THE FOUNDATIONS OF PROBABILITY
P. R. HALMOS, Syracuse University

1. Introduction. Probability is a branch of mathematics. It is not a branch
of experimental science nor of armchair philosophy, it is neither physics nor
logic. This is not to say that the experimenter and the philosopher should not
discuss probability from their points of view. They should, and they do. The
situation is analogous to that in geometry. No one denies that the physicist and
the philosopher have made valuable contributions to our understanding of the
space concept, nor, in spite of this, that geometry is a rigorous part of modern
mathematics.

Like Euclidean geometry, and for that matter like most mathematical the-
ories, probability has four aspects: axiomatization, development, coordinatiza-
tion, and application. We proceed to explain our use of these words.

“Axiomatization” is clear. We all know that the study of geometry begins
with a list of undefined terms and a list of postulates. It is important in this
connection to remember two facts. First: the selection of the list of terms and
postulates is not entirely arbitrary, but is derived only after a thorough exam-
ination of our intuitive notions of the subject. Second: the selection of terms and
postulates is not uniquely determined. When several different axiomatizations
of the same subject exist then only extra mathematical considerations, such as
practical convenience or personal prejudice, can lead us to prefer one among the
many. The greater part of this paper is devoted to a prepostulational examina-
tion of probability. The axiomatic system to which this examination leads is not
the only possible approach to probability, but it is the approach which has been
adopted by the majority of workers in this field.

By “development” we mean simply the main part of the theory, the defini-
tions and theorems which chiefly occupy the professional mathematician. “Co-
ordinatization” is a general process the most familiar instance of which is the
proof of the equivalence of the synthetic and analytic aspects of Euclidean
geometry. The isomorphism of a finite group to a group of permutations and
the representation of an algebra by matrices are further examples of this process.
Properly speaking coordinatization is just one of the theorems belonging to
development, but a theorem of such fundamental implications that it effects
basic changes in the appearance, methods, and results of the entire theory.

The hardest philosophical problem in geometry as well as in probability is
the problem of “application.” Do the theorems derived from the postulates
reflect any light on the physical world which suggested them, and if so, how
and why? :

The purpose of this paper is exposition, exposition intended to convince the
professional mathematician that probability is mathematics. To this end we
shall discuss the four features just enumerated. The paper contains almost no
proofs, very few precise definitions and theorems, and many heuristic deriva-
tions. Despite however the small number of rigorous statements, they form the
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foundation on which the remainder is built. For the convenience of the reader
they are italicized. If these italicized statements are lifted from their context
and read consecutively, they will furnish at least a partial answer to the question
“what is probability?” -

2. Boolean algebra. The principal undefined term in probability theory is
“event.” Intuitively speaking an event is one of the possible outcomes of some
physical experiment.

To take a rather popular example consider the experiment of rolling an
ordinary six-sided die and observing the number (=1, 2, 3, 4, 5, or 6) showing
on the top face of the die. “The number v is even”—¥it is less than 4”—“it is
equal to 6”—each such statement corresponds to a possible outcome of the
experiment. From this point of view there are as many events associated with
the experiment as there are combinations of the first six positive integers taken
any number at a time. If for the sake of aesthetic completeness and later con-
venience we consider also the impossible event, “the number v is not equal to
any of the first six positive integers,” then there are altogether 2% admissible
events associated with the experiment of the rolling die. For the purpose of
studying this example in more detail let us introduce some notation. We write
{246} for the event “v is even,” {123} for “v is less than 4,” and so on. The im-
possible event and the certain event (= {123456}) deserve special names: we
reserve for them the symbols o and e respectively.

Evetyday language concerning events uses such phrases as these: “two
events ¢ and b are incompatible or mutually exclusive,” “the event a is the
opposite of the event b or complementary to b,” “the event a consists of the
simultaneous occurrence of b and ¢,” “the event a consists of the occurrence of at
least one of the two events b and ¢.” Such phrases suggest that there are rela-
tions between events and ways of making new events out of old that should
certainly be a part of their mathematical theory.

The notion of complementary event is probably closest to the surface. If a
is an event we denote the complementary event by a’: an experiment one of
whose outcomes is @ will be said to result in @’ if and only if it does not result in
a. Thus if a= {246} then a’= {135}. We may also introduce combinations of
events suggested by the logical concepts of “and” and “or.” With any two
events a and b we associate their “join” a\Ub (also called union or sum and often
denoted by a+b), and their “meet” aMb (or intersection or product, often de-
noted by ab). Here a\Ub occurs if and only if at least one of the two events a or b
occurs, while aMb occurs if and only if both @ and b occur. Thus if a= {246}
and b= {123} then a\Ub= {12346} and aNb= {2}.

The operations a’, a\Ub, and aMb satisfy some simple algebraic laws. It is
clear for example that both the expressions ¢\Jb and ¢/Mb are independent of the
order of the terms (commutative law), and that neither of the expressions
a\Ub\Uc and aNbNc depends on the order in which the two indicated operations
are performed (associative law). These facts are intuitively obvious from the
verbal definition of the operations and are easily verified in any finite case such
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as the rolling die. There are many other similar identities satisfied by these
methods of combining events: the following is a list of the most important ones.

o =e (@) =a e =o
(eMd)y =d V¥ (eJUb) =ad NV
aNa =o aJd =e
oMNa=o oJa=a
eNa=ua eJa=c¢e
aNb=>bNa . S aeJUb=bVa
@NBNec=aNGEN ) (@UBUc=aU OB o)
aN (BYe)=(eNb\J(eNyc) aJ@dNc)y=(aJd)N (Vo)

A system B of elements o, a, b, - + -, e in which operations a’, a\Ub, and
aMb are defined in such a way that each of the above list of identities is satisfied
is called a “Boolean algebra.” For the traditional theory of probability, con-
cerned with simple gambling games such as the rolling die, in which the total
number of possible events is finite, the above heuristic reduction of events to
elements of a Boolean algebra is adequate. For situations arising in modern
theory and practice, and even for the more complicated gambling games, it is
necessary to make an additional assumption. This assumption, in descriptive
terms, is that the operations \U and M, assumed defined for two elements and
immediately extended by mathematical induction to any finite number, should
make sense also for an infinite sequence. In other words it is desirable to have an
interpretation for symbols such as a;\Ja,\J - - - and @aiMasM - - - . In order to
phrase precisely this assumption of infinite operations it is necessary to use a

few simple facts from the theory of Boolean algebras.

