LINEAR SYSTEMS IN SELF-AD]JOINT FORM
C. LANCZOS, Dublin Institute for Advanced Studies

The principal axis problem of quadratic forms belongs to the best-investi-
gated chapters of analysis. Much attention has been paid to the theory of
matrices subjected to arbitrary linear transformations and the normal forms
attainable by such transformations; (¢f. [1],* p. 58). The relation of the general
theory of linear equations to matrix calculus has also found exhaustive treat-
ment; (¢f. [2], Chapter IV). It seems, therefore, that the fundamental aspects
of this field are practically exhausted. {

It is the purpose of the following discussions to approach the problem of
general linear algebraic systems from a somewhat different viewpoint which
throws new light on the nature of the principal axis problem by showing that
the properties of symmetric matrices are extendable to arbitrary matrices to a
surprisingly large degree, without demanding anything but orthogonal trans-
formations. In this way the classical theory of linear algebraic forms, developed
by Frobenius and Kronecker around the end of the last century (¢f. [4], p. 268),
which centers around the concept of the “rank” of a matrix, is elucidated from
a totally different angle in which a certain eigenvalue problem plays the central
role.

We formulate the given simultaneous system of # equations in 7 unknowns
as the matrix equation

1) Ay =10,

in which A denotes an arbitrary n-row, m-column matrix—briefly denoted as
an n# Xm matrix—while y is the unknown and b the given right side, both column
vectors of m, respectively, » components. The matrix diagram associated with
our system, (if we picture the case n <m), looks as follows:

We will replace this diagram by the following extended diagram:}

* Numbers in square brackets refer to the references at the end of the paper.

1 A very extensive literature is digested in [3].

1 The symbol “tilde” (~) refers to a transposition of rows and columns. If 4 has complex ele-
ments, the transposition shall include a change of 7 to —1 in every element. This generalization is
so obvious that we will assume the reality of 4 and call S a “symmetric” rather than “Hermitian”
matrix.
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- T
0 4 0 b
A 0 y 0

This diagram belongs to the equation Sw=g, where the symmetric square matrix
S=35 is defined as follows:

3) S = ’

[N
(=)

while the column vectors w and g have n-+m components, which can be dis-
played more conveniently by transposing them into row vectors:

W m)
w = | 0 | y 1
@) e .
14 ! b ) 0 le
On the other hand, if these two vectors have the following structure:
o w m
w = | | 0 by
x
(5) o = | 1 1
g | 0 | . 1y
we obtain the equation
(6) Ax = ¢,

and the number of equations is now greater than the number of unknowns. Hence
we can without loss of generality assume that #» <m and put

@) m=mn-+r (r 2 0).

(In our final results all reference to a preestablished relation between » and m
will disappear and the numbers # and m be left completely arbitrary.) A general
vector # of the n+4m-dimensional space associated with the matrix S will be
introduced as follows:
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Since S is symmetric, we can transform it into a diagonal matrix D with the
help of an orthogonal transformation (the “principal-axis transformation”).
The matrix U of this orthogonal transformation is composed of the #- column
vectors #; which satisfy the following eigenvalue problem:

(9) Su,-=)\,~u,- (’I:=1,2,"'ﬂ+ﬁ$)
with the added normalization
(10) | Us 12 = 1.

As is well known, the eigenvalues \; of our problem are all real.
In view of the special form of the matrix S our eigenvalue problem separates
into the two equations

(11) Ay; = Nixi, Axy = Ay

We will call this system of equations the “shifted eigenvalue problem” because
on the right side the vectors x; and y; are in a “shifted” position, compared
with the usual eigenvalue problem associated with 4 and 4.

The eigenvalue problem (11) has a number of interesting properties which
we are now going to demonstrate.

1. If we premultiply the second equation by 4 and substitute on the right
side for Ay, its value from the first equation, we obtain

(12) A/Ix, = )\Z,x,

Similarly, premultiplying the first equation by A and making use of the second
equation we obtain

(13) /TAyi = )\iyi.

