MODULAR FIELDS*
SAUNDERS MAC LANE, Harvard University

1. Introduction. The general theory of modular fields, though elementary in
its presuppositions, offers an instructive cross-section of modern algebraic meth-
ods. These fields exhibit the generality of subject-matter inherent in abstract
algebra, and at the same time illustrate the intimate connection between alge-
braic and arithmetic problems.

Modular fields arise first in number theory in the consideration of congru-
ences with a prime modulus p. For integers a and b the ordinary definition states

that
a = b (mod p) means that p divides (a — b).

Any integer a on division by p yields a quotient ¢ and a remainder 7,
a=qp+r, 0=r<p;

hence a =7 (mod p), where the remainder 7 is one of the integers

(1) ) Fpe 0,1,2,---,p—2,p—1.

Any integer is congruent to one of those in this set of p numbers.

With these numbers alone one can still carry out algebraic operations, pro-
vided one adds and multiplies these numbers in the ordinary fashion, and then
reduces the answer by congruence to one of the numbers (1). For example, if
p=35, the product 2-3=6 should really be 2-3=6—5=1. In this fashion one
can make multiplication and addition tables for p=35, as shown. It is strange
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that this idea has not appeared moret in texts on number theory, for the idea
is an essentially simple one. One can introduce it by the intuitively natural
algebra of the words “even” and “odd,” as

even ¢ even = even, even * odd = even, odd * odd = odd,

even + even = even, even 4 odd = odd, odd + odd = even.

This is just the algebra of integers modulo p=2.

* An address delivered before the Mathematical Association of America at Columbus, Ohio,
December 30, 1939.
t Cf. remarks in Weiss [26].
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A congruence modulo p has all the properties of an equation; congruences
can be added and multiplied term by term, and the relation of congruence is
reflexive, symmetric, and transitive. If the modulus p is fixed, one might just
as well dub congruence “equality.” Every integer is then “equal” to one of the p
symbols, 0, - - -, p—1, and the sums and products of these symbols, so identi-
fied, give exactly the algebra of the integers modulo p, as described above.

If one objects to rebaptizing “congruence” by fiat, one may adopt the more
sophisticated procedure* of replacing each remainder » modulo p by the class 7,

of all integers 7, r+p, +2p, - - - congruent to it. Such “congruence classes” are
then added and multiplied according to the rules
(2) 75+ Sp = (7 + 9)p, p Sp = (75).

Furthermore the congruence classes 7, and s, will be equal (i.e., will contain
the same elements) if and only if the integers # and s are congruent, so the de-
sired “equality” has now been properly introduced. In any event the integers
modulo p form a finite set of objects (1) satisfying all rules of algebra.

The presence of such arithmetic objects, which are certainly not ordinary
numbers but which still obey ordinary algebra, is the reason why modern alge-
bra is abstract. To separately discuss the algebra of numbers, then the algebra
of congruence classes, then the algebra of functions, and so on would be most
inefficient. Instead, theorems are better proved for any (abstractly conceived)
system of objects whatever to which the basic rules of algebra apply.

These laws of algebra for a set F of objects, such as the integers modulo p,
are codified as follows: For @ and b in F there is uniquely defined a sum a+b
and a product a-b. This product is commutative [ab=ba] and associative
[a(bc) = (ab)c], as is also the sum. The distributive law a(b+c) =ab+ac holds
for all a, b, and ¢. The set F contains a zero 0 and a unit 1, with the charac-

teristic properties
a+0=a=0++aq, lla=a=2a-1,

respectively. Finally, subtraction and division are possible, which is to say that
the equations ¢+x=0 and b-y=1 have solutions x and y in F, except when
b=0. Any set F of elements with all these properties is called a field. One may
say that a field is any system of elements within which addition, subtraction,
multiplication, and division (excluding division by zero) can be carried out in
the usual fashion.

Well known fields are: (a) the set of all rational numbers; (b) the set of all
real numbers; (c) the set of all complex numbers. The field (1) composed of the
integers modulo p is often called the Galois field GF[p]. A modular field is any
field containing such a GF[p].

These fields GF[p] are not the only finite fields. One may construct larger
fields by simply adjoining to a GF[p] the roots of certain algebraic equations.
‘The process resembles the construction of the complex numbers from the field R

* Cf. Albert [1, p. 7]; van der Waerden [27, p. 13]; or Mac Lane [17, Chapter I].
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of real numbers. Here one adjoins to R a symbol ¢ representing a root of the
equation x2+1=0; the field C of all complex numbers a-+b7 then contains
everything which can be expressed rationally in terms of < and real numbers.
The fact that C is generated over R by adjoining 7 is symbolized by C=R(3).
Note in particular that the polynomial x2+1 used to generate this extension is
irreducible over R, because it cannot be factored into polynomials of smaller de-
gree with coefficients in R.