‘ If @ and b are any two elements of the Boolean algebra B which satisfy the
relation a\Ub=5 (or the equivalent relation a/M\b=a) we shall write ¢ Cd and
say that “a is smaller than ” or “a is contained in b” or “a implies b.” The in-
tuitive interpretation of this relation is as follows: the event @ implies the event
b, or is contained in the event b, if the occurrence of a is a sub-case of the occur-
rence of b. Thus in the example of the die {123} C {1234} and “v=2"C“v is
even.” The technical significance of the relation C is that the operations \U and
M may be defined in terms of it. For example a\Ub is the smallest of all elements
which contain both @ and . In more detail: given @ and b, consider all ¢’s for
which both ¢Cc and bCec. The assertion concerning ¢\Jb is two fold: first,
a\Ub is an admissible ¢, and second, for any admissible ¢ we have a\UbCc. As
an example consider a= {12} and b= {24}. The elements {1234}, {1246},
{12456} , + + + all have the property of containing both ¢ and 5. However the
element {124}, which also has that property, is smaller than any other such
element, and it is in fact true that {12}\U{24} = {124}

Motivated by the relation between \U and C we now proceed as follows. Let
B be a Boolean algebra. If for every infinite sequence a4, as, - - - of elements of



496 THE FOUNDATIONS OF PROBABILITY [November,

B there exists among the elements containing all the @, a smallest one, say a,
we say that B is a g-algebra and we write a =a;\Ua;\Ua;\U - - - . Not every Boo-
lean algebra is a o-algebra; the assumption that B is one (the hypothesis of
countable additivity) is an essential restriction.

Perhaps an example, though a somewhat artificial one, might illustrate the
need for the added assumption. Suppose that a player determines to roll a die
repeatedly until the first time that the number showing on top is 6. Let @, be
the event that the first 6 appears only on the nth roll. The event ¢ =a,\Ua,\Ua;
U - - - occurs if and only if the game ends in a finite number of rolls. The oc-
currence of the opposite event @’ is at least logically (even if not practically) con-
ceivable and it seems reasonable to want to include a discussion of it in a general
theory of probability. Numerous examples of this kind together with some rather
deep lying technical reasons justify therefore the following statement.

The mathematical theory of probability consists of the study of Boolean o-
algebras.

This is not to say that all Boolean ¢-algebras are within the domain of
probability theory. In general statements concerning such algebras and the
relations between their elements are merely qualitative: probability theory dif-
fers from the general theory in that it studies also the quantitative aspects of
Boolean algebras. In the next section we shall describe and motivate the intro-
duction of numerical probabilities.

3. Measure algebra. When we ask “what is the probability of a certain
event?” we expect the answer to be a number, a number associated with the
event. In other words probability is a numerically valued function P of events
a, that is of elements of a Boolean g-algebra B, P = P(a). On intuitive and practi-
cal grounds we demand that the number P(a) should give information about
the occurrence habits of the event a. If in a large number of repetitions of the
experiment which may result in the event @ we observe that a actually occurs
only a quarter of the time (the remaining three quarters of the experiments re-
sulting therefore in a’) we may attempt to summarize this fact by saying that
P(a)=1/4. Even this very rough first approximation to what is desired yields
some suggestive clues concerning the nature of the function .P.

If, to begin with, P(a) is to represent the proportion of times that ¢ is ex-
pected to occur, then P(a¢) must be a positive real number, in fact a number in
the unit interval 0 =P(a) 1. The extreme value 0 has a special significance.
Since the impossible event o will never occur, it is clear that we must write
P(0) =0. Conversely however if an event a refuses ever to occur, we are tempted
to declare its occurrence impossible and thus from the relation P(a) =0 to de-
duce a=o0. The other extreme value of P(a) has of course a similar interpreta-
tion: P(e) =1 if and only if ¢ =e.

The relation between proportion and probability has further consequences.
Suppose that @ and b are mutually exclusive events—say a= {1} and b= {246}
in the example of the die. (In the algebraic theory mutually exclusive events
correspond to “disjoint” elements of the Boolean algebra B, that is to elements
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a and b for which aMbd=0.) In this case the proportion of times that the join
a\Ub(= { 1246} for the example) occurs is clearly the sum of the proportions
associated with @ and b separately. If an ace shows up one-sixth of the time and
an even number half the time, then the proportion of times in which the top face
is either an ace or an even number is $+3%. It follows therefore that the function
P cannot be completely arbitrary—it is necessary to subject it to the condition
of additivity, that is to require that if ¢/M\d =0 then P(a\Ub) should be equal to
P(a)+P(b).

