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Rotations, belts, braids, spin-1/2 particles, and all that

The space of all three-dimensional rotations is usually denoted by SO(3). This space
has a well-known and fascinating topological property—a complete rotation of an ob-
ject is a motion which may or may not be continuously deformable to the trivial motion
(i.e., no motion at all) but the composition of two motions that are not deformable to
the trivial one gives a motion, which is. (Here and further down by “complete rota-
tion” we will mean taking the object at time t = 0 and rotating it as t changes from 0
to 1 arbitrarily around a fixed point, so that at t = 1 the object is brought back to its
initial orientation.) A rotation around some fixed axis by 360◦ cannot be continuously
deformed to the trivial motion, but it can be deformed to a rotation by 360◦ around any
other axis (in any direction). However, a rotation by 720◦ is deformable to the trivial
one.

You may try to see some of this at home by performing a complete rotation of a box,
keeping one of the vertices fixed. Let us first rotate the box around one of the edges and
then try to deform this motion to the trivial one. If you follow a vertex on one of the
non-fixed edges, it will trace a large circle on a sphere. Now, for any complete rotation
of the box (around the same fixed vertex) the vertex we are following will have to
trace some closed path on that sphere. So as you try to deform continuously the initial
motion to the trivial one, the vertex you are tracking will have to trace smaller and
smaller paths, starting from the large circle and ending with the constant path, which
is just the initial and final point. As you do this, one of the other vertices, which was left
fixed by the initial motion, will start tracing larger and larger paths approaching a large
circle on a sphere. Thus in effect, trying to contract a rotation around one of the edges
to the trivial one, you only managed to deform it to a rotation around a different edge.
There is some intrinsic “topological obstacle” to contracting such motions. You would
need a considerable imagination to see the second property—if your initial motion
consists of two full rotations around some axis, it can be deformed to the trivial motion.
There are a few famous “tricks” relying on this property, most notably “Dirac’s belt
trick” and “Feynman’s plate trick.” In the “belt trick” you fasten one end of the belt and
rotate the other end (the buckle) by 720◦. Then, without changing the orientation of the
buckle, you untwist the belt, by passing it around the buckle. (See a nice animation on
Greg Egan’s web-page [6] and Java applets analyzing the “tricks” by Bob Palais [9].)
The “plate trick” is essentially the same. You put a (full) plate onto your palm and,
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without moving your feet, rotate it by 720◦, at the same time moving it under your
armpit and then over your head. You will end up in your initial position, your arm and
body untwisted.

These experiments should leave you with a few questions: Is the complete rotation
around one axis really not contractible to the trivial motion? If you have two arbitrary
motions that are not contractible, can you always deform one to the other? If you com-
pose two of the latter do you always get a motion that is contractible? (The affirmative
answer to the last question actually will follow from the affirmative answer to the pre-
vious one together with the “belt trick” effect.) We will describe an experiment, which
could be called the “braid trick” and which will give us enough machinery to answer
these questions rigorously. In the process, we exhibit an intriguing relation between
three-dimensional rotations and braid groups.

Complete rotations of an object are in one-to-one correspondence with closed paths
in SO(3). Two closed paths in a topological space with the same initial and final point
(base point) are called homotopic if one can be continuously deformed to the other.
Since homotopy of paths is an equivalence relation, all paths fall into disjoint equiv-
alence classes. The set of homotopy classes of closed paths becomes a group when
one takes composition of paths as the multiplication and tracing a path in the opposite
direction as the inverse. This group, noncommutative in general, is one of the most
important topological invariants of a space and was first introduced by Poincaré. It is
called the fundamental group or the first homotopy group and is denoted by π1. Thus
for the space of three-dimensional rotations the topological property discussed so far is
written in short as π1(SO(3)) ∼= Z2. This means that all closed paths in SO(3) starting
and ending at the same point, e.g., the identity, fall into two homotopy classes—those
that are homotopic to the constant path and those that are not. Composing two paths
from the second class yields a path from the first class.