In similar vein consider the polynomial f(x) =x24x+1 over the field F; with
two elements (the integers modulo 2). Neither f(1) nor f(0) is zero, so this poly-
nomial f(x) has no roots in Fy, hence has no linear factors, hence is irreducible
over F,. Invent a symbol % to denote a root of f(x) =0, so that

uw+u+1=0, = —u—1=u-+1.

(Recall that —1=+1, modulo 2.) All higher powers of u can thereby be suc-
cessively reduced to linear expressions in #. Reciprocals can be similarly re-
duced, so that the field generated by # contains all told just four linear
expressions: 0, 1, #, u+1. These combine under addition and multiplication

+ 0 1 u |ut+1 . 0 1 u |ut+1
0 0 1 u |ut1 0 0 0 0 0

1 1 0 |ut+1| u 1 0 u |u+1
u w |u+1| O 1 u 0 u |u+1 1
ut1{ut1| u 1 0 ut+1| 0 (ut1| 1 u

as shown in the tables. The process of obtaining this field by adjoining to the
original F; a root # of x24-x-+1 is known as algebraic extension of Fy, and the
resulting field F»(u) is called a Galois field of 4 elements.

For each prime p and each integral exponent z one may analogously extend
the field of integers modulo p to a field consisting of exactly* p” elements. As
E. H. Moore first showed, any two fields with p» elements each are algebraically
indistinguishable (isomorphic). The arithmetic origin of all these finite fields is
the study of algebraic integers. If p is a prime ideal in a field K of algebraic
numbers, then the congruences modulo this ideal behave as do ordinary con-
gruences, and yield like them a finite field with p» elements, where p" is the
so-called “norm?” of the ideal p. The properties of the resulting finite fields play
an essential réle in the class field theory and in the study of rational division
algebras (Albert [2, ch. 9]).

2. Characteristics. The integers modulo p have one peculiar property. The
unit 1, added p times to itself, yields =0 (mod p) as answer; hence

(3) 1+1+4+---4+1=0, (p summands).

* See detailed discussion of finite fields in van der Waerden [27, §31]; or Albert [1, p. 166]-
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On multiplying this equation by any integer a, one has
(4) a+a+ - 4+a=0, (p summands),

in the Galois field F,. Any field F, all of whose elements ¢ have the property (4),
is called a field of characteristic p, or a modular field. It can be shown* that any
non-modular field has an infinite characteristic, in the sense that ¢ 0 entails
a+a+ - - - +a5%0, for any number of summands. Any finite field of p* ele-
ments essentially contains the integers modulo p, hence satisfies (3) and there-
fore (4). Thus any finite field is modular.

Watch the effect of (4) on the binomial expansion,

(¢ + b)? = a? + par~'b + (p(p — 1)/2)a?~ 202 4 - - - + pab?~! + b?.

According to the genesis of this expansion, the term pa?—'b second on the right
really represents a sum of p products a?~'b+a?~b+ - - - +a?~'. In a field of
characteristic p this sum is zero. The other intermediate terms of the binomial
expansion suffer the same fate, for each binomial coefficient p(p—1)/2, - - -, p
is a multiple of the characteristic . One has left only

(5) (a + b)? = a? + b7, (a, b in F of characteristic p).

As S. C. Kleene has remarked, a knowledge of the case p=2 of this equation
would corrupt freshman students of algebra!
The pth power of a product is always a product of pth powers, so the rules

(6) (@ + b)? = a? £ b7, (ad)? = a?br, (a/b)? = ar/bP

hold in any field of characteristic p. These rules state that the process of raising
to a pth power leaves the operations of addition, division, eéc., unchanged. This
process yields a correspondence

n a«—— a?, (from F to F?),

which carries the field F into the field F» composed of all pth powers from F.
The correspondence is one-to-one, for the equality of two pth powers a?=>5b?
would entail 0=b?—a?=(b—a)?, and hence b=a. To summarize, the corre-
spondence a«<——a? is an isomorphism, where an isomorphism between two fields
is defined to be any one-to-one correspondence which preserves sums and prod-
ucts.

Repeated application of the rules in (6) shows that the pth power of any ra-
tional expression can be computed by applying the exponent p to each term or
factor in the expression. In particular,

(8) A4+14---F+Yr=1r412r4 ... F12=14+14---+1

holds in the field of integers modulo p. If we use m summands here, this is
m?=m. In terms of congruences this is m?=m (mod p), which is the little
Fermat Theorem!