We are now separated from the final definition of probability theory only
by a seemingly petty (but in fact very important) technicality. If P(a) is an
additive function of the sort just described on a Boolean os-algebra B, and if
ay, @, * - ¢, @, is any finite set of pairwise disjoint elements of B (this means
that for %5, aiMa;=0) then it’s easy to prove by mathematical induction that
P(a,\Ja,\J - - - Ua,)=P(a;)+Plas)+ - - - +P(as). If however ay, as, a3, - - -
is an infinite sequence of pairwise disjoint elements then it may or may not be
true that P(a,\Ja,\Jas\J - - - ) =P(a;)+P(a;) +P(as)+ - - - . The general con-
dition of countable (that is, finite or enumerably infinite) additivity is a further
restriction on the probability measure P—a restriction without which modern
probability theory could not function. It is a tenable point of view that our
intuition demands infinite additivity just as much as finite additivity. At least
however infinite additivity does not contradict any of our intuitive ideas and the
theory built on it is sufficiently far developed to assert that the assumption is
justified by its success. We shall therefore adopt this assumption as our final
postulate.

Numerical probability is a measure function, that is a finite, nonnegative, and
countably additive function P of elements in a Boolean o-algebra B, such that if
the null and unit elements of B are o and e respectively then P(a) =0 is equivalent
to a=o0 and P(a) =1 is equivalent to a =e.

In the next section we shall discuss a general method of constructing exam-
ples of probability measures.

4. Measure space. Let w;(j=1, - - -, 6) be the point on the real axis whose
directed distance from the origin is 7, and let @ be the set whose elements are
these six points. Consider the system B* of all subsets of Q. (The empty set o
and the full set e=Q are counted as belonging to B*.) With any element & of
B* (that is, with any subset of Q) we may associate the complementary element
(set) consisting of exactly those points w; which do not belong to a. Similarly
with any two subsets ¢ and b of Q we may associate their union (the set of points
belonging to either a or b or both), and their intersection (the set of points be-
longing simultaneously to @ and ). It is easy to verify that under the operations
of complementation (¢’), formation of unions (a\Ub), and formation of inter-
sections (a¢/Mb), the system B* forms a Boolean algebra, in fact, though some-
what vacuously, a g-algebra. Suppose moreover that for eachj=1, - - -, 6, p;
is a positive number such that p1+ - - - +pg=1. Then we may define P(a) for
any subset @ of @, to be the sum of those p; whose w; belongs to @. Thus if
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a= {135} then P(a) =p1+ps+ps; if a=0 then P(a) =0. The function P and the
algebra B* satisfy all the assumptions of probability theory and the reader has
doubtless recognized that this B* and P were implicit in our earlier discussion
of the rolling die. It is often customary on philosophical and practical grounds
to discuss only the case p;= - - - =ps=4. We shall say a word about this special
case later; for the moment it is sufficient to point out that any other choice of
the p;furnishes an equally acceptable probability structure and does in fact con-
stitute the mathematical theory of some carefully loaded die.

The above example of a Boolean algebra can be generalized: we attempt next
to obtain a similar but more geometrical example. For this purpose we again
choose a set ©, but, instead of a finite set, we choose a set with infinitely many
points, in fact all the points of a continuum. To be specific let us choose for Q
the points w of a square of unit area in the Cartesian plane. In analogy with the
preceding example we consider the system B* of all subsets of @ and define
complement, union, and intersection as before. Once more B* is a Boolean
o-algebra; it is not however the one on which we shall base our probability
theory. (It can be shown that it is not possible to define a probability measure
P with the desired properties on B*.) We shall instead consider a certain sub-
system (sub-algebra) of B*, constructed as follows:

We begin with the system R of all rectangles contained in @ (where for the
sake of definiteness we consider closed rectangles, that is sets consisting of the
interior plus the perimeter of a rectangle). The system R is not closed under the
Boolean operations: in general not even a finite (let alone a countably infinite)
union or intersection of rectangles is itself a rectangle, and similarly the com-
plement of a rectangle isn’t one. We have therefore to enlarge the system Rto a
system R’ including all complements and countable unions and intersections of
elements of R. It turns out that even this is not enough: R’ is still not a Boolean
algebra, and the extension process has to be continued. If however the extension
process is continued sufficiently (and this happens to mean transfinitely) often,
we reach eventually a Boolean c-algebra B of subsets of Q. (The algebra B is
important in analysis: sets of B are called the Borel sets of the square.)

We face next the task of defining P. For those familiar with the theory of
Lebesgue measure it will suffice to say that we define P(a), for each a in B, to
be the Lebesgue measure of the set a. It is not difficult to get an intuitive idea
of how P is defined. If a is a rectangle (that is an element of R) we define P(a)
to be the area of a. If @ is an element of R’ we proceed to determine P(g) in
accordance with the requirement of countable additivity. Thus for example if &
is the complement of a rectangle a, we write P(b) =1 —P(a), and if b is the union
of a finite or infinite sequence of disjoint rectangles a4, as, + - -+ we define P(b)
=P(a;)+P(az)+ - - - . By repeating this extension process ad transfinitum
we succeed eventually in defining P(a) for every a in B.

There is an objection to the construction just described. If the set a consists
of a single point then it is intuitively obvious (and follows easily from the rigor-
ous definition of P) that P(a) (=the area of a) is zero. More generally if a
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consists of any finite or enumerably infinite set of points we still have P(a) =0
and it is even possible (if for example @ is a line segment) to have P(a) =0 for
sets @ containing uncountably many points. This definitely contradicts our ex-
plicitly formulated axiom that P(a)=0 should happen if and only if @ =0. The
customary way to get around this difficulty is by redefining the notion of equal-
ity that occurs in the equation @ =o. It is proposed that we agree to consider as
identical two subsets of © whose difference has probability zero. (In technical
language, we consider, instead of the sets @, equivalence classes of sets modulo
the class of sets of probability zero.) Through this agreement we are committed
in particular to identifying any set of probability zero with the empty set o,
and it follows therefore that in the reduced algebra B (that is, the algebra ob-
tained from B by making the suggested identifications) all the axioms of proba-
bility are valid.