A topological space with a fundamental group Z2 is a challenge to the imagination—
it is easy to visualize spaces with fundamental group Z (the punctured plane), or
Z � Z · · · � Z (plane with several punctures), or even Z ⊕ Z (torus), but there is no
subspace of R

3 whose fundamental group is Z2.
The peculiar structure of SO(3) plays a fundamental role in our physical world.

There are exactly two principally different types of elementary particles, bosons, hav-
ing integer spin, and fermions, having half-integer spin, with very distinct physical
properties. The difference can be traced to the fact that the quantum state of a boson is
described by a (possibly multi-component) wave function, which remains unchanged
when a full (360◦) rotation of the coordinate system is performed, while the wave func-
tion of a fermion gets multiplied by −1 under a complete rotation. Somewhat loosely
speaking, the second possibility comes from the fact that only the modulus of the
wave function has a direct physical meaning. Mathematical physicists have realized
long ago [11, 2] that the wave function has to transform properly only under the action
of transformations that are in a small neighborhood of the identity. When a “large”
transformation is performed on the wave function, like a rotation by 360◦, it can be
done by a sequence of “small” transformations, but the end point—the transformed
wave function—need not coincide with the initial one. On the other hand, if you take
a closed path in SO(3) which remains in a small neighborhood of the identity, the
transformed wave function at the end must coincide with the initial one. In fact what
is important is whether the closed path is contractible to the identity or not. It is quite
obvious from continuity considerations that the end-point wave function must coin-
cide with the initial one if the path in SO(3) is contractible. Thus when you do two
full rotations, i.e., rotation by 720◦, the wave function should come back to the initial
one which implies that the transformation, corresponding to a 360◦–rotation must be
of order 2.
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There are several standard ways of showing that π1(SO(3)) ∼= Z2. The one that
is best known uses substantially Lie group and Lie algebra theory. The space SO(3)

can be thought of as the space of 3 × 3 real orthogonal matrices with determinant
1. It has the structure of a closed three-dimensional smooth manifold embedded in
R

9 (a higher-dimensional analog of a closed smooth surface embedded in R
3). It is

also a group and the group operations are smooth maps. Such spaces are called Lie
groups. Another Lie group, very closely related to SO(3) is SU(2)—the group of
2 × 2 complex unitary matrices with determinant 1. It is relatively easy to see that
topologically SU(2) is the three-dimensional sphere S3. Locally the two groups are
identical, i.e., one can find a bijection between open neighborhoods of the identities
of both, which is a group isomorphism and a (topological) homeomorphism. Glob-
ally, however, this map extends to a 2–1 homomorphism SU(2) → SO(3), send-
ing any two antipodal points on SU(2) to a single point on SO(3). In topological
terms this map is called a double covering of SO(3). The topology of SO(3) can
now be easily understood—it is the three-dimensional sphere S3 with antipodal points
identified.

In the present paper we describe an alternative way of “seeing” and proving that
π1(SO(3)) ∼= Z2. It does not use Lie groups or even matrices. It is purely algebraic-
topological in nature and very visual. It displays a simple connection between full
rotations (closed paths in SO(3)) and braids. We believe that this is an interesting
way of demonstrating a nontrivial topological result to students in introductory geom-
etry and topology courses as well as a suitable way of sparking interest in braids and
braid groups, which appear naturally in various mathematical problems, from algebraic
topology through operator algebras to robotics and cryptography.

Relationships between braids and homotopy groups appear at different levels. To
begin with, braid groups can be defined as the fundamental groups of certain configu-
ration spaces. Braids have been applied (see, e.g., [4]) to determining homotopy groups
of the sphere S2. In this paper, we present yet another, simple connection between braid
groups and a fundamental group.

