem of finding a solution to an
equation of the fifth degree to the problem of showing that in general no such
solution exists. It is in this atmosphere that the young Abel entered the picture.

SECTION 2. In this section we set up notation, give a precise statement of the
problem, review the solution via Galois theory, and begin our discussion of how
Abel was able to find a proof which doesn’t use Galois theory; a necessity for him
since Galois theory had not yet been invented when he discovered his proof.

Throughout this paper we will use freely the notion of field, field extension, etc.
Abel and his predecessors expressed themselves in different, but equivalent
language. All fields will be assumed to be of characteristic zero.

Let k be a field and f(x) € k[x] a monic polynomial. If

f(x)=(x—0,)(x=0,) (x—86,)
in some extension field of k, we call F = k(6,,0,,...,0,) a splitting field of f(x)

over k. In other words, a splitting field F of f(x) over k is the field obtained from
k by adjoining all the roots of f(x) = 0 to k.
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A finite algebraic extension E/k is called a radical tower over k if there is a
series of intermediate fields

k=E,cE,c - CE,_,CE,=E

such that foreach 0 <i <m, E, , = Ei(p\'/a—i) where p; is a prime and «, € E.

We can now give the precise definition of what it means for an equation to be
solvable in radicals. Let f(x) € k[x] be a polynomial, and F a splitting field for
f(x) over k. We say that the equation f(x) = 0 is solvable in radicals if there is a
radical tower E/k such that F C E. This definition is just a way of saying, in the
language of fields, that the roots of f(x) = 0 can be obtained from the coefficients
by the successive use of the rational operations and the extraction of roots. It is not
clear, a priori, when f(x) = 0 is solvable in radicals, that F/k is itself a radical
tower. In fact, this is not true in general as can be seen by considering the
extension Q(a)/Q where a = 2cos(27 /7). This extension is not a radical exten-
sion. On the other hand, « is a root of the irreducible cubic x3 + x? — 2x — 1
which splits into linear factors in Q(a).

One of the principal accomplishments of Galois was to give a beautiful criterion
for when an equation f(x) = 0 was solvable in radicals. It is no real loss of
generality to assume that f(x) is irreducible, and we do so. In this circumstance,
Galois shows how to assign a group G, to f(x). It is a certain transitive subgroup
of the group of permutations of the roots of f(x).

Theorem (Galois). f(x) = 0 is solvable in radicals if and only if G, is a solvable
group.

We recall that a finite group G is solvable if there is a sequence of subgroups
(e) =G, G, cG,C - G, =G

such that for each i, 0 <i <m, G, is normal in G,,, and p,,, =[G, : G;] is
prime.

To use Galois’ theorem to show equations of the fifth degree and higher are not
in general solvable in radicals, one computes the Galois group of the general
equation of the nth degree and shows it is equal to S, the full symmetric group on
n letters. One then shows that S, is not a solvable group when n > 5. This is the
approach used in all modern texts in algebra.

Let’s explain the notion of the “general equation of degree n”. Let k be a field

of characteristic zero, and let s,,s,,...,s, be quantities which are algebraically
independent over_k. Set K = k(s,, s,,,...,s,) and define
f(x)=x"—sx" ' +s5,x"2— - +(-1)"s, € K[x]

to be the general equation of degree n over k.
Suppose f(x) = (x —x)X(x — x,) - - (x — x,) in some extension field of K. Set
L = K(x,,x,,...,x,). Clearly, L is a splitting field for f(x) over K. It is not hard
to show that x,, x,,..., x,, are algebraically independent over k (for details, see
[6]). Moreover, the s; are elementary symmetric functions of the x;.
Si=X{+x,+ - +x,
Sy =X Xy + X X5+ 0 +x,_x,

S, =X;Xy " X,
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Each permutation of the x; induces an automorphism of L which leaves K
fixed. Moreover, the only elements of L which are left fixed by all such automor-
phisms are the elements of K. Although this is stated in modern language, the
content is all quite old. The last part is easily seen from the theorem that a
symmetric polynomial is a polynomial in the elementary symmetric functions of the
variables. This fact goes back, in essence, to Newton (see [5]), and was used freely
by the predecessors of Abel and Galois. Reverting to modern language, we see
that L/K is a Galois extension with Galois group isomorphic to §,, or, put
another way, §, is the Galois group of the general equation of degree n over k.
So, with this setup a certain amount of Galois theory was available to people like
Vandermonde, Lagrange, Ruffini, and Abel. What was missing was the notion of
normal subgroup. This fundamental notion is not visible in the work of these
earlier authors. Thus they could not even formulate the notion of a solvable group,
never mind prove Galois’ criterion for when an equation was solvable in radicals.
The rudiments of group theory will play a big role in our treatment of Abel’s work
on this problem, but nowhere will the notion of normal subgroup make an
appearance.