The long and tortuous process just described is very general. If @ is any
space (such as an interval or a cube) on a certain c-algebra B of subsets of
which a countably additive measure P is defined (such as length or volume),
subject only to the restriction that the measure of all Q is equal to 1, we obtain
from B and P a system satisfying all the axioms of probability theory by the
process of identification according to sets of measure zero. Thus there are as
many probability systems as there are examples of “measure spaces.”

The reason for the introduction of measure spaces into a discussion of
probability theory is not merely to give examples. It can in fact be shown that
the two theories (measure and probability) are coextensive. More precisely:

If B is any Boolean o-algebra and P a probability measure on B, then there
exists a measure space Q such that the system B is abstractly identical with an al-
gebra of subsets of Q reduced by identification according to sets of measure zero, and
the value of P for any event a is identical with the values of the measure for the cor-
responding subsets of €.

Hence measure is probability and probability is measure and, in virtue of the
theorem just stated, the entire classical theory of measure and integration may
be and has been carried over and used to give rigorous proofs of probability the-
orems.

5. Measure vs. probability. Having discussed the extent to which probability
and measure are the same, we now dedicate a few words to describing the extent
to which they are different. One feature that differentiates the two theories is
that in the general theory of measure it is usual to admit the possibility that
the measure of the entire space is infinite. This possibility is not admissable in
probability theory. As long, however, as the measure of the whole space is finite
it is always possible to introduce a scale factor which makes it equal to 1, and
hence it is always possible to think of it (even if somewhat artificially) as a
“probability space.” Thus for example the language and notation of probability
may be and have been used in such seemingly widely separated parts of mathe-
matics as ergodic theory, topological groups, and integral geometry.
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Even however if the infinite case is ruled out, it is a conspicuous fact that
most theorems in which the word measure is used (rather than the word proba-
bility) have a very different appearance from the theorems of probability the-
ory. The best way to explain the difference between measure and probability is
to liken it to the difference between analytic and synthetic geometry. It isn’t
stretching a point too far to say that the representation of a probability algebra
by a measure space is similar to the introduction of coordinates into geometry.
Synthetic and analytic geometry are of course abstractly identical in the sense
that any theorem in the one domain may be stated and proved in the language
and machinery of the other—may be, but isn’t. The theorems in the two fields
differ in their intuitive content. It is natural to discuss linear transformations
in analytic geometry and the nine point circle in synthetic geometry—and even
though the interchange is possible, it isn’t desired. The abstract identity of the
two fields is however an extremely useful fact, exploited mostly by the synthetic
side which often finds it convenient to lean on the analytic crutch. Similarly,
probability is measure, and research in the field would be very greatly hampered
if we were not permitted to use this analytic crutch—but the notions suggested
by probability, the notions which are important and intuitive and natural inside
the field, appear sometimes extremely special and artificial in the frame work of
general measure theory:

In this section and the preceding ones we have treated axiomatization and
coordinatization. We proceed now to development. In the following sections we
shall define the basic concepts of probability theory, and discuss in particular
those which serve in the sense described above to give to probability its dis-
tinguishing flavor. '

6. Independent events. In order to motivate the definitions of the concepts
to be studied in the sequel we return to the example of the die. For simplicity we
make the classical assumption that any two faces are equally likely to turn up
and that consequently the probability of any particular face showing is 1. Con-
sider the events ¢ = {246} and b= {12}. The first notion we want to introduce,
the notion of conditional probability, can be used to answer such questions as
these: “what is the probability of @ when b is known to have occurred?” In the
case of the example: if we know that v is less than 3, what can we say about the
probability that v is even? The adjective “conditional” is clearly called for in the
answer to a question of this type: we are evaluating probabilities subject to cer-
tain preassigned conditions.

To get a clue to the answer consider first the event ¢c= {2} and ask for the
conditional probability of a, given that ¢ has already occurred. The intuitive
answer is perfectly clear here, and is independent as it happens of any such
numerical assumptions as the equal likelihood of the faces. If v is known to be 2
then v is certainly even, and the probability must be 1. What made the answer
easy was the fact that ¢ implied a. The general question of conditional probability
asks us to evaluate the extent (measured by a numerical probability or propor-
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tion) to which the given event b implies the unknown event a. Phrased in this
way the question almost suggests its own answer: the extent to which 4 is con-
tained in @ can be measured by the extent to which ¢ and b are likely to occur
simultaneously, that is by P(aMbd). Almost—not quite. The trouble is that
P(aMb) may be very small for two reasons: one is that not much of & is con-
tained in @, and the other is that there isn’t very much of b altogether. In other
words it isn’t merely the absolute size of a/M\b that matters: it’s the relation or
proportion of this size to the size of b that’s relevant.

We are led therefore to define the conditional probability of a, given that &
has occurred, in symbols Ps(a), as the ratio P(aM\b)/P(b). For a = {246} and
c= {2} this gives the answer we derived earlier, P.(a) =1; for a= 246} and
b={12} we get the rather reasonable figure Ps(a)=%. In other words if it’s
known that v is either 1 or 2 then v is even or odd (that is equal to 1 or equal to 2)
each with probability 3.

Consider now the following two questions: “b happened, what is the chance
of a?” and simply “what is the chance of a?.” The answers of course are Pj(a)
and P(a) respectively. It might happen, and does in the example given above,
that the two answers are the same, that in other words knowledge of & con-
tributes nothing to our knowledge of the probability of a. It seems natural in this
situation to use the word “independent”: the probability distribution of a is
independent of the knowledge of b. This motivates the precise definition: two
events ¢ and b are independent if Py(e¢) =P(a). The definition is transformed
into its more usual form and at the same time gains in symmetry if we recall the
definition of Py(e). In symmetric form: ¢ and b are independent in the sense of
probability (statistically or stochastically independent) if and only if P(aMb)
=P(a)P(b).