The goal of this paper is mostly pedagogical—presenting in a self-contained and
accessible way a set of results that are basically known to algebraic topologists and
people studying braid groups. The fact that the first homotopy group of SO(3) can be
related to spherical braids is a special case (in disguise) of the following general state-
ment [7]: “The configuration space of three points on an r -sphere is homotopically
equivalent to the Stiefel manifold of orthogonal two-frames in r + 1-dimensional Eu-
clidean space.” Fadell [7] considers a particular element of π1(SO(3)) and uses the fact
that it has order 2 to prove a similar statement for a corresponding braid. Our direction
is the opposite—we analyze braids to deduce topological properties of SO(3).

In the next section we describe a simple experiment that actually demonstrates the
Z2 in three-dimensional rotations. Then in section 3 we give a formal treatment of that
experiment. We construct a map from π1(SO(3)) into a certain factorgroup of a sub-
group of the braid group with three strands. We prove that this map is an isomorphism
and that the image is Z2.

The braid trick

Take a ball (a tennis ball will do) and attach three strands to three different points
on its surface. Attach the other ends of the strands to three different points on the
surface of your desk (FIGURE 1). Perform an arbitrary number of full rotations of the
ball around arbitrary axes. You will get a plaited “braid”. (When you do the rotations,
your strands will have to be loose enough. Still, if you are performing just rotations
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of the ball without translational motions, what you will get is a “braid” and not the
more complicated object “tangle” in which each strand can be knotted by itself. Even
though this more complicated situation can be handled easily, we prefer to avoid it.)
Now keep the orientation of the ball fixed. If the total number of full rotations is even,
you can always unplait the “braid” by flipping strands around the ball. If the number
of rotations is odd you will never be able to unplait it, but you can always reduce it
to one simple configuration, e.g., the one obtained by rotating the ball around the first
point and twisting the second and third strands around each other.

Figure 1 Rotating a ball with strands attached.

As we might expect, rotations that can be continuously deformed to the trivial ro-
tation (i.e., no rotation) lead to trivial braiding. At this point we can only conjecture
from our experiment that the fundamental group of SO(3) contains Z2 as a factor.

Relating three-dimensional rotations to braids

With each closed path in SO(3) we associate three closed paths in R
3 starting at the

sphere with radius 1 and ending at the sphere with radius 1/2. We may think of con-
tinuously rotating a sphere from time t = 0 to time t = 1 so that the sphere ends up
with the same orientation as the initial one. Simultaneously we shrink the radius of
the sphere from 1 to 1/2 (see FIGURE 2). Any three points on the sphere will trace
three continuous paths in R

3, which do not intersect each other. Furthermore, for fixed
t the three points on these paths lie on the sphere with radius 1 − t/2. To formalize
things, let ω(t), t ∈ [0, 1] be any continuous path in SO(3) with ω(0) = ω(1) = I .
ω(t) acts on vectors (points) in R

3. Take three initial points in R
3, e.g., x1

0 = (1, 0, 0),
x2

0 = (−1/2,
√

3/2, 0), x3
0 = (−1/2, −√

3/2, 0). Define three continuous paths by

xi (t) := (1 − t/2)ω(t)(xi
0), t ∈ [0, 1], i = 1, 2, 3.

In this way we get an object that will be called a spherical braid—several distinct
points on a sphere and the same number of points, in the same positions, on a smaller
sphere, connected by strands in such a way that the radial coordinate of each strand is
monotonic in t .

Note. One can multiply two spherical braids by connecting the ends of the first to the
beginnings of the second (and rescaling the parameter). When one considers classes of
isotopic spherical braids one obtains the so called braid group of the sphere [8], which
algebraically is B3/R (see below). This is known as the mapping-class group of the
sphere (with 0 punctures and 0 boundaries) and has been studied by topologists.
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Stereographic
projection

Figure 2 A “spherical braid” and a normal braid.