* Cf. Albert [1, p. 30]; Mac Lane [17, §21]; van der Waerden [27, §25].
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3. Algebraic and transcendental extensions. Our major concern is the struc-
ture of the general modular field, finite or infinite. In the analogous case of
fields of numbers it is customary to distinguish the algebraic numbers, such as
\/3, which satisfy some polynomial equation with rational coefficients, from the
transcendental numbers (e, w), which satisfy no such equation. In general, let
a given field F be contained in any larger field K. An element « of K is algebraic
over Fif u is a root of a polynomial

9) (%) = aux™ + @uax™ ™+ Gnoa™ 2 4 - -+ @12 + a0

with coefficients a; in F. If this equation f(x) =0 for # be chosen with a degree
as small as possible, the polynomial f(x) is ¢rreducible over F. For, a reducible
f(x) would have factors f(x) = fi(x)f2(x) with coefficients in F, and » would satisfy
one of the equations fi(x) =0, fa(x) =0, of degree smaller than #. An element u
in K not algebraic over F is called transcendental; for u transcendental, f(u) =0
implies that all the coefficients in f(x) are zero.

Important is not the element % in K by itself, but the field F(x) which it
generates. The field consists of all rational combinations of % with coefficients
in F, and is called a simple extension of F, “algebraic” or “transcendental” ac-
cording as u is algebraic or transcendental over F. This dichotomy is the root of
one of the basic results found by Steinitz in his pioneering investigations of
fields (Steinitz [23]): Any modular field can be obtained by successive transcen-
dental and algebraic extensions of a field (isomorphic to the field) of integers modulop.

Such extensions can be used not only to build up a given field K from a sub-
field F, but also to manufacture new fields from old. Given a polynomial f(x)
irreducible over a field F, one can concoct a symbol % for a root of this poly-
nomial and construct therewith an algebraic extension F(u#) generated by the
root #. In point of fact, F(u) consists of elements expressible as polynomials
boFbiu4 - - - +b,_u1, with coefficients in F and of degree less than the de-
gree n of the given f(x).

Alternatively, a variable ¢ over a modular field gives rise to rational functions

gt)  bot+ bt - bt
h(?) co+cat+ -+ cat™
Under the usual rules for adding and multiplying such expressions, the totality
of these rational functions is a field F(¢) which is a simple transcendental exten-

sion of F. If Fis a finite field, the resulting field F(¢) is the simplest instance of
an infinite modular field.

(10) (ci, b; in F, not all ¢;=0).

4. Inseparable equations. Over the transcendental extension F(f) there are
in turn algebraic extensions, such as that generated by a root of the polynomial
f(x)=x?—¢. This f(x) is irreducible over F(2), for if it could be factored, the
denominators in ¢ could be eliminated, and we could write x* —¢=g(x, )h(x, 1),
with factors which are polynomials in x and ¢ Since the product of these two
polynomials is linear in ¢, one of them must be linear in ¢, while the other cannot
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involve ¢ at all! This is absurd unless one of the factors is a constant; hence f(x)
is indeed irreducible.

But trouble arises with the introduction of a root # for this equation
x?—t=0. Since this % is a pth root of ¢, we have a factorization

(11) xP — = x? — u? = (x — u)?,

according to the rule (6) for the pth power of a difference. This means that »
is a p-fold root of x»—¢, so this irreducible polynomial has all its roots equal,
and ¢ has only one pth root.

This differs drastically from the usual situation with ordinary complex »th
roots, for an irreducible polynomial f(x) with rational coefficients can never have
a multiple root. Let us trace the proof of this fact. If f(x) has a complex number »
as m-fold root, then f(x)=(x—7)"g(x), with m>1. The derivative is

(12) f'(x) = (x = N mg(2) + (2 — 1 (¥)].
Since m >1, this insures that f(x) and f'(x) have a common factor (x—r)""1,
not a constant. But the highest common factor of f(x) and f’(x) can be found by
the euclidean algorithm, using only rational operations. This highest common
factor then has rational coefficients, and its degree is at most that of f'(x). It
must divide f(x), counter to the assumed irreducibility of that polynomial.
Can this contradiction be deduced for a polynomial f(x), irreducible not over
the rationals but over some modular field, and having a multiple root 7 in a
larger field? The derivative f'(x) of calculus is no longer available, but for any
polynomial f(x) as in (9) a “formal” derivative can still be defined as

(13) (%) = na.amt + (0 — Danax™? + (n — Dapox™* + - - + @

Here the coefficient 7a; of the term x*~!is to denote the sum

(14) ias=ai+ a;+ - - + ai, (4 summands).

Apply this derivative to the troublesome polynomial x?—¢ of (11). We find
(w2 — 8) = pxPrl = x7"14 ... 4+ 5771 =0, (p summands).

No wonder that an argument on the H. C. F. of x»—¢ and 0 runs aground!
Looking back, one sees that the argument following (12) about multiple roots
will work, except in such cases when f’(x) vanishes.