7. Repeated trials. Suppose next that we wish to make two independent
trials of the same experiment—say, for example, to roll an honest die twice in
succession. We shall presently exploit the precise definition of independence to
clarify the notion of independent trials; first however it’s worth while to remark
on the intuitive content of the concept. Suppose that in a crude attempt to even
things up we resolve on the following procedure: if the first die shows an even
number we choose for the second experiment a die on which all the numbers are
odd, and vice versa. The two experiments are not independent of each other in
this case: whereas the a priori probability of getting an even number with the
second die is %, the conditional probability of getting an even number with the
second die, given that the first one showed an odd number, is one. We say that
the two experiments are performed independently of each other only if the condi-
tions under which the second experiment is to be performed are unaffected by the
outcome of the first experiment.

If an experiment consists of two rolls of a die we don’t expect the reported
outcome of the experiment to be a number », but rather a pair of numbers
(v1, v2). The measure space Q associated with the two-fold experiment consists
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not of 6 but of 36 points. (It is convenient to imagine these points laid out along
the regular pattern of a 6X6.square.) The problem is to determine how the
probability is distributed among these points. For a clue to the answer consider
the events ¢ =“v,<3” and b ="“y,<4.” We have P(a) =% and P(b) =3%; hence if
we interpret the independence of the trials to mean the independence of any two
events such as ¢ and b we should have P(aMbd) =%. If in the suggested diagram
for the measure space associated with this discussion we encircle the points be-
longing to aMb we get the following figure.
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We see therefore that the formula P(e¢Mbd) = P(a)P(b) appears analogous to the
fact that the area of a rectangle is the product of the lengths of its sides.

We say therefore, if the analytic description of an experiment is given by a
measure space @ with a Boolean o-algebra B of subsets on which a probability
measure P is defined, that the analytic description of the experiment consisting
of two independent trials of the given experiment is as follows. The space of
points w is replaced by the space of pairs of points (w1, we) (the so called product
space 2X ), B is replaced by the Boolean o-algebra generated by the “rectangu-
lar” sets of the form {w; is in a1, ws is in @2} where a; and a, belong to B, and the
probability measure on this space of pairs is determined by the requirement that
its value for rectangular sets of the kind described should be given by the prod-
uct P(a1) P(az). The ideas involved in this procedure are not essentially original
nor characteristic of probability theory: they are the same as the ideas involved
in defining the area of plane sets in terms of the length of linear sets. There is of
course a theorem hidden in this definition—a theorem which asserts that a
probability measure satisfying the stated product requirement indeed exists and
is in fact uniquely determined by this requirement.

What we can do once, we can do again. Just as two repetitions of an experi-
ment gave rise to ordered pairs (wi, ws), similarly any finite number of repetitions
(say ) give rise to the space of ordered n-tuples (wi, wz, * - - , W,), With a multi-
plicatively determined probability measure. The procedure can be extended
also to infinity: the analytic model of an infinite sequence of independent repeti-
tions of an experiment is a measure space  whose points w are infinite sequences
{w1, ws, w3, + - - }. Even if an actually infinite sequence of repetitions of an ex-
periment is practically unthinkable, there is a point in considering the infinite
dimensional space Q. The point is that many probability statements are asser-
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tions concerning what happens in the long run—assertions which can be made
precise only by carefully formulated theorems concerning limits. Hence even if
practice yields only approximations to infinity, it is the infinite sequence space
'Q that is the touchstone whereby the mathematical theory of probability can be
tested against our intuitive ideas. The first and most important such long run
statement is described in the following paragraphs.

Suppose that an experiment is capable of producing an event ¢ with proba-
bility p, and suppose that an infinite sequence of independent trials of this ex-
periment is performed. We consider therefore the space of all sequences
= {wl, W, W3y ¢ } where for each %, w, may or may not belong to a. Once the
experiments have been performed so that we are given a particular point w we
may start asking numerical questions. We may ask for example: out of the first
» trials of the basic experiment how many resulted in a¢? This means: out of the
first # coordinates w;, ws, * - -+ , W, of @ how many belong to a¢? The answer to
this question depends obviously on # and just as essentially on the particular
sequence w—let us denote it by m,(w).

Now what does out intuition say? The usual statement (one which we have
already exploited in our heuristic derivation of the notion of probability) is that
the ratio of the number of successes to the total number of trials should be ap-
proximately equal to the probability of the event being tested. In our notation
this seems to mean that for large # the ratio m,(w)/# should be close to the con-
stant p = P(a). The question arises: for which w’s should this be true? Not surely
for all of them. For the sequence space © contains sequences none of whose co-
ordinates belong to a, and for such a sequence w, m.(w) is zero for all #. The best
that we have a right to demand is that the w’s for which our statement is not
true should be equivalent to the empty set of w’s in the sense of probability—
that is that their totality should have probability zero. And this is true.

To sum up: we have just derived the statement (not the proof) of the most
important special case of the so called strong law of large numbers. In mathe-
matical language the assertion of this law is that as n— o, lim m,(w)/7 exists
and is equal to p(=P(a)) except for a set of w's of measure zero. In more classical
terms: it is almost certain that the “success ratios” converge to the probability
of the event being tested.

8. Random variables. In order to gain a more thorough understanding of
the law of large numbers and at the same time to introduce the language in
which most of the theorems of probability theory are stated, we proceed to dis-
cuss the notion of a random variable.