We can map our spherical braid to a conventional one using stereographic pro-
jection (FIGURE 2). First we choose a ray starting at the origin and not intersecting
any strand. The ray intersects each sphere at a point, which we can consider as the
“north pole”. Then we map stereographically, with respect to its “north pole,” each
sphere with radius 1/2 ≤ ρ ≤ 1 (minus its “north pole”) to a corresponding (horizon-
tal) plane. Finally we define the z-coordinate of the image to be z = −ρ.

Recall the usual notion of braids, introduced by Artin [1]. (See also [4] for a con-
temporary review of the theory of braids and its relations to other subjects.) We take
two planes in R

3, let’s say parallel to the XY plane, fix n distinct points on each plane
and connect each point on the lower plane with a point on the upper plane by a contin-
uous path (strand). The strands do not intersect each other. In addition the z-coordinate
of each strand is a monotonic function of the parameter of the strand and thus z can
be used as a common parameter for all strands. Two different braids are considered
equivalent or isotopic if there exists a homotopy of the strands (keeping the endpoints
fixed), so that for each value of the homotopy parameter s we get a braid, for s = 0
we get the initial braid and for s = 1 the final one. When the points on the lower and
the upper plane have the same positions (their x and y coordinates are the same), we
can multiply braids by stacking one on top of the other. Considering classes of isotopic
braids with the multiplication just defined, the braid group is obtained. Artin showed
that the braid group Bn on n strands has a presentation with n − 1 generators and a
simple set of relations—Artin’s braid relations. We give them for the case n = 3 since
this is the one we are mostly interested in. In this case the braid group B3 is generated
by the generators σ1, corresponding to twisting of the first and the second strands, and
σ2, corresponding to twisting of the second and the third strands (the one to the left
always passing behind the one to the right) (FIGURE 3). These generators are subject
to a single braid relation (FIGURE 4):

σ2σ1σ2 = σ1σ2σ1 (1)

Figure 3 The generators σ1 and σ2 of B3.
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Figure 4 The braid relation for B3.

We say that B3 has a presentation with generators σ1 and σ2 and defining relation given
by Equation 1, or in short:

B3 = 〈σ1, σ2; σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2 〉 (2)

In our case, since a full rotation of the sphere returns the three points to their original
positions, we always get pure braids, i.e., braids for which any strand connects a point
on the lower plane with its translate on the upper plane. Pure braids form a subgroup of
B3 which is denoted by P3. Note that intuitively there is a homomorphism π from B3

to the symmetric group S3 since any braid from B3 permutes the three points. Formally
we define π on the generators by

π(σ1)(1, 2, 3) = (2, 1, 3), π(σ2)(1, 2, 3) = (1, 3, 2) (3)

and then extend it to the whole group B3 (it is important that π maps Equation 1 to
the trivial identity). Pure braids are precisely those that do not permute the points and
therefore we can give the following algebraic characterization of P3:

P3 := Ker π.

Alternatively, S3 is the quotient of B3 by the additional equivalence relations σ 2
i ∼ I ,

i = 1, 2 and if N is the minimal normal subgroup containing σ 2
i , then π : B3 → B3/N

is the natural projection. It is then easy to see that the kernel of π has to be a product
of words of the following type:

σ±1
i1

σ±1
i2

· · · σ±1
ik

σ±2
ik+1

σ±1
ik

· · · σ±1
i2

σ±1
i1

.

The whole subgroup P3 can in fact be generated by the following three twists
(FIGURE 5)

a12 := σ 2
1 , a13 := σ2σ

2
1 σ−1

2 = σ−1
1 σ 2

2 σ1, a23 := σ 2
2 . (4)

In our construction so far we mapped any closed path in SO(3) to a spherical braid
and then, using stereographic projection, to a conventional pure braid. The last map,
however, depends on a choice of a ray in R

3 and, what is worse, spherical braids
that are isotopic (in the obvious sense) may map to nonisotopic braids. To mend this,
we will identify certain classes of braids in P3. Namely, we introduce the following
equivalence relations (see FIGURE 6):

r1 := σ1σ
2
2 σ1 ∼ I, r2 := σ 2

1 σ 2
2 ∼ I, r3 := σ2σ

2
1 σ2 ∼ I . (5)