When do all coefficients ia; of f/(x) vanish? In a modular field ¢a;=0 means
either that a; itself is zero, or that the number ¢ of summands, in (14), is a
multiple of the characteristic p. A coefficient a; can thus differ from zero only
for terms a.x with exponent =0 (mod p). The vanishing of f’(x) means there-
fore that f(x) can involve x only as powers of x?, so that f(x) has the form

(15) g(x) = bna™® 4 bpgx ™ VP 4 - bix? + b

An irreducible polynomial g(x) of this form must always have p-fold roots. Such
a polynomial is called inseparable (its roots cannot be “separated” into distinct
roots). Many properties of ordinary equations fail for inseparable equations.
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An element u algebraic over a modular field F is called separable over F if
the irreducible equation for # is separable (i.e., has no multiple roots). Of the
inseparable algebraic elements the simplest examples are pth roots which satisfy
inseparable equations x?=a. Consider an arbitrary inseparable element %, root
of an inseparable polynomial (15) of degree mp. This polynomial involves only
pth powers of its variable, so %? is a root of an equation

(16) h()’) = bmym + bm—lym—1 + A + bly + bo,

of smaller degree m. The adjunction of the root % to our field F can then be
effected in two stages

F — F(u?) — F(u?, /u?) = F(u).

The element u? first adjoined may still belong to an inseparable equation
h(y)=0; in that event the process can be reapplied to get u? satisfying an
equation of still smaller degree. The adjunction of an inseparable algebraic ele-
ment to a modular field can be accomplished by adjoining successive pth roots
of a suitable separable algebraic element (Steinitz [23]). This reduction of alge-
braic extensions to separable extensions followed by extensions by pth roots,
indicates that the novel properties are concerned chiefly with the latter type
of extension.*

5. Perfect fields. There are no inseparable algebraic elements over the field
of integers modulo p, for this field already contains the pth roots of all of its
elements—indeed, the Fermat Theorem, a? =g, asserts that every element is its
own pth root. A perfect field F of characteristic p is a field in which each element
a has a pth root. Over such a field each pth root equation x?=aq is reducible, as
x?—a=(x—+/a)?. More generally any inseparable polynomial g(x) involving
only pth powers of x must be reducible over a perfect field. For, each coefficient b;
of the polynomial g(x) in (15) has in F a pth root b}'?; according to the simple
behavior of pth powers this gives a factorization

g(x) = (b5 + butaz™ " o+ b T 4+ by D)

Every finite field F is perfect, hence has no inseparable algebraic extensions.
To prove this, recall the correspondence a«——a? of (7), which is a one-to-one
correspondence between all elements of F and those elements a? which are pth
powers. Since there are but a finite number of elements in F, there must be the
same number of pth powers. This means that every element is a pth power.

A simple transcendental extension F(f) of a modular field can never be per-
fect. To verify this we need only produce an element with no pth root in the
field. The variable ¢ itself is such an element, for if # had as pth root some ra-
tional function g(f)/A(f) in the field, ¢ would equal [g(¢)/h(f)]?, a pth power

* Technically, the least power g = such that 4 is separable over F is known as the exponent
of u over F. The degree of u over F is the degree of its irreducible equation, while the degree of u¢
is known as the reduced degree of u.
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which can be calculated by the rule (6). In the notation of (10), the result is

(cotoit” 4+ +ont"Y=1bg+ bit’ + - + bt
an identity which clearly cannot hold good. For similar reasons a multiple tran-
scendental extension F(4, f, - - -, s), consisting of all rational functions of #
independent variables ¢;, cannot be a perfect field.

6. Galois theory. To what extent can one generalize to modular fields the
ordinary properties of fields of rational and algebraic numbers? A major topic
is the Galois theory, which analyzes the solvability of a polynomial equation
f(x) =0 over a field F. The roots 7y, - - -, 7, of this equation generate over F a
root field

(A7) K =F(ri, 72, -, 1), where fx) = (x —r)(x —r2) - - - (x — 72);

the Galois Theory studies K in terms of its group of automorphisms, each of
which is an isomorphism of the field K with itself, induced by a permutation of
the roots 7;. Should these roots all be equal, the only such permutation is the
identity, and the theory breaks down. Only if one assumes that the roots are all
distinct, i.e., that f(x) is separable, does the standard theory of root fields hold*
over a modular F.

This straightforward generalization does not suffice for irreducible insepara-
ble polynomials. The first process to fail is the construction of a “Galois resol-
vent,” which is an equation with a root # in K such that all the roots 7; can be
rationally expressed in terms of this single quantity #. In terms of fields, this
means that the multiple algebraic extension K= F(r, - - -, r,) can be repre-
sented as a simple extension F(%). Over an imperfect field F there may be multi-
ple algebraic extensions which cannot be so represented. Consider for instance
the rational function field,

(18) Fo = P(t, t2), P perfect,

in two independent variables # and #. An adjunction of pth roots will yield an
extended field

(19) Ko = Fo(uy, s); ut = I, g = l2,

which consists of all elements expressible as polynomials

(20) w = 2 aitate = ki, ua), (i,j=0,---,p=1),
Wi

with coefficients a;; in F,. This field K, is not a simple extension Ko= Fo(w) for

any w. For, if there were a generator w, then by the rule for pth powers,

» P ip Jip p 7
w = z , Qi Uy = z , Qijhits
i, 7

* Cf. Albert [1, ch. VIII]; van der Waerden [27, ch. 7]; Mac Lane [17, §68].
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isin Fy, so w is a pth root of an element of F,. That such a single pth root could
generate the field K, containing two independent pth roots u; and u; is unreason-
able. This hunch can be substantiated by an argument on the degree* of the
extension K, of F.