SECTION 3. We will now devote our attention to properties of the group S,. Very
little will be needed. The elements of S, will be considered to be permutations of
the set {1,2,...,n}. For a polynomial in n variables f(x,, x,,...,x,) and an
element o € S, we define

(af)(xy5--05x,) =f(xcr(l)""7 xo’(n))‘

This action extends in a natural way to an action on rational functions. Now

define
§=1I(x;,—x;) and A=25
i<j

For any o € §,,, 06 = +4. If 7 is a transposition, 76 = —§8. Then, 4, € §,, is
defined to be the subset of S, consisting of all o € §, such that o8 = §. Clearly,
A, is a subgroup. Note that [S,: 4,] = 2 since for any o € S and any transposition
T, either o or 7o isin A4,.

Facts:

1. S, is generated by transpositions.
2. A, is generated by 3-cycles.
3. A, is generated by m-cycles, where m is any odd number between 3 and n.

The first two facts are standard. To prove the third, note that an m-cycle is a
product of m — 1 transpgsitions, so if 7 is odd an m-cycle is in A,. On the other
hand, the identity

(a1a0;5) = (aya,a3a,...a,)(a,,a,,_,...a,a3a,4,)
shows that every 3-cycle is in the group generated by the m-cycles, so Fact 3
follows from Fact 2.

These facts are all we will need, but we add one more, due to Cauchy, since
Abel made use of it in his original proof.

4. Let S, acton L = K(x,, x,,..., x,) as explained above. Let p be the largest
prime less than or equal to n. Then, for f € L, the number of distinct values
taken on by f under the action of S, (i.e. the number of distinct rational
functions obtained from f by permuting the variables) either exceeds p or is
at most 2.
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Proof: Let o € S, be a p-cycle, and {o ) be the subgroup generated by o. Define
H ={r € {o)|rf =f}. Since p is a prime, either H = (o) or H = {e). Thus,
either f,of,...,oP !f are all distinct, or of = f. If f takes on fewer than p
values, we must have of = f for all p-cycles. By Fact 3 this implies that f is fixed
by A4,. Since A4, has index 2 in §,, the result follows.

It is, of course, true that this result is really about S, acting on an arbitrary set
(same proof), but we have given the original formulation.

SECTION 4. We have now assembled everything we shall need. We use the
notation of Section 2, except that we now add the assumption, as Abel did, that
sufficiently many roots of unity are in the ground field k. Readers who are
bothered by this can take £ = C, the complex numbers. Nothing essential is lost by
this.

Theorem (Abel). Let f(x) =x" —s,x"" ' + .-+ +(—1)"s, be the general equation
of degree n over k. If n > 5 then this equation is not solvable in radicals.

Recall that f(x) = (x —x Xx —x,)...(x —x,) in L =K(x,,x,,...,x,). S,
acts on L by permuting the x;, and K = k(sy, s,,...,s,) is the fixed field. If
f(x) = 0 were solvable in radicals, we would have a radical tower E/K such that
L c E. Abel proceeds in two steps.

Step 1. If L is contained in a radical tower over K, then L /K is itself a radical
tower.

Step 2. If n > 5 then L /K is not a radical tower (in fact, Abel restricts himself to
the case n = 5).

When he discovered his proof, Abel was unaware that the proof of Step 2 had
been achieved years earlier by Ruffini. Ruffini did not give a proof of Step 1. It is
not clear that he realized it was necessary. That was the gap in his proof! So, the
proof of Step 1 was Abel’s essential contribution.

In the next section we will give a proof of Step 2 by a method different from
that of either Abel or Ruffini, although it is close in spirit to some of Ruffini’s later
proofs (he gave many). I have adapted it from the classic text of Burnside and
Panton [3]. The proof is short and elegant and uses nothing that was unavailable to
either Abel or Ruffini. In Section 6 a proof of Step 1 will be given which is in
essence that of Abel except for the use of the language of field theory and the
inclusion of more details than are given in the original paper. At the end of that
section we will also sketch a portion of Abel’s own proof of Step 1.