In our model with the tennis ball the elements ri , i = 1, 2, 3 correspond to flips of the
i th strand above and around the ball. Such motions lead to isotopic spherical braids,
as will be shown later. (The choice of these particular three flips given in Equation 5 is
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Figure 5 The generators a12, a13, and a23 of P3.

based on the following intuition, coming from the experiment—thinking of the three
strands of the trivial braid as arranged in a circle, we pull one of them out and flip
it above and around the ball clockwise to obtain one of the ri or counterclockwise to
obtain its inverse. Thus in FIGURE 6 the middle strand is in the background, while the
first and third are in the foreground. We do not take “more complicated” elements, like
e.g., σ 2

2 σ 2
1 which would correspond to first pulling the middle strand between the other

two to the foreground and then performing the flip r1, i.e., σ 2
2 σ 2

1 is obtained from r1 by
conjugating it with σ1 and its inverse.)

Figure 6 The flips r1, r2, and r3.

Note. When any strand in any part of the spherical braid crosses the ray which we
use for the stereographic projection, that projection will map the spherical braid to
a different (Artin) braid, which we should consider as identical with the initial one.
This means that we have to factorize by the normal closure in B3 (not in P3!) of the
generators ri , i = 1, 2, 3, i.e., the smallest normal subgroup in B3 containing these
three generators. This would then allow us to set to I any ri (or its inverse) in any part
of a word. We see easily that only one of the generators is needed then, since the other
two will be contained in the normal closure of the first. We noticed experimentally,
however, that we managed to untie any trivial braid just by a sequence of the three
flips ri defined in Equation 5 and their inverses, performed at the end of the braid. At
the same time a nontrivial braid, corresponding to an odd number of rotations, cannot
be untied even if we allow flips in any part of the braid. This can only be true if the flips
ri generate a normal subgroup in B3 (which of course then coincides with the normal
closure of any of the ri and is also normal in P3).

LEMMA 1. The subgroup R ⊂ P3, generated by r1, r2, r3 is normal in B3.

Proof. We need to show that we can represent all conjugates of ri with respect
to the generators of B3 and their inverses as products of the ri and their inverses.
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Straightforward calculations, using repeatedly Artin’s braid relation (Equation 1) give
the following identities:

σ1r1σ
−1
1 = r2, σ2r1σ

−1
2 = σ−1

2 r1σ2 = r1,

σ1r2σ
−1
1 = r2r1r−1

2 , σ2r2σ
−1
2 = r3,

σ1r3σ
−1
1 = σ−1

1 r3σ1 = r3, σ2r3σ
−1
2 = r−1

1 r2r1 = r3r2r−1
3 ,

σ−1
1 r1σ1 = r−1

1 r2r1, σ−1
1 r2σ1 = r1,

σ−1
2 r2σ2 = r1r3r−1

1 = r−1
2 r3r2, σ−1

2 r3σ2 = r2.

(6)

We demonstrate as an example the proof of the first identity in the second line. We
have

σ1σ2σ1 = σ2σ1σ2

σ2σ1σ2σ1σ2σ1 = σ 2
2 σ1σ

2
2 σ1

σ1σ2σ1σ2σ1σ2 = σ 2
2 σ1σ

2
2 σ1

σ1σ
2
2 σ1σ

2
2 = σ 2

2 σ1σ
2
2 σ1

σ1σ
2
2 σ1 = σ 2

2 σ1σ
2
2 σ1σ

−2
2

σ 3
1 σ 2

2 σ−1
1 = σ 2

1 σ 2
2 σ1σ

2
2 σ1σ

−2
2 σ−2

1 ,

and therefore

σ1r2σ
−1
1 = σ1 · σ 2

1 σ 2
2 · σ−1

1 = σ 2
1 σ 2

2 · σ1σ
2
2 σ1 · σ−2

2 σ−2
1 = r2r1r−1

2 .