“A random variable is a quantity whose values are determined by chance.”
What does that mean? The word “quantity” is meant to suggest magnitude—
numerical magnitude. Ever since rigor has come.to be demanded in mathemati--
cal definitions it has been recognized that the word “variable,” particularly a
variable whose values are “determined” somehow or other, means in precise
language a function. Accordingly a random variable is a function: a function
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whose numerical values are determined by chance. This means in other words
that a random variable is a function attached to an experiment—once the ex-
periment has been performed the value of the function is known. The spatial
model of probability is extremely well adapted to making this notion still more
precise. If the analytic correspondent of an experiment is a measure space
then any possible outcome of the experiment is by definition represented by a
point w in this space. Hence a function of outcomes is a function of w's: a random
variable is a real valued function defined on a probability space €.

The preceding sentence does not yet constitute our final definition of a ran-
dom variable. For suppose that x =x(w) is a function on the space Q. We shall
call x a random variable only if probability questions concerning the values of x
can be answered. An example of such a question is: what is the probability that
x is between a and $? In measure theoretic language: what is the measure of the
set of those w's for which the inequality a <x(w) =<8 is satisfied? In order for
such questions to be answerable it is necessary and sufficient that the sets that
occur in them belong to the basic g-algebra B of Q. A function x(w) for which this
is true for every interval (e, B) is called “measurable.” Accordingly we make the
following definition:

A random variable is a measurable function defined on a measure space with
total measure 1.

Instances of random variables can be found even in that part of our discus-
sion which preceded their definition. The quantity v associated with the rolling
die is an example, as are also the quantities v; and v, associated with the two fold
repetition of this experiment. To obtain some further examples, consider any
fixed event @ which may result from an experiment and let the random variable
x be the number of times that @ actually occurs. If the experiment is performed
only once then x has only two possible values: 1 if @ occurs and 0 otherwise.
More generally if the experiment is repeated # times the random variable x be-
comes the function m,(w) introduced in the discussion of the law of large num-
bers.

9. Expectation, variance, and distribution. Let us consider in detail the
random variable v associated with an honest die. The possible values of v are
the first six positive integers. The arithmetic mean of these values, that is the
number (1+ - - - 46)/6, is of considerable interest in probability theory. It is
called the average, or mean value, or expectation of the random variable v and
it is denoted by E(v). If the die is loaded so that the probability p; associated
with j is not necessarily % then the arithmetic mean is replaced by a weighted
average: in this case E(v) =1-p1+ - - - +6-ps. Itis well known that the analogs
of such weighted sums in cases where the number of values of the function
(random variable) need not be finite are given by integrals. The kind of integral
that enters into probability theory is similar in every detail to the Lebesgue
integral and we shall not reproduce its definition here.

If the measurable function x(w) is integrable then ils expectation E(x) is by
definition the value of its integral extended over the entire domain Q.



1944] THE FOUNDATIONS OF PROBABILITY 505

As a useful though extremely special case we mention that if x is a counting
variable of the sort mentioned in the preceding paragraph (x =1 if a certain even
@ occurs and x =0 otherwise) then E(x) =P(a).

It is obviously of interest to ask not only what is the expected value of a
random variable x but also how closely the values of x are clustered about its
expected value. The customary measure of clustering of a random variable x
is one inspired by the method of least squares and called the “variance” or “dis-
persion” of x.

The variance of x is the expression o*(x) = E(x — )2, where a = E(x).

(The square root of the variance is called the “standard deviation.”) In
words: take the square of the deviation of x from its expected value «, and use
the sum (weighted sum, integral) of these squared deviations as a measure of
clustering. Since a sum of squares vanishes only if each term does, the vanishing
of the variance indicates that « is identically equal to its expected value (except
perhaps for a set of probability zero). In general, the smaller the variance the
closer the values of x lie to E(x).

Such numbers as E(x) and o%(x) yield partial information about the dis-
tribution of the values of x. Complete information would mean an answer to
every question of the form “what is the probability that x lies in the interval
(a, B)?” In order to deal with such questions we introduce the notion of dis-
tribution function.

The distribution function F,(\) of a random variable x is a function of a real
variable N defined for each \ to be the probability that x <\.

These functions can be used to answer every probability question concerning
random variables; for example the expression F,(8)— F.(a) represents the
probability that x belong to the (half open) interval a <x<f, and the Stieltjes
integrals [ AMF,(\) and [2.{N—E(x) }2d F,(\) represent the expectation and
variance of x respectively. Distribution functions are useful because being com-
paratively simple real functions of real variables they are amenable to treatment
by the methods of classical analysis. It is the whole purpose of a large part of
probability theory to find the distribution functions of certain random vari-
ables.

10. Independent variables. Let us consider next two random wvariables
x and y which are comparable in the sense that they are both represented by
measurable functions on the same measure space £, so that x =x(w) and y =y(w).
It is easy to see that the function E(x), being defined by an integral, is homo-
geneous of degree 1 and additive, that is E(\x) =NE(x) for.every real constant
A and E(x+y)=E(x)+E(y). Similarly the variance ¢%(x) is homogeneous of
degree 2, that is o2(A\x) =M0?%(x). One way to prove this latter fact is to make
use of the following identity connecting o2 and E:

(1) o*(x) = B(2)* — EX(x),

(where for later convenience we write E(x)? for E(x2) and EX(x) for {E(x)}?).
This identity in turn follows from the definition of o2 Since ¢2(x) = E(x —a)?
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where a=E(x), we have 0%(x) = E(x?— 2ax+0?2) = E(x?) — 2aE(x) +-o2. (We used
here the fact that the expected value of a constant is equal to that constant.)
The identity (1) follows by substituting for « its value E(x). Letting the formal-
ism guide us we may inquire whether ¢ is additive, that is whether or not the
identity '

) C ox+ 9) = (@) + *(y)

is valid. The answer in general is no. In order to investigate conditions under
which (2) is true we proceed to a brief discussion of some possible relations be-
tween pairs of random variables.