We thus see that the vectors x; and y; can be defined separately in themselves.
They are the eigenvectors (principal axes) of the nonnegative symmetric ma-
trices A4, respectively, AA. The first matrix is an #Xn, the second an m Xm
symmetric matrix. Hence the vectors x; and y; belong to two completely different
spaces, the one of », the other of m dimensions. The vectors x;, put together
columnwise, form an #X# complete orthogonal matrix X:

(14) XX =xX=1

The same can be done with the vectors v;, resulting in the complete m Xm
orthogonal matrix Y:

(15)

=~k

Y=Y

~i

=TI
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2. The sequence of the columns of these two matrices is not arbitrary. The
vectors x; and y;, although defined independently by the equations (12) and
(13), are in actual fact paired, since they are also in the relation (11) to each
other. To every y; the corresponding x; can be found by

1
16 x,-=~A;
(16) A

?

and vice versa, provided that \; is not zero. In fact, every solution of the system
(11) with nonvanishing N; can immediately be extended to a second pair of vec-
tors since a simultaneous change of N\;to —\;and y; to —y;leaves the equations
(11) unchanged. Accordingly, all nonvanishing eigenvalues will appear in pairs
+\; and we can agree that what we will call \;, shall be a positive number,
complemented by the negative eigenvalue —\;. For the time being we want to
assume that all the A\? associated with the eigenvalue problem (12) are different
from zero. This provides us with the » positive numbers Ay, + * -, Aa, comple-
mented by the sequence —M\y, - - -, —N\, of negative eigenvalues.

3. An interesting property of the x; ¥; vectors is that their length is auto-
matically equal. We see from (16) that we get

1 .
@an ks = )\_{ZyiA Ay; = Jiyi.

For this reason, if the length of the vector x;is normalized to 1, the length of the
corresponding vector y; becomes automatically 1.

4. The pairing of the vectors x; y; cannot occur unlimitedly, since we cannot
have more than # x-vectors while the number of y-vectors is 7. Having obtained
the 2n pairs (x; i) and (x; —y.), the remaining y;-vectors can have no x-
associates, which is only possible if Nz=0. Hence the eigenvalue zero is always
present among the eigenvalues if  is not zero. Since the total number of eigen-
values is #-+m =2n-+r, we must have 7 eigenvectors associated with the eigen-
value zero. The corresponding x;-vectors vanish. We consider these additional
y-vectors as columns of a matrix ¥, which has 7 rows and 7 columns. The com-
plete m Xm V-matrix is thus composed of the mXn Y-matrix, associated with
the matrix X, and the additional m X7 matrix Y,, associated with the zero
matrix. The complete U-matrix which contains all the principal axes of the
matrix .S, in the sequence N=—Xy, + + +, —Na; N, * * *, M 0, - - -, O; appears
in the form (18) while the diagonal matrix D into which Sis transformed if we
rotate it into the reference system of the principal axes, becomes (19). Here A
denotes the #X# diagonal matrix whose diagonal elements are the # positive
numbers Ny, * ¢ ¢, M.

Let us observe that the columns of the matrix U, being composed of the two
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n n m—mn

n X X 0

(18) U= ;
m| =Y | YV |2V,
n
n| —A
n
19 D= n A
m—n
m—mn| O

vectors x; and v;, both of the length 1, are normalized to +/2 instead of 1. For
this reason the columns of the matrix ¥, have to be multiplied by 4/2, in order
to uniformize all lengths of the columns of U. The right side of (10) has to be
changed accordingly from 1 to 2.

We will now drop the restricting condition that all the \; of the eigenvalue
problem (12) are positive. Generally only p =# eigenvalues need be different
from zero. We thus introduce here a new number p which is characteristic for
the matrix 4, in addition to the two numbers # and m. This number, which in
fact coincides with the “rank” of the matrix 4, is here defined by the number of
independent eigensolutions of the system (11) which are possible if we demand that
the eigenvalue \; shall be a positive number. This p can take any value between 1
and the smaller of the two numbers (%, m):

(20) 1 £ p < min (n, m).

The case =0 is excluded if A does not vanish identically because, if all eigen-
values of AA are zero, the whole matrix A4 vanishes, which is only possible if
A=0.

In view of this new number p the previous picture of the matrix U and the
diagonal matrix D changes to some extent. The multiplicity of the eigenvalue
zero has now increased from m —#» to m-+#—2p. The matrix X, associated with
the nonzero eigenvalues, is no longer an # Xz but an #Xp matrix. Moreover,
the diagonal matrix A which appears in the construction of the matrix D, is no
longer an # X% but a p X p matrix, composed of the positive numbers¥;, « « +, \,:
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? P N m—n
” X X XJ 1 Xq 0
(21) U=
m| —-Y Y |-V Y| V27
4
P —A
?
?P A
-2
(22) D= mtn—2p
3
I 0
o
s

We have thus obtained a detailed picture of the structure of the matrices U
and D which are associated with the principal axis transformation of the matrix
S. The entire principal axis problem is included in the matrix equation*

(23) SU =UD
with the added condition
(24) UU = 21I.