By suitable full rotations we obtain all generators of P3. For example, a12 is obtained
by rotating around the vector x3

0 = (−1/2, −√
3/2, 0) and it twists the first and the

second strand. Furthermore, homotopies between closed paths in SO(3) correspond
to isotopies of the spherical braids and thus homotopic closed paths in SO(3) will
be mapped to the same element in the factorgroup P3/R. Hence we have a surjection
π1(SO(3)) → P3/R.

PROPOSITION 1. The factorgroup P3/R is isomorphic to Z2.

Proof. To make notation simpler we use the same letter to denote both a represen-
tative of a class in P3/R and the class itself, hoping that the meaning is clear from the
context. In P3/R we have

σ1σ
2
2 = σ−1

1 = σ 2
2 σ1,

and

σ2σ
2
1 = σ−1

2 = σ 2
1 σ2.

The following sequence of identities follow one from another:

σ2σ
2
1 = σ 2

1 σ2, σ1σ2σ
2
1 = σ 3

1 σ2,

σ2σ1σ2σ1 = σ 3
1 σ2, σ1σ2σ1σ2σ1 = σ 4

1 σ2,

σ1σ
2
2 σ1σ2 = σ 4

1 σ2, I = σ 4
1 .

We have used twice the braid relation (Equation 1) and the first equivalence relation in
Equation 5. In a completely analogous way we prove

σ 4
2 = I .
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Combining the last two results with the equivalence relations (Equation 5) we finally
get

σ 2
1 = σ−2

1 = σ 2
2 = σ−2

2 . (7)

It is now clear that in P3/R the three generators, defined in Equation 4 reduce to one
element of order 2. Therefore they generate Z2. This completes the proof.

So far we have constructed a map π1(SO(3)) → P3/R, which is onto by construc-
tion, and we have shown that the image is isomorphic to Z2. To show that this map is
actually an isomorphism, we only need:

PROPOSITION 2. The map π1(SO(3)) → P3/R is a monomorphism.

Proof. It suffices to show that if a closed continuous path in SO(3) is mapped to a
braid in R, then this path is homotopic to the constant path. The proof basically reduces
to the following observation — any spherical braid which is pure (the strands connect
each point on the outer sphere with the same point on the inner sphere) determines a
closed path in SO(3). Two isotopic spherical pure braids determine homotopic closed
paths in SO(3). Indeed, recall that for a spherical braid we can parametrize the points
on each strand with a single parameter t and that for a fixed t all three points lie
on a sphere with radius 1 − t/2. These three ordered points xi (t), i = 1, 2, 3 give
for every fixed t a nondegenerate triangle, oriented somehow in R

3. Let l(t) be the
vector, connecting the center of mass of the triangle with the vertex x1(t), i.e., l(t) =
x1 − (x1(t) + x2(t) + x3(t))/3 and define e1(t) := l(t)/||l(t)||. Let e3(t) be the unit
vector, perpendicular to the plane of the triangle, in a positive direction relative to the
orientation (1, 2, 3) of the boundary. Finally, let e2(t) be the unit vector, perpendicular
to both e1(t) and e3(t), so that the three form a right-handed frame. Then there is a
unique element ω(t) ∈ SO(3) sending the vectors e1

0 = (1, 0, 0), e2
0 = (0, 1, 0), e3

0 =
(0, 0, 1) to the triple ei (t). According to our definitions, ω(0) = ω(1) = I and we
get a continuous function ω : [0, 1] → SO(3), where continuity should be understood
relative to some natural topology on SO(3), e.g., the strong operator topology.