If a multiple extension does not have one generator, what is then the mini-
mum number of generators? Miriam Becker [6] has recently found the answer.
Over the particular field P(#, ¢) of (18) it appears that any multiple algebraic
extension can be expressed by two generators, just as in the case of the special
extension K, of (19). The underlying reason is the presence of just two inde-
pendent pth roots, v/#; and v/, not in the field P(t, t:); the pth root of any
other rational function g(4, %) in the field can be expressed by the rule (6) in
terms of these two pth roots, together with pth roots of coefficients which al-
ready lie in the perfect base field P.

Over any modular field F one calls the 7 pth roots @!/?, al/?, - - -, @' p-in-
dependent if no one of them can be rationally expressed in terms of F and the
others. Becker proves that any multiple algebraic extension of an imperfect field F
can be generated by m elements, where m is the maximum number of independent
pth roots over F. If m=0, F is perfect: if m =1, any multiple algebraic extension
is simple, as shown by Steinitz. :

7. Derivatives. The solution of an ordinary equation f(x) =0 by radicals (if
possible) proceeds in successive stages which correspond to successive fields ly-
ing between the coefficient field F and the root field K. For a separable equation
the whole array of possible intermediate fields is finite—but not so for some in-
separable extensions. Between the fields F, and K, of (19) lie infinitely many
distinct fields Fo((4+£3)""), with m=1, p41, 2p+1, - - - . For a separable
equation the fields intermediate between K and F can be put into one-to-one
correspondence with the sub-groups of the Galois group of automorphisms of K
over F. This certainly fails for an inseparable extension like (19), for in that case
the Galois group of K, over F, consists of the identity alone and so has no proper
sub-groups to correspond to intermediate fields. Specifically, the Galois group
consists of all isomorphisms of K, with itself which leave fixed each element in
the base field Fy; but an isomorphism leaving fixed the elements # and £, of F,
must likewise leave fixed their unique pth roots #; and %z and hence must leave
all elements of K, fixed.

For this description of intermediate fields by the Galois group Jacobson has
found a substitute, in the special case of extensions K obtained by adjoining any
number of pth roots to a modular field F, as

1/p 1/p 1/p

(21) K=F(a ,a , -, a ), each ¢; inF.

By a piece of poetic justice, his solution depends on exploiting the very formal

* This degree is the maximum number of elements of K, “lmearly independent” over Fo. This
maximum is #°, for any w is linearly dependent on the p elements w4, of (20). For a simple exten-
sion Fo(w) the degree would be only p. Hence Fo(w) cannot equal K.
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derivatives whose misbehavior (¢f. §4) is at the root of inseparability. For ex-
ample, in the field K, of (19) one has two “derivative” operators D; and D,,
defined for the arbitrary element w=~5h(u;, u;) of (20) by

(22) h(ul, '142)D1 = ah(ul, Mz)/aul, h(ul, Mg)Dg = ah(u1, %2)/3%2.

This time the properties of pth powers are fortunate, for uiDy=pup~1=0,as it
ought to be, for #f =1, is in the base field and so should have derivative 0 accord-
ing to the definition (22). These derivatives can be used to characterize sub-
fields of K,; for example, the sub-field Fo(%;) consists of everything annihilated
by the operator D, (i.e., of all w with wD,;=0).

In general, Jacobson considers [12] all formal differentiation operators D
which map K into itself by a correspondence w—wD which carries elements of F
into zero and which obeys the usual formal rules for differentiation:

(v + w)D = 9D + wD, (vw) D = v(wD) + (D)w.

From any two such operators D; and D; one may construct new differentiations
D, +D,, D, and Dy, for ¢ in F. Furthermore, the commutator [D;, D;]= DD,
—D,D, is again a formal differentiation. This commutator satisfies the identity

[[Ds, Ds], Ds] + [[Ds, Ds], Di] + [[Ds, D], D2] = 0,

which is one of the essential postulates for a Lie algebra. The set € of all differ-
entiations is in fact a Lie algebra over the base field F. This algebra acts as a
substitute for the Galois group of a field K of type (21), in the sense that there
s @ one-to-one correspondence between the fields intermediate between K and F and
the restricted Lie sub-algebras of the algebra & of all formal differentiations of K
over F. For this purpose a restricted sub-algebra of ¥ is a sub-set &’ of  which is
itself a Lie algebra and which is restricted to contain D for each D of &’.