If now we postmultiply (23) by U, we obtain the relation
(25) 25 = UDU.
We wish to construct S on the basis of this relation, performing the matrix

multiplication indicated on the right side of (25). First we obtain the matrix

* For this formulation of the principal axis problem ¢f. [5], p. 93.
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UD. We know that multiplication by a diagonal matrix as a second factor means
that the columns of the first matrix are in succession multiplied by the successive
diagonal elements of the second matrix. This gives

P p n+m—2p

n|—XA| XA 0

(26) UD =

Now we should transpose U and postmultiply by it. We can, however, leave U
in its original form (21), if we agree that “row by column multiplication” is
changed to “row by row multiplication.” We will indicate this kind of multipli-
cation by a little circle o. First of all we multiply the first # rows of (26) by the
first # rows of (21). This gives —XA o X+XA o X4+0=0. We continue by
multiplying the first # rows of (26) by the last m rows of (21). This gives
XAoYV4+XAo V+0=2XAo Y=2XATV. We now come to the product of the
last m rows of (26) with the first # rows of (21): VAo X+YVA o0 X+0=2YAo0 X
=2YAX. Finally the last m rows of (26) multiplied by the last m rows of (21)
vield —YA o Y+ YA o Y4+0=0. The complete result is the following matrix:

0 2XAY

27 28 =
2YAX 0

Comparison with the original form (3) of S gives the following fundamental
result:

(28) A= XAT,

(29) A = YVAX.

The second equation contains no new statement since it merely repeats the first

relation in transposed form. The equation (28) contains the following funda-
mental

DEcoMPosITION THEOREM. An arbitrary nonzero matrix can be written as the
product of the nXp orthogonal matrix X, (XX =1I), the pXp positive diagonal
matrix A and the transpose of the m X p orthogonal matrix V(7 V=1I).
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The remarkable fact about this theorem is that the principal axes associated
with the gero eigenvalue do not participate at all in the formalion of the matrix A.
This has a profound effect on the solution problem of the equation Ay =5.

The matrices X, ¥ and A which appear in this theorem, are defined by the
shifted eigenvalue problem

(30) " AV = XA, AX = VA,

with the added condition that the diagonal elements of A shall all be nonzero
positive numbers.

Example. Consider the # Xm matrix whose elements are all zero, except the
single element a;; which may be given as the complex number ¢. Show that in
this problem p=1, \; = | cl . all the # elements of the vector x; vanish except the
element x{?; all the # elements of the vector y; vanish, except the single element
y{. Demonstrate the validity of the relation (28).

Before we continue with the further analysis of our problem, let us recall
the two full # X7 and m Xm spaces associated with our eigenvalue problem. We
can picture them as follows:

p n—p p m—p

n X Xo y m Y I/v()

The matrices X and Y are composed of p mutually orthogonal axes of the two
respective spaces. They form a p-dimensional subspace within the full space.
Hence it is generally not permissible to convert the relation XX =1 to XX =1,
and the same holds for the matrix Y. The remaining axes, included in the
n X (n—p) orthogonal matrix X, respectively the m X (m — p) orthogonal matrix
Vo, belong to the eigenvalue zero and are thus defined by the two noninter-
related equations

(31) AX, =0,
respectively,
(32) AY, = 0.

The columns of these two matrices are thus composed of the solutions of the
homogeneous equation

respectively,
(34) Ay; =0 G=1,-,m—p)

In harmony with the orthogonal nature of principal axes we assume that the
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vectors xy are mutually orthogonal and their length is 1. The same can be said
of the vectors ). This, however, is not self-evident since the principal axes be-
longing to a multiple eigenvalue (in this case the eigenvalue zero), are not
orthogonal by nature, although they can be orthogonalized. We will have use
for the vectors &;, which are merely solutions of the homogeneous equation

(35) At =0 G=1,-,n—p)
without demanding their orthogonalization and the normalization of their length.
We merely demand that they shall be linearly independent and that their
number shall be # — p, in order to span the entire space X,. Similarly we will con-
sider the m —p linearly independent solutions of the homogeneous equation

(36) A77]=0 (]=17;m"P)

without demanding their orthogonalization and normalization. The vectors
£, taken as column vectors, form the # X (#—p) matrix %o, the vectors 7, the
m X (m—p) matrix H, These matrices are no longer orthogonal but their
orthogonality to the subspaces X and ¥ remains unchanged:

37 X =0, HYV=o0.

With this preliminary information we return to the study of the linear equa-
tion (1) which could be done by diagonalization in the reference system of the
principal axes of .S, but we prefer to draw all our conclusions from the decom-
position of our matrix 4 into the product (28). The equation (1) can now be
written in the form

(38) XATVy =b.