Let @ and b be two independent events and let ¥ and y be the associated
counting random variables (so that x for example is 1 if and only if @ occurs and
x=0 otherwise). The product random variable xy in this case can be equal to
1 if and only if both a and b occur, so that xy is the counting variable of aMb.
Since E(x) =P(a), E(y) =P(b), and similarly E(xy) =P(aNb), we have in this
special case

©) E(xy) = E(x)E(y).

The validity of this formula is sufficiently important in the applications of
probability to bear a name of its own: two random variables, not necessarily
the counting variables of a pair of independent events, satisfying it are called
“uncorrelated.” The reason for the terminology is that the coefficient of cor-
relation 7=r(x, y) of two random variables x and y is defined by r= { E(xy)
—E(x)E(y) } /o*(x)0?(y); this coefficient vanishes if and only if (3) holds.

It is now easy to state the facts concerning the formula (2): it is valid if and
only if (3) is. In other words the variance is additive for a pair of random vari-
ables if and only if the expectation is multiplicative, that is if and only if they
are uncorrelated. For the proof we merely expand the left member of (2),
thus:

oz + 3) = E(z + 3) — E¥x + 3)
{E(®)? — 2E(xy) + E(5)*} — {E*(2) — 2E(2)E(y) + E*(y)}
= o%(%) + o*(y) — 2{E(xy) — E(x)E(5)}.

Let us now return to the pair of counting variables x and y associated with
two independent events @ and b. Because of the independence of a and b, any
probability statement concerning v is unaffected by our knowledge of ignorance
of the value of x. More precisely, any two events defined by x and y, for example
the events “¢=0” and “y=1,” are independent. If in general any two events
by two random variables x and y respectively, that is any two events defined
by inequalities of the form e <x<8-.and y <y =<$, are independent events, no
matter what «, 8, v and § are, we say that x and y are independent random
variables. It is not too difficult to generalize what we proved about the special
case of counting variables: for independent random variables the expectation,
if it exists, is multiplicative and consequently the variance is additive. In still



1944] THE FOUNDATIONS OF PROBABILITY ) 507

other words: independence implies absence of correlation—a proposition which
certainly sounds natural enough.

One word of caution before we leave this brief introduction to the notion of
independence for random variables. What we defined was the independence
of two random variables. It would be natural to try to define the independence
of a finite or infinite sequence of random variables x;, x, - - -, by the require-
ment that'any pair be independent. Natural, but as it happens, not very useful.
The correct definition replaces two-term products by many-term products in
the following way. ,

The random variables %1, s, - - -, are independent if the probability of the
simultaneous occurrence of any finite number of the events defined by on < Xn SB,,
is the product of the separate probabilities, no matter what real constants the o's
and 3’s are.

It is easy to construct examples to show that this notion is indeed different
from the notion of pairwise independence.

11. Law of large numbers. We are now in a position to reformulate and
generalize the strong law of large numbers in terms of random variables. Let
the sequence space of points w= {wl, Wy ¢t } be the analytic model of the
infinite repetition of an experiment one of whose possible outcomes is the
event a. Let a, be the event “w, belongs to a” or equivalently the event “the
nth experiment results in a,” and let x,=x,(w) be the counting variable associ-
ated with a,. In this context that means that x,(w) has the value 1 for all those
sequences w{wl, Wy, ¢+ } for which the nth coordinate w, belongs to @, and
%,(w) has the value 0 otherwise. What significance has the sum x1+ - - - +x,?
Since a particular term x; contributes one unit to this sum if and only if the jth
experiment results in @, it is clear that the value of the sum, for any sequence w,
is the number of those coordinates among the first # coordinates of w which do
belong to a. But this is exactly the function we denoted above by m,(w). Hence
our version of the law of large numbers is equivalent to the assertion that the
averages (x1+ « - -+ +x,)/%n converge (except possibly for a set of w’s of prob-
ability zero) to the constant p = P(a). For the generalization of this result that
we are about to formulate it is worth while to observe that p=E(x,) is also
equal to the common value of the expectations of the «’s.

The sequence of random variables x;, %3, + -+ - has two important properties
which are sufficient to ensure the validity of the law of large numbers. One of
these properties is independence. It follows very easily from the fact that the
experiments yielding the values of the various x’s are independently performed,
that the variables xi, %2, - - - are indeed independent. The other essential
property of the sequence is usually expressed by the statement that the random
variables x, all have the same distribution. The definition of this concept is as
follows.

Two random variables x and y have the same distribution if for every imterval
(ct, B) the proba_bilities of the two events a<x <8 and a =y =<f are equal, or equiva-
lently if the distribution functions F,(\) and Fy(\) are identical.
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~ In our particular case it is the fact that the probability that w, belong to
o is the same for all » (namely P(a)) that implies that the x, all have the same
distribution. That independence and equidistribution are indeed the crucial
hypotheses for the law of large numbers is shown by the following general
formulation of that law.

If x1, %o, + + - 15 a sequence of independent random variables with the same
distribution, and if the expectations E(x,) exist and have the value o (necessarily
the same for all n) then the averages x1+ - - + +x,/n converge as n— « (except per-
haps on a set of probability zero) to the constant a.’