SECTION 5. With the previous notation still in effect, we will show that L /K
cannot be a radical tower if n > 5.

We re-emphasize that we are assuming that the base field k contains as many
roots of unity as needed.

Suppose

K=K,cK,cK,c --- CcK,=L

is a radical tower. Then there is a prime p and an element a € K* such that
K, = K(’\)/E). We will show that p = 2 and that @ = b? A where b € K* and A is
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the symmetric function defined at the beginning of Section 3. In other words, K, is
uniquely determined and is the field K(VA).

To prove this, set a = %_ and let 7 € §, be a transposition. Applying 7 to
a? =a we find 7(a)” = a and consequently, (1(a)/a)? =1 so that r(a) = {a
where {? = 1. Now apply = to both sides of the equation 7(«) = {a and one finds
a = 1({a) = {7(a) = {?a. It follows that either 7(a) # a for some transposition 7
and p = 2, or « is fixed by all transpositions. In the latter case, « is fixed by all S,
(use Fact 1 of Section 3) and is an element of K, contrary to assumption. The
proof shows that 7(a) = +a for all transpositions 7. It follows that o(a) = +a
for all o € §,. Now, every three-cycle is a square; in fact, (abc) = (ach)?. Thus, «
is fixed by three-cycles and so by all of A, by Fact 2 of Section 3. Since 7(a) = —a
for at least one transposition we now see this must be true for every transposition.
This property also holds for the polynomial 8. Consequently, a /8 is fixed by all
transpositions and so also by all elements in S,. Thus, /8 = b € K and so
a = a® = b*8*> = b> A which shows K, = K(YA) as asserted.

We will show that when n > 5, K, has no radical extension in L. This will
complete the proof that L /K is not a radical tower when n > 5.

Suppose ¢ € K and K, = K 1(%). Set y = q\/c—. By the first part of the proof,
A, leaves K, fixed. Let p be a three-cycle, and apply p to both sides of the
equation y? = c. One deduces that p(y) = {y where {7 = 1. Applying p twice to
the equation p(y) = {y yields y = p*(y) = {3y. Thus, either p(y) =y for all
three-cycles p or p(y) # y for some three-cycle and g = 3. In the former case, y is
fixed by A, and is in K, contrary to assumption. As we point out below, one need
not invoke Galois theory to establish this point. The conclusion is that g = 3. If
n > 5, A, is also generated by five-cycles (use Fact 3 of Section 3). Repeating the
same arguments shows that ¢ = 5. This contradiction establishes the result.

Remark 1. The fact that K, = K(VA) is the fixed field of 4, can be proven as
follows. Let y € L be fixed by A, and let 7 be a transposition. It is not hard to see
that a = y + 7(y) and b = y - 7(y) are both fixed by S, and so are in K. But, vy is
a root of the equation x? — ax + b = 0 and so must generate a quadratic exten-
sion of K in L. We have seen that K, = K(\/—A_ ) is the unique quadratic extension
of Kin L, and so y € K.

Remark 2. The group theory behind the proof is very simple and general. Let G
be a group generated by elements of order r and of order s. Suppose that
ged(r,s) = 1. Then,- G has no abelian quotients. For, if G/N is an abelian
quotient, it must be gengrated by elements of order r and elements of order s.
Since it is an abelian group it is annihilated by  and s, and so also by 1 which is
the ged of r and s. Thus, G = N. In the above proof we took G = A, for n > 5,
and r =3, s = 5.

SECTION 6. We now come to Abel’s proof of Step 1; if L/K is contained in a
radical tower it is a radical tower. We continue to assume that K =
k(s $,,...,5,) and that L is the splitting field of the generic polynomial
x" — s x""'+ .-+ +(=1"s,. However, the arguments are quite general and
apply whenever L /K is the splitting field of a separable polynomial over K, and K
contains sufficiently many roots of unity.

All the results we will need are in Abel’s original article [1, pp. 66—87] with
perhaps different formulations. The first Lemma is now a standard result.
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Lemma 1. Let F be a field containing a primitive q’th root of unity. If a € F* is not
a q’th power, the x? — a is irreducible.

If @ is a root of x? — a = 0 then every y € F(a) can be written in the form
y=ag+aa+ - +a, o' (1)
where the a; are in F.