8. Algebraic geometry. A skew curve can be represented as the intersection
of two surfaces, which may often be taken as cylinders
with axes parallel to the 2z and y codrdinate axes, respectively. If f and g are
polynomials, the intersection of these cylinders is an algebraic curve. Alterna-
tively, x may be viewed as a quantity transcendental over the field C of complex
numbers; the polynomial equations then make the quantities y and z algebraic
over the field C(x) of rational functions of x. All told they give a field C(x, v, 2)
generated by “algebraic functions” y and z of x. This field is the algebraic invari-
ant of the curve (23). The ordinary analytic theory of these algebraic function
fields can be developed, without using the geometry of the Riemann surface, if
the base field C of complex numbers is replaced by a perfect modular field P
or even by an imperfect one.*

* Cf. general discussion of these abstract algebraic functions in Mac Lane-Nilson [19] or
Schilling [21]. Especially interesting is the introduction of a Riemann Zeta function when P is
finite (Hasse [9]), the peculiar behavior of the Weierstrass points whenever P is modular (Schmidt
[22]), and the generalizations of Abelian functions (Schilling [20]).
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In an #-dimensional euclidean space an r-dimensional algebraic manifold can
be described as the set of points common to 7 —7 suitable algebraic hypersur-
faces. These hypersurfaces may be taken, as in (23), in the form of “cylinders”

(24) filys, - ) = oy, - Ve Yeg2) = - = fue(91, 0 Iry Y8) = 0,

where each f; is an irreducible polynomial actually containing y,,:;. As coeffi-
cients in (24) we use not complex numbers but elements from a perfect modular
field P. If this field P is finite, this means that we are considering a manifold in
some finite affine (or projective) geometry, consisting of a finite number of
“points” specified by coérdinates in P. Algebraically, the symbols y;, - - -, ¥,
related by (24) generate a field K=P(yy, - - =, Yr, Yr1, = * * , Yn), consisting of
all rational functions of these quantities, subject only to the rules of algebra and
the special conditions (24). This field is obtained from the base field P by r suc-
cessive simple extensions by the transcendentals y;, - - - , ¥,, followed by n—r
successive algebraic extensions by the roots y,1, - - -, vy, of the polynomial
equations (24). In a sense, the geometry of the manifold depends on the struc-
ture of this field.

What of the presence of inseparable equations in the definition (24) of such a
manifold? Suppose, for instance, that the equation f;=0 is inseparable in y,41,
so that this variable appears only as a pth power. Certainly this could not
simultaneously be the case for all the variables yi, - - -, ¥,, ¥,41 in fi, for in that
event we could extract the pth root of every term in the equation f;=0, thus
making fi=(g1)?, counter to the assumed irreducibility of fi over the perfect
field P. Suppose then that y; is one of the variables which does not appear in
filyr, - -+, ¥r, ¥r41) only as a pth power. The equation fi(yi, - - -, ¥r41), which
originally defined y,4; inseparably over the field P(yy, - - -, ¥,), can be turned
about and viewed as a definition of y; as a quantity separable and algebraic
over the field P(ys, - - -, ¥+ ¥r11), generated by the 7 independent transcenden-
tals ys, - - -, ¥,41. A further juggling of the independent variables can then be
applied to any subsequent equations of (24) which may be inseparable. Hence
the result: If a field K=P(y, - - -, ¥,) is obtained from a perfect field P by adjoin-
ing a finite number of elements yi, - - -, Y., one can find for K a generation
K=P(t, -, tr; 41, -+ + , Un_r) tnvolving r simple transcendental extensions by
variables t;, followed by n—r separable algebraic extensions. Whenever independ-
ent transcendents #; in K have this property, that every element in K is separable
and algebraic over P(fy, - - -, t,), we say that the &, - - -, ¢, form a separating
transcendence basis for K over P, ’

This construction of separating transcendence bases was discovered inde-
pendently for different purposes: by the author, in connection with Albert’s
theory of pure forms (Albert [4]); by van der Waerden [28], for a new proof of
the theorem that two distinct irreducible algebraic manifolds M, and M,_, in
projective n-space intersect in a finite number of points, and, moreover, that
the “number” of points, properly counted, is the product of the degrees of
M, and M,_,.
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9. Preservation of independence. The troubles of inseparable equations can
be avoided whenever we find a separating transcendence basis for the field under
consideration. Unfortunately this cannot always be done. Suppose, for instance,
that the base field is the field Fo=P(4, £) of all rational functions of two tran-
scendents # and £ over a perfect field P, and construct a larger field L by adjoin-
ing first a new transcendent z and then an algebraic element %, with

(25) w? =t + tog?, L = Fy(z, u).