12. Central limit theorem. Sums (such as x;+ - - - +x,.) of independent
random variables with the same distribution occur very often in probability
theory. It is of considerable practical importance to investigate the precise
distribution of such sums and if possible the limiting behavior of these dis-
tributions. We assume concerning the x’s that their expectations and variances
both exist and write E(x;) =a, o2(x;) =0. It follows from the independence and
equidistribution of the x's that E(x:+ - - - 4+x,) =#a and o2(x:+ - - - +x,)
=nf. At first sight this seems like a discouraging phenomenon: if both the ex-
pectation and the variance become infinite, how can we expect a reasonable
asymptotic behavior from the much more delicate distribution function? But
the way out of the difficulty is easy: by a translation and a change of scale (differ-
ent to be sure for each #) it is possible to normalize the sum x;+4 - - - 4%, so
that its expectation is 0 and its variance 1 for every positive integer #. To get
the expectation to be 0 we merely subtract its actual value, na, from the sum—
the additivity of the expectation ensures the desired result. To get the vari-
ance to be 1 we divide by a constant factor. It is important to recall that the
variance is homogeneous of degree 2, so that the constant factor will be not #n3
but v/nB. We arrive thus at the normalized sums

x1+---—|—x,,—mx
V'nB

and inquire again after the distribution function of this random variable and the
limit of such distribution functions. The answer here is known and is embodied
in the so called central limit theorem (or Laplace-Liapounoff theorem) stated as
follows.

If %1, x2, + + + s a sequence of independent random variables with the same dis-
tribution, expectation o, and variance B, then the distribution functions of the modi-
fied sums (x1+ - - - +x,—na)/A/nB converge as n— o to a fixed distribution

Sfunction, the same no matter what the original distribution of the x's is. In more de-
tail, the limit as n—s o of the probability of the event defined by the inequality

1+ + 2 — na

V/np

<A

exists and is equal to
A

1
G()\) =— e‘“zlzdu.

2V -
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The distribution funciion G(N) is called the Gaussian or normal distribution.
With this statement we end our discussion of the development of probability
theory and turn to-a few remarks connected with the problem of application.

13. Determination of initial probabilities. When the mathematician an-
nounces that the probability of an event is a certain number, he is immediately
faced with two questions. First the practical man asks what is the practical
meaning of a probability statement? How should one act on it? If the mathe-
matician succeeds in answering this question then the philosopher wants to
know the reason for the answer. What establishes the connection between mathe-
matical theory and practice? Our remarks in what follows will bear on these
very old and. very difficult questions only incidentally—they are dedicated
mainly to a smaller problem of the theory, but one which frequently worries the
layman.

The problem is how the probability of concretely given events is really
defined. It is all very well to talk about Boolean algebras and measure theory,
but what is the probability that a coin will fall heads up? What the layman
realizes and what we now wish to emphasize is that the mathematician has not
answered any such questions. He cannot. He can no more say that the probabil-
ity of obtaining two heads in succession with a coin is  than he can say that the
volume of a cube is 8. The volume of a cube is given by a formula. If the hypoth-
eses under which the formula applies are verified and if the variables entering
into the formula are given specific values then the volume of a cube can be cal-
culated. In exactly the same sense the mathematical theory of probability is a
collection of formulae which enable us to calculate certain probabilities assuming
that certain other ones are given. If we know that the probability of obtaining
heads with a certain coin is 1 and if we know that two successive tosses of the
coin were performed independently then we can assert that the probability of
getting two heads is .

Despite the fact that probability theory shares with all other mathematical
theories its inability to state a conclusion without hypotheses, the above answer
to the layman’s question will probably seem unsatisfactory to many readers.
There must be some reason why most people believe that the probability of
heads is %. It is often even proved. The usual proof is based on symmetry argu-
ments, or equivalently on the principle of sufficient reason. (Why should heads
have any greater likelihood of appearlng than tails?) Do these proofs have any
mathematical validity?

The answer is definitely yes. In some cases it is more pleasing to the intuition
or more convenient for practice to formulate our hypotheses purely qualita-
tively. In almost all such cases the hypotheses take the form of invariance—the
probabilities entering into the problem are required to be invariant under a
certain group of transformations. It often turns out then that an existence and
uniqueness theorem is true, that is it can be proved that there exists one and
only one probability measure satisfying the stated hypotheses. Theorems of this
type are certainly a part, an increasingly important part, of the theory of proba-
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bility, and as long as their hypotheses are clearly formulated and recognized as
hypotheses, the professional mathematician is the last person to sneer at them.
Their advantage at the level of elementary pedagogy seems to lie in the fact
that the statement “heads and tails are equally likely” is easier to grasp intui-
tively than the statement “the probability of heads is .”

We see thus that a mathematical statement on probability has to have cer-
tain either explicitly or implicitly given probabilities to begin with. In practice
the physicist (or actuary, or anyone else interested in applying the theory) ob-
tains these initial numbers experimentally. If he wants to know what is the
probability of a coin falling heads up, he tosses the coin a large number of times
and then uses the law of large numbers to assure himself that he may use the
obtained frequency ratio as an approximation to the correct value of the
probability. Or he may observe that the values of a random variable are ob-
tained as the sum of a large number of independent variables each with a
negligible variance and thus be led to introduce the normal distribution. Such
approximative procedures are of course common to all parts of applied mathe-
matics.

14. Conclusion. Our exposition is finished. If the reader has been patient
enough to read this far he may be curious enough to read farther. Our scanty
bibliography will furnish a basis for such reading. For certainly not all probabil-
ity theory is contained in this paper, nor as yet in any collection of books or pa-
pers. There is still much room in the field for the exercise of the analytic in-
genuity and abstract generality of both classical and modern mathematics. If
this paper will be instrumental in persuading mathematicians that probability is
mathematics, and in causing some to look into the subject more deeply than they
had previously thought worth while, it will have more than accomplished its pur-
pose.
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NON-ANALYTIC FUNCTIONS
SZU-HOA MIN, National Tsing Hua University

The triumph of the theory of analytic-functions lies in the fact that it has
wide applications not only in other branches of mathematics but also in many
physical investigations. In regard to the latter, it is possible merely because
many physical quantities are distributed like the values of a harmonic function,
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