Lemma 2. Assume that x? — a € F[x] is irreducible and that o is a root. Let vy be
an element of F(a) with v & F. Then there is a 3 € F(a) such that B? € F and

y=by+B+b,B*+ - +b,_ pI!
0 2 q—1

where by, b,,...,b, | € F.

Proof: Write y as in equation (1) above. Let 1 < k < g be the smallest integer
such that a, # 0. Set 8 = a,a*. Clearly, B? € F. For 1 <m < g we can find
integers r and s such that 0 < s < g and rq + sk = m. Then

a™ = (aq)r(a")s =c,B° withc, €F.
The desired expression for y now follows by substitution into equation (1).

Lemma 3. Let g be a prime, and { a primitive q’th root of unity. Then, for each
integer i,

) ) . 0 if qdoes not divide i,
A e R ¥ S .fq L
q ifqgdividesi.
Proof: Again, this is standard. If g divides i the result is clear. If g doesn’t divide i
one uses the formula for the sum of a geometric series.

Lemma 4. Consider the extension L /K. Let'y € L. Then the irreducible polynomial
for y over K splits into linear factors in L[ x].

Proof: Let y,,¥,,...,¥,, be the distinct values (conjugates) of y under the action
of the symmetric group. Then, g(x) = (x —y Xx —y,)...(x —y,,) has coeffi-
cients which are invariant under S, and so are elements of K. The irreducible
polynomial for y over K must divide g(x) and the result follows. (Of course, it is
easy to see that the irreducible polynomial for y over K is g(x)).

We now come to the main lemma which contains the crux of the argument.
Roughly speaking, it asserts that if a radical extension containing K is intersected
with L, the resulting pair of fields is again a radical extension. It might be
worthwhile at this point to remind the reader once more that we are assuming all
the roots of unity that arise are in the base field. If this assumption is not made,
the result may well be false.

Lemma 5. Let E/K be an extension field, q a prime, and a € E an element such
that x? — a € E[x]is irreducible. Let a be a root of x? —a = 0. Set M = E(a) N L
and My=E N L. If M # M, then M/M, is a radical extension. More precisely,
there is a B € M such that B? € M, and B generates M over M,,.
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Proof: 1et y € M, y € M,. By Lemma 2, we can find a 8 € E(a) such that
B?=b e E and
y=by+B+b,B*+ - +b,_ pi!
where the b, € E. Let g(x) € K[x] be the irreducible polynomial for y over K,
and set
G(x) =g(bo+x +byx> + -+ +b,_x?7").

G(x) is in E[x] and has B for a root. By Lemma 1, x? — b € E[x] is irreducible.
Thus x? — b divides G(x). It follows that G({‘8) = 0 where { is a primitive g’th
root of unity, and [ is any integer, and so the numbers

y =y1 = bO + B + b2B2 + - +bq_1Bq_1

Yy =bo+ (B + by °B* + -+ +b,_{7T'BI! o

Y, = bo + gq—IB + b2{2(q—1)32 4+ e +bq_1§("—1)("’1)ﬁq_1

are all roots of g(x). By Lemma 4, we see that the numbers y,, y,,..., y, are all
in L (we implicitly assume that L and E(a) are contained in some common
extension field). Multiply the i’th equation in (2) by ¢!~/ and add all the resulting
equations. Using Lemma 3, we find

1 ¢4
B=_

Z {l—iyl. e€L.
i=1
Thus Be L NE(@=Mand B=beLNE=M,.
It remains to show that B generates M over M,. Let y € M. We can write
y=cotcB+e,BP+ - +c, BT ¢, €E.
It will suffice to show that the coefficients ¢; € E N L = M,,. To do this one
repeats the above argument to show that
v, =¢o + lei_lﬂ + e +£(i—1)(q—1)Bq—1
isin L N E(a) =M for i = 1,2,...,q. Multiply y; by {*~9 and add up over i

ranging from 1 to g. Using Lemma 3 once more we find
q

Bk = X M0y e M.

i=1
Since B € M, it follows that ¢, € M N E = M, which completes the proof.
This argument is so pretty and ingenious, one is lost in admiration! We are now
ready to state and prove the main result.

Theorem. If L /K is contained in a radical tower, then L /K is itself a radical tower.