Since the pth root u is inseparable over Fo(2), this z is surely not a separating
transcendence basis for L over Fy. The order of adjunction might have been
inverted, adding # first as a transcendent to L and then z, but the equation (25)
indicates that z would then be a pth root. The same trouble would always arise:
one can prove that L has over F, no separating transcendence basis.* The same
troublesome example arises in Krull’s general ideal theory [13].

To find the reason for this absence of separability one must look at the
possible independent pth roots in the base field Fo. In §6 we saw that the pth
roots v/t and /f; were p-independent there, because neither can be expressed
in terms of F, and the other. These pth roots are no longer p-independent in the
top field L, for the defining equation (25) of that field gives an expression
v/t=u—2V/t,. This suggests that we restrict attention to those extensions L
over F which preserve p-independence, in the sense that any set of p-independent
pth roots over F remains p-independent over L. The relevance of this concept
is indicated by the following alternative description: a field L preserves p-inde-
pendence over F if and only if the adjunction to F of any finite set of elements
Y1, * -y Yafrom L yields a field F(yy, - - -, y.) which has over F a separating tran-
scendence basts.

This concept also makes it possible to find explicit conditions that given ex-
tensions have separating transcendence bases (Mac Lane [16]). One simply
stated result is this: If a field K has a finite separating transcendence basis over a
sub-field M, then any field L between K and M also has a finite separating tran-
scendence basis over M. In other words, one can find a set .S of independent tran-
scendents in L, such that every element of L satisfies over M (S) an algebraic
irreducible equation without multiple roots.

10. General field towers. What can be said of the structure of arbitrarily
complicated modular fields? The fields P(y;, - - - , ¥.) associated with algebraic
manifolds had separating transcendence bases over a perfect field P. Does every
modular field have a separating transcendence basis T over a suitable perfect
sub-field?

The answer is no. A simple counterexample may be built from the extension
P(f) of a finite field P by a transcendental £, We saw in §5 that P(f) is imperfect
because ¢ has in it no pth root. If we try to embed P(¢) in a larger field P’ which

* Even though, according to the Theorem of §8, L has over the original perfect field P a
separating transcendence basis consisting of #, 2, and #.
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will be perfect, we must have in P’ a pth root 1/» and hence the whole rational
function field P(#'/?) generated by this root. In this field #/» has no pth root, so
we add ##7*, and so on, till we have the “tower”

(26) P()c Ptr Y cPt* ) cP(t* %) c - - -

The field enveloping everything in this tower may be called P(t?”"); it consists
of all elements lying in any one of the fields (26). Furthermore this sum field
P(t2™") is perfect, for an element in any one of the fields of (26) does have a pth
root in the next field of the tower.

This perfect field P(#*™") can have over P no separating transcendence basis.
Any such basis would consist of a single transcendent ¢/, which must lie in some
one of the fields P(¢2™°) of the tower (26). The generating element #~“™" of the
next field is then a quantity inseparable over P(¢’), so #' cannot have been the
desired separating basis.

The tower (26) as written shows P(¢# ") generated by a transcendental ex-
tension followed by successive (inseparable) extractions of pth roots. Neverthe-
less each field of this tower, considered by itself, is a simple transcendental
extension of P by #*™°. The whole field is thereby approximated by a tower of
fields, each of which has a separating transcendence basis over the base field P,
and each of which consists of pth powers of elements in the next field. F. K.
Schmidt has shown that any perfect field P’ has a similar “separating tower”
over any one of its perfect sub-fields. He also stated without proof an analogous
tower theorem for an imperfect field, but it was later shown by examples* that
this general theorem could not hold. Recently F. K. Schmidt and the author
have jointly [18] found a modified tower theorem: If a modular field K is gen-
erated from a perfect sub-field P by a denumerable number of elements, then there is a
sub-field L with a separating transcendence basis over P and a tower of fields
LcMycMic - - which collectively exhaust K, such that each M; has over L a
separating transcendence basis and is generated over L by pth powers from My,
The non-denumerable cases can then be broken down into a transfinite sequence
of denumerable steps, each of which “preserves p-independence” in the sense
discussed in §9.

The separability of these field towers is essential to get polynomials with
distinct roots, in order to apply an implicit function theorem.} This is used in
the proof of the structure theorem for p-adic fields (¢f. Hasse-Schmidt [10]).
These p-adic fields are fields topologically complete with respect to a suitable
norm (or “absolute value”), obtained by extending the norm for the p-adic
numbers of Hensel.1 These p-adic fields are not themselves modular fields, but
they determine a congruence relation =5 (mod p) from which modular fields
can be obtained by the standard arithmetic device.

* Cf. Mac Lane [15]. Curiously enough, these examples involve a use of the modular law of
lattice theory!