Premultiplication by the matrix &, gives

(39) = Eob.

This equation, if written in the language of vectors, becomes

(40) ((:0) =0 (i=1,---,n—p)

and we obtain the following (well-known)

ComPATIBILITY THEOREM. The equation Ay=1> is solvable if and only if the
given right side of the equation is orthogonal to every independent solution of the
adjoint homogeneous equation A£=0.

That the condition (40) is necessary, follows from (39). That it is also
sufficient follows from the fact that if b is perpendicular to the space E, (or
the equivalent space X)), it must lie inside the space X, .e. it must have the
form

(41) b= Xv'.
But in that case the equation (38)—premultiplying it by X—gives at once
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(42) A¥y =1V

This equation is solvable by putting

(43) y =Ty,

in which case we obtain

(44) Ay =0y = AW
and finally

(45) y = YA = VA1Xb.

The diagonal matrix A contains only nonzero elements in the diagonal and is
thus always invertible.

However, the solution (45) is not the only solution of our system. An arbi-
trary vector ¥, if analyzed in the reference system of the principal axes (Y, Yy),
appears in the following form:

y="Yy + V.

If we put this expression in (38), we observe that the term with yJ drops out
completely from our equation. We thus obtain, as a counterpart of our previous
Compatibility Theorem, the following

DEFICIENCY THEOREM: The equation Ay =>b determines uniquely the projection
of the vector y into the space Y but leaves its projection into the space Yo completely
undetermined.

We will now consider the solution of our system (1) under the following
auxiliary conditions:

(46) X =0  (by necessity),
47 Voy=0  (by choice).

The second condition is not demanded by the original equation. By adding this
condition we obtain a definite particular solution distinguished by the property
that the solution finds its place in a subspace of smallest capacity, viz. the space V.*
This brings us back to the condition (43) and thus to the solution (45).

We know from the general theory of linear operators that the general solution
of a linear system of equations is obtainable by adding to any particular solution
an arbitrary solution of the homogeneous equation. Applying this principle to
our problem we get

(48) y =19+ Y,

where 7 is an arbitrary column vector of m —p elements while for y, we can
choose the particular solution (45), obtained under the auxiliary condition (47).

* This “normalization condition,” which makes the solution unique, is equivalent to putting
y=Av, where the vector v is unrestricted.
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We can interpret the deficiency of the given system in the following terms.
The equation (1) is not sufficient for the determination of y but it may become
sufficient by added information. The information needed is a statement concern-
ing the projection of y into the space ¥, Hence we can conceive the equation (1)
as part of a more elaborate system, the addition taking the form

(49) 170y = bo,

where by is a free column vector of m —p components. In this case the previous
solution y =y, is not more than a preliminary result, while the complete solution
takes the form (48). But now premultiplication by ¥, yields

(50) n = b

and the complete solution—obtained after complementing the original system
(1) by the additional system (49)—becomes

(51) y =y, + YVobo = YA1Xb + Vobo.

The result of this analysis may be summarized as follows: The zero-
fields Xo, Yo, associated with the solutions of the homogeneous equations
Ax=0, Ay=0, do not participate directly in the solution of the linear system
(1) but merely decide the compatibility and the deficiency of the system. The
compatibility conditions (46) have to be assumed in order to have a solution
at all. The deficiency of the system can be removed by putting the solution in
the space Y, assuming that the added information (49) will later provide the
missing Y,-portion of the solution. By this procedure an arbitrarily over-deter-
mined (although compatible) or under-determined (and thus deficient) linear
system permits a unique solution.

Our solution can be put in the form

(52) y = Gb,
where the m X# matrix G is defined as follows:
(53) = VYA—'X.