Proof: Suppose that E/K is a radical tower and that L ¢ E. We have
K=E,CcE CE,Cc -+ CE, =FE
where E,;, |, = Ei(q\'/a_,.), g; being a prime, and a; € E,.
Now, consider the tower
K=E,NnLCE,NLcC -+ cE,_,NLCL. (3)
If E,,, N L =E; N L there is nothing that need be said. If £, ,, "L # E, N L
then Lemma 5 shows that E;, ., N L/E, N L is a radical extension (of degree g,).

Thus, after eliminating equalities, equation (3) demonstrates L as a radical tower
over K.
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This completes the proof of Step 1 of Section 4. Since we proved Step 2 in the
last section, the proof that the general equation of degree 5 or greater cannot be
solved in radicals is now complete.

Abel’s original proof of Step 2 is different from the one we have given, and we
want to give an idea of how he did it. To do this we sketch Abel’s proof that any
radical extension of K inside L has degree 2. We will assume, as Abel did, that we
are dealing with the general equation of degree 5.

Let K € K, € L and suppose K, = K(a) where a? = a € K and g is a prime.
Let m be the number of distinct values that « takes on under the action of S (i.e.
the number of distinct conjugates of «). As we have seen, m is the degree of the
irreducible equation for a over K. Since x? — a is irreducible it follows that
m = g. Since |Ss| = 120, g must divide 120, i.e. ¢ = 2, 3, or 5. By Cauchy’s result,
Fact 4 of Section 3, g cannot equal 3. Thus g = 2 or ¢ = 5, and we must show
g = 5 is impossible. Abel does this by first showing that the only fields between K
and L of degree 5 over K are the fields K(x,), where i = 1,2,3,4,5. If g = 5 we
can then assume that K(a) = K(x,). By modifying «, if necessary, as in the proof
of Lemma 2, we can write

X, =ay+a+aa’+aa®+a,a g, €K
Applying the same technique as in Lemma 5 one shows

a = %(x1 + 0 T+ T+ ) (4)
where ¢ is a primitive fifth root of unity. The contradiction arises from the fact
that under the action of Ss, @ has five values, but the right hand side of (4) has 120
values.

Abel goes on to show that K, = K(VA) and that K(VA) has no radical
extensions in L. The proof of the latter assertion is similar to the one we have just

given. If I am not mistaken there is a minor flaw in Abel’s proof that K, = K(\/K ),
but this is very minor and is easily corrected.

SECTION 7. We conclude by indicating some further developments. In this
section we continue to assume that we are in characteristic zero, but will no longer
demand that roots of unity be in the base field.

Abel was fascinated with the theory of equations. He published three articles on
the subject, and a fourth appears among his posthumous work (see item XVIII of
Volume II of his collected works [1]). He was at work on a major new memoir on
this theory when he died, tragically, at the early age of 27.

Having proved that the general equation of degree 5 or greater cannot be solved
in radicals, the thrust of his later work was to find conditions on special equations
which insure that they can be solved in radicals. His best known result in this
direction is the following proposition.

Proposition 1 (Abel). Let f(x) € k[x] and suppose that 6,,0,,...,8, are its roots
in some extension field of k. Suppose each 0, is a rational function of 0, i.e. each
0, = R(0,) where R(x) € k(x). Suppose further that for each pair i and j we have
Ri(Rj(el)) = Rj(Ri(91))'
Then f(x) = 0 is solvable in radicals.
The reader can see that the hypotheses can be translated as follows. The

splitting field of f(x) is generated by 6,, and the Galois group of f(x) is abelian.
Thus the proposition is a consequence of Galois theory, though this is not, of
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course, how Abel proved it. It is probably because of this result that Abel’s name is
attached to groups in which the elements commute with one another.

Abel never published a general criterion for when an equation is solvable in
radicals, but in a letter to Crelle dated October 18, 1828 (see [1], Vol. 2), he writes

“Si trois racines d’une équation quelconque irréductible dont le degré est un nombre premier,
sont liées entre elles de sorte que 'une de ces racines puisse étre exprimée rationellement par le
deux autres, ’équation en question sera toujours résoluble a I’aide de radicaux.”

Roughly translated, this reads “If every three roots of an irreducible equation of
prime degree are related to one another in such a way that one of them may be
expressed rationally in terms of the other two, then the equation is solvable in
radicals”. Abel gives no indication of how he came to this result, or how he proved
it. It is remarkable in part because the statement is almost identical to one of the
principal results of Galois’ fundamental memoir of 1830, which as we have already
pointed out was not published until 1846. Here is Galois’ statement of the result as
translated into English by Harold Edwards in [5].