1 The so-called Hensel-Rychlik theorem; ¢f. Albert [1] or Mac Lane-Nilson [19, §11].

1 See the description in C. C. MacDuffee [14].
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11. Troublesome examples. The extent of our ignorance of general modular
fields can be forcibly illustrated by various startling examples. The field P(*"")
used to illustrate §10 was still manageable, for though it had no separating
transcendence basis, it at least was itself perfect. But can there be an imperfect
field K which has no separating transcendence basis over some perfect sub-field
P? There is indeed such a K, for which P may even be chosen as the maximum
perfect sub-field. Over a finite field P choose a countable set of indeterminates
b, 2, - - -, and then introduce additional algebraic elements in accord with the
inseparable relations

(27) yf =14 + t2t§, yg =ty + tstf, y? = f3 + 1543?, cee

Our example is the field K=P(, ta, -+« Y1, Y2, - * - ). Since the y’s are pth
roots, the #'s clearly cannot form a separating transcendence basis. One might
try to invert the equations (27) to define everything in terms of the basis
ty, tay Y1, ¥2, Vs, - - -, but that still leaves the pth roots such as & = (37 —t1) /ta.
It can be shown that no method of picking a transcendence basis for K over P
will yield a basis which is separating, and this example is but a taste of the
trouble possible (¢f. [15], [16]).

12. p-Algebras. The relevance of the study of inseparable extensions to other
algebraic questions is clearly illustrated by the p-algebras, which are defined*
as linear algebras over a field F of characteristic » which have as degree some
power of the characteristic. The theory of these algebras, which culminates in
the theorem that every such algebra is “similar” to a cyclic algebra, depends
essentially on the construction of inseparable fields contained in the algebra (in
technical parlance, every p-algebra has a purely inseparable splitting field). To
illustrate this, choose as the base field the field P(¢) of all rational functions of ¢
with coefficients in a perfect field P. Introduce a pth root #, with #?=¢, and a
a quantity v with v»=v-¢. The set of all sums

w = Zaiiuivj’ (i=0;"' )P‘l’]=0: y b — l;aiiinF))
%)
then forms a linear algebra of degree p over F, if one uses the multiplication
table

ur = ¢, P =9+ ¢, vu = u(v + 1).

The essential point for the theory is that this algebra contains both the insepara-
ble extension F(x) and the cyclic separable extension F(v) of the base field F.

There are many further ways in which modular fields can arise in other alge-
braic investigations. We mention here only the use of fields of characteristic 2 in
discussing Boolean algebras (Stone [24]), the theory of matrices over a modular
field (Albert [5]), the definition of modular fields by special polynomials (Carlitz
[7]), and the quasi-algebraic closure of finite fields (Chevalley [8]).

* Cf. Albert [2, ch. 7]; and also Jacobson [11], Teichmiiller [25].
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13. Summary. Modular fields include finite fields, Galois extensions of fields,
algebraic function fields, and fields for algebraic manifolds, as well as for more
bizarre types. The study of such fields is suggested by their origin in arithmetic
questions about congruences, p-adic numbers, and ideal theory. On the other
hand, an independent survey of their structure is indicated by the program of
abstract algebra: first the development of the abstract concept (“field”) in order
to cover the variegated known examples, then the derivation of general theo-
rems touching this concept, and lastly a classification of the types of systems
which fall under the concept. We have seen that the straightforward generaliza-
tion of the known properties of number fields is but one phase of our structure
theory. There is also the investigation of characteristic new phenomena, of in-
separability, of p-independence and the like, which distinguish the modular
fields from the non-modular. The presence of curious examples of fields, which
must at present still be given individual treatment, indicates that the present
situation abounds in new questions, and that abstract algebra can very well
give rise to concrete conundrums.
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PROPER CONTINUED FRACTIONS
WALTER LEIGHTON, The Rice Institute

This paper generalizes the so-called “regular” continued fraction expansion
of a real number. The treatment includes as a special case the “continued co-
tangent” expansion of Lehmer [2].

1. The expansion of a real number into a proper continued fraction. Let y,
be any real number and a4, as, a3, - - - an arbitrary sequence of positive integers.
If yois an integer we shall say that its expansion into a proper continued fraction
terminates and is given by

Yo ~ b07
where by=1yo. If y, is not an integer, let b, be the greatest integer <y, (in sym-
bols o= [y,]) and define real numbers i, ys, ¥s, - - - and positive integers
b1, bs, bs, - - - by the relations
an
(1.1) Yo = v b= [yal,
VYn—1 — bn—1

successively for =1, 2, 3, .. It is clear from (1.1) that each b,=a.,,
(n=1, 2, 3, ). If, eventually, some y,, say v, is itself an integer, we shall

say the expansion terminates, and that the proper expansion of y, into a con-
tinued fraction is given by
@ 2 Qp—1 ay
(1.2) Yo~bo+— — —
bi 4 bs + - -+ by + b
We note that b; >as. If no v, is an integer, the expansion will not terminate and
the proper continued fraction expansion of y, will be given by

(br = ).

ai ag

1.3 ~b —  —
(1:9) e
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