In view of the form (52) of the solution we can conceive the matrix G as the
“inverse” of the matrix 4. We should thus expect that the product GA has the
property of the unit matrix I. It would be a mistake, however, to assume that
the product GA must come out as the unit matrix. The product GA does not
operate on an arbitrary vector b but on a vector which is subject to the condition
(46). This means that & is inside the space X and has thus the form (41). Now

(54) AG = XAYYAX = XX

and AG operating on b becomes

(5%) AGh = XXb = XXXb' = Xb' = b,

which shows that AG has in fact the property of the unit matrix with respect to
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all “permissible” vectors b.
On the other hand, let us premultiply (1) by G:

(56) GAy = Gb = y.

This shows that the product G4 must also have the property of the unit matrix,
but again operating on a special class of vectors, subject to the condition (47).
This condition puts y into the space ¥ which means that y can be put in the
form (43). Now

(57) GA = YAT'XXAY = YT
and therefore
(58) GAy =YVy=YVYVy = ¥y =y.

Once again the product GA has the property of the unit matrix I with respect
to all permissible vectors y.

The matrix (53) has all the properties demanded by E. H. Moore in his
“general analysis,” (1906); (cf. [6]), establishing the “generalized inverse” of a
matrix in abstract terms. We can likewise demonstrate that the conditions de-
manded by R. Penrose (¢f. [7]; see also R. Rado, [8]) concerning the generalized
inverse of a matrix are fulfilled. In our analysis the inverse matrix did not come
about by any definitions in terms of matrix equations but by an explicit method
of solving the linear system (1), based on the properties of an eigenvalue prob-
lem.

We can write out the solving matrix more explicitly by substituting for X
and Y the constituting column vectors «x; and y; which appeared in the solution
of the eigenvalue problem (11). Let us denote the components of the p vectors

%o by 2% (i=1, - - -, n), the components of the conjugate vectors y, by
y? (j=1, - - -, m). Then the element g;; of the matrix G comes out as follows:
» yii) ‘ii)
(59) gi= 2 :
a=1 )\a

while the element a,; of the original matrix A becomes:

» . )
(60) i = 2t Aaye -

a=1
More important, however, is another interpretation of the solution (45). We
know that the vector ¥ lies inside the space ¥ which is composed of the p

orthogonal vectors », + - -+, ¥,. Hence y can be analyzed in terms of these
vectors:
(61) Y = my1+ Y2+ -+ npYp.

On the other hand, the right side b lies inside the space X and can be analyzed
in terms of the conjugate orthogonal vectors i, - - -, %,:
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(62) b = Buxy + Baxz + - - - + Bp¥yp
where the coefficients 8; are obtainable by projecting b on the axes X ;:
(63) Bi = (b-x).

We will call the two conjugate expansions (61) and (62) “co-orthogonal” since
they involve two sets of orthogonal vectors which are in a one-to-one cor-
respondence to each other.* Then the linear system (1), under the added
auxiliary conditions (46) and (47), establishes the following relation between

the coefficients 8; and 7,:
(64) 7 = Bi/\i.

We see that the eigenvalues \; play the role of a “transfer function” in going
from the right to the left, or from the left to the right.

Since the coefficients 8; are available on the basis of (63), the coefficients
7: become determined on the basis of (64) and the unknown vector y appears
in the form of an orthogonal expansion (61), with given coefficients.

Operations in function space. The field of continuous linear operators—i.e.,
the domain of linear differential or integral equations—can be handled on the
basis of matrix operations if we introduce the infinite-dimensional “function
space” and the matrices associated with this space; (¢f. [9], p. 57). The results
obtained in the theory of solving arbitrary linear algebraic systems can thus be
extended to the realm of linear differential and integral equations. The char-
acteristic feature of our investigation was that we have dealt with an arbitrarily
over-determined or under-determined system and yet arrived at a unique solu-
tion under the proper auxiliary conditions.

The usual type of boundary-value problems considered in classical analysis
are of the so-called “well-posed” type. This means that the given data—the
differential equation with a given right side plus the boundary conditions—
suffice for a unique solution and that the data can be prescribed freely, without
the danger of incompatibility. Such problems realize in the language of matrices
the case n=m =p: the number of equations is equal to the number of unknowns
and the eigenvalue zero is not present (the matrix 4 is nonsingular).