Proposition 2 (Galois). In order for an irreducible equation of prime degree to be
solvable in radicals it is necessary and sufficient that once any two of the roots are

known, that the others can be deduced from them rationally.

One can rephrase this result in more modern language. Let f(x) € k[x] be

irreducible of prime degree, and 6, 0,,..., 6, be its roots. Given any three roots
6,,9;,0,, there exists a rational function R(x, y) € k[x, y]such that 6,, = R(6,, 6,).

Or, more simply, the splitting field of f(x) is generated by any two of its roots.

Considering the simplicity and beauty of this result, it is somewhat surprising
that it is not better known. A proof is outlined in the exercises to Section 8§,
chapter 4 of [6]. A complete proof can be found in Section 5 of Chapter 14 of [7].
Edwards [5] also gives a complete proof, but since he uses Galois’ original language
it is somewhat hard to read.

It might be objected that this criterion is not useful because the hypothesis is
very difficult to check. As it turns out, it can be quite useful. In 1856, L. Kronecker
proved the following interesting result (see [4]).

Proposition 3 (Kronecker). Let Q be the rational numbers, and suppose f(x) €
Qlx] is an irreducible polynomial of prime degree. If f(x) = 0 is solvable in radicals,
then either f(x) has exactly one real root, or all its roots are real.

Kronecker’s proof uses'the methods of Abel. He was clearly unaware of Galois’
work, since this proposition is an immediate corollary of Proposition 2. If 8, and 6,
are any pair of real roots, and R(x, y) € Q[x], Then clearly R(8,, 6,) is also real,
and so all the roots must be real.

It is easy to use Proposition 2 to produce polynomials in Q[x] which are not
solvable in radicals. For example, let ¢ > 5 and p be primes, and a > 2 be an
integer. Let f(x) = x9 — apx — p. By Eisenstein’s criterion, f(x) is irreducible.
We claim it has exactly three real roots. For x large and negative, f(x) is negative.
At x= -1, f(-D=—-1+pla—-1 >0 At x=0, f(0)= —p < 0. Finally,
when x is large and positive, f(x) is positive. By the intermediate value theorem,
f(x) has at least three real roots. However, f'(x) = gx~' — ap has exactly two
real roots, so f(x) must have exactly three real roots. By Kronecker’s result it
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follows that f(x) = 0 cannot be solved in radicals. The simplest special case is
x° —4x — 2.
It is of some interest to point out that a l-adic version of Proposition 3 is valid.

Proposition 31. Suppose f(x) € Q[x] is of prime degree. Let Q, denote the field of
l-adic numbers. If f(x) = 0 is solvable in radicals, then either exactly one root of f(x)
is in Q, or all its roots are in Q,.

As before, the proof is an immediate consequence of Proposition 2.
Here is an example of how to use this. Consider the polynomial

f(x) =x°+3x* +3x% + 6x2 + 3x + 6.

f(x) is an Eisenstein polynomial at 3 and so it is irreducible over Q. Considering
f(x) modulo 2 we find

f()=x"+x*+x°+x=x(x+1)(x* +x+ 1) (mod2).

Since f(x) has exactly two roots modulo 2, both of which are simple roots, one can
invoke Hensel’s lemma to conclude that f(x) has exactly two roots in Q,. It
follows from Proposition 3/ that f(x) = 0 cannot be solved in radicals.

We conclude by using these ideas to answer the question; do there exist
polynomials in Q[ x] of prime degree, all of whose roots are real, but which are not
solvable in radicals? Here is an amusing way to show that the answer is yes. Let p
and [/ be primes. Let f,(x), f,(x), and f;(x) € Q[x] be polynomials of the same
prime degree g > 5 such that f(x) is an Eisenstein polynomial at p, f,(x) has
exactly two distinct roots modulo /, and f,(x) has g distinct real roots. Use the
weak approximation theorem to find a polynomial f(x) € Q[x] which is p-adically
close to f|(x), l-adically close to f,(x), and close in archimedean absolute value to
f5(x). Then, since f(x) is p-adically close to f,(x) it is irreducible. Since it is close
to f4(x) in the archimedean absolute value, it has all its roots real. Finally, since it
is l-adically close to f,(x), it has exactly two distinct roots in Q, and by Proposition
3/ it is not solvable in radicals.

All of this provides a nice, if simple, example of the fruitful way old and new
mathematics can be combined to good effect.
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