Our investigation has shown that we can expect a valid and unique solution
of a linear system under much more general conditions. The given operator (in-
cluding the boundary conditions) may or may not comprise all the dimensions
of the function space. The classical case usually considered belongs to those
operators which comprise the entire function space, in both X and Y relations,
i.e. in relation to the given right side as well as in relation to the unknown func-
tion. If we have a problem which is not “well-posed,” this merely means that

* The expression “bi-orthogonal” would be misleading since it usually refers to two sets of
mutually orthogonal vectors, while the two expansions (61) and (62) involve two sets of vectors
which are orthogonal within themselves.
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the given operator omits certain dimensions of the function space, either with
respect to the given right side, or with respect to the unknown, or with respect
to both. This, however, is no reason to reject the given boundary value problem.
If the omission occurs with respect to the X-space, this means that the given
data cannot be given freely but must be contained in a certain subspace of the
function space. This condition can be met if we replace the word “prescribed
data” by “observed data” because no matter how many surplus data we observe
(in addition to the minimum number which would have sufficed for a unique
solution), these data cannot be inconsistent since the prescribed mathematical
law was in operation throughout our observations. Our operator is restricted to
certain dimensions of the function space and cannot lead out of this space, no
matter how many observations we perform.

If the given operator omits certain dimensions in the Y relation, this makes
our solution incomplete since we obtain no information concerning the missing
dimensions. We do get, however, a unique solution in those dimensions which
are represented in the operator. We can then add later observations in order to
complete our solution with respect to the missing dimensions.

We thus obtain a method for the solution of boundary value problems which
can be arbitrarily over-determined (although consistent) or under-determined,
and thus far from that “well-posed” type of problems that we expect under the
customary conditions. Under these relaxed conditions the “inverse” of the oper-
ator does not exist any more in the ordinary sense. But even the “generalized
inverse” in the sense of the matrix G which omits the zero-field and avoids the
division by zero, need not necessarily exist. In the case of finite matrices it
cannot happen that the matrix G, defined by (53) and more specifically by (59),
should not exist. But in the case of continuous operators the corresponding ex-
pansion—called under simplified conditions the “bilinear expansion of the
Green’s function” (¢f. [9], p. 360)—becomes an infinite series which may or
may not converge. In many problems of an unconventional type to which the
present theory is applicable, the bilinear expansion becomes in fact meaningless
since it has no tendency to converge. Nor does the “inverse bilinear expansion”
which corresponds to (60), converge and represent the given operator. This does
not, however, interfere with the solution of our problem in terms of the two
“co-orthogonal expansions” (61) and (62) which remain uniformly convergent
even if the expansion of the inverse operator fails, provided that the right side
is taken from that restricted subspace of the function space which is allotted to
it by the nature of the given operator.

Although the application of the general theory to the field of continuous
operators will be discussed in more detail in a separate paper*, it may not be
without interest to give an example of the type of unconventional boundary value
problems which become solvable by the method here presented.

* Proceedings of the International Congress of Mathematicians, Edinburgh, 1958 (to be pub-
lished in 1960).
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Problem. Given a simply-connected domain C of the complex plane, enclosed
by a smooth boundary, let it be known that the function f(2) of the complex
variable z=x-1y is analytical throughout Cincluding the boundary, and let the
value of f(z) be given along the arbitrarily small arc S of the boundary. Find
f(z) inside the domain C.

The method of analytical continuation shows that this problem has a unique
solution but the theory of analytical functions gives no clue toward a solution
which would obtain the value of f(2) at a distant point 2 directly in terms of
the given boundary values along .S.

The shifted eigenvalue problem associated with the present problem gives
the solution in the following form. Associated with the domain C and the arc S
we can define an infinite set of functions

(65) fl(z’ Z*)’ te :f'i(z’ Z*): te

which exist inside and on the boundary S, .§’, together with a corresponding set
of functions defined along the arc S:

(66) gl(s)’ ) g‘i(s)7 Tt

The desired function f(z) can be expanded into the infinite sum

67 10) = 3 vafule, )

a=1

where the expansion coefficients y; are obtained as follows:

(68) Y= L F(s)gi(s)ds.

None of the functions f.(z, 2*) are analytical (in view of the dependence on
2*, the “complex conjugate” of z). Nor do these fu(z, 2*) satisfy the given
boundary conditions. In fact, all the f.(z, 2*) vanisk along S. And yet, the infinite
sum (67) converges uniformly to the correct value of f(z) at every point of the
domain C (including the outer boundary S’) which excludes the arc S.
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