Recall that for any spherical braid the i th strand (i = 1, 2, 3) starts at the point xi
0

and ends at the point xi
0/2. If we have two isotopic spherical braids, by definition there

are continuous functions xi (t, s), i = 1, 2, 3, such that xi (t, s) is a braid for any fixed
s ∈ [0, 1], xi (0, s) = xi

0, xi (1, s) = xi
0/2, xi (t, 0) give the initial braid and xi (t, 1) give

the final braid. By assigning an element ω(t, s) to any triple xi (t, s) as described, we
get a homotopy between two closed paths in SO(3).

Let ω′(t) be a closed path in SO(3) which is mapped to a braid b in the class r1 ∈ R.
We can construct a spherical braid, whose image is isotopic to that braid. Let z be the
point on the unit sphere with respect to which we perform the stereographic projection.
This can always be chosen to be the north pole or a point very close to the north pole
(in case a strand is actually crossing the axis passing through the north pole). Note that
the points xi

0, i = 1, 2, 3 are on the equator. Construct a simple closed path on the unit
sphere starting and ending at x1

0 and going around z in a negative direction (without
crossing the equator except at the endpoints). Thus we have two continuous functions
ϕ(t), θ(t), t ∈ [0, 1]—the spherical (angular) coordinates describing this path. Let
x1(t) be the point in R

3 whose spherical coordinates are ρ(t) := 1 − t/2, ϕ(t), θ(t)
and let xi (t) := (1 − t/2)xi

0, i = 2, 3. These three paths give the required spherical
braid. It is isotopic to the trivial braid, coming from the constant path in SO(3), and at
the same time it is isotopic to the preimage of b under the stereographic projection. In
this way we see that ω′(t) must be homotopic to the constant path. Obviously a similar
argument holds with r1 replaced by r2 and r3 or the inverses. Since any element in R
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is a product of these generators, and since products of isotopic braids give isotopic
braids, this completes the proof.

Further discussion, results, and generalizations

When we look at a complicated braid that has been plaited by numerous different ro-
tations of our ball, it may seem difficult to tell whether it can be untied (by performing
flips ri ) or not. Actually, there is a simple criterion to determine this. Assume that the
braid is represented as some word in the Artin generators:

b = σ
m1
1 σ

n1
2 σ

m2
1 σ

n2
2 . . . σ

mk
1 σ

nk
2 . (8)

Define the following invariant, called the length of the braid:

p(b) := m1 + n1 + m2 + n2 + · · · + mk + nk . (9)

Note that mi and ni can be any integers (positive, negative or zero). We observe that the
number p(b) is invariant for Artin’s braid, since applying the braid relation (Equation
1) inside any word does not change p(b) of that word. Next, since we know that our
braid is pure, it can be written as a product of the generators a12, a13, and a23 defined
in Equation 4 and their inverses. Note that each of these generators has p(b) = 2.
So we conclude that p(b) is even. Now, if p(b) = 0 (mod 4) this means that b is a
product of even number of the generators ai j (and their inverses). We saw in the proof
of Proposition 1 that in P3/R the three generators ai j reduce to one element of order 2,
so p(b) = 0 (mod 4) implies that b is trivial in P3/R or can be untied by performing
flips. On the other hand, if p(b) = 2 (mod 4), then b is a product of odd number of
generators ai j (and their inverses) and thus reduces to the single nontrivial element
of P3/R. In this way we have provided a (simple) algorithm solving the so-called
word problem for P3/R, i.e., one can decide in a finite number of steps algorithmically
whether two words represent the same group element or not.

There is a more intriguing aspect of our “puzzle”—given a complicated braid which
is trivial in P3/R, can we provide a recipe for a sequence of flips ri that will untie it?
(When one experiments with the tennis ball one usually intuitively finds a sequence of
flips, but can we program a computer to do it?) Mathematically the problem reduces
to the following: given an element b ∈ R ⊂ B3, which is written in terms of the gener-
ators of B3, can we give an algorithm to rewrite this element in terms of the generators
of R? The authors don’t know the answer to this question, though it may be simple. We
should point out that such questions about the braid group, its subgroups and factor-
groups have sparked considerable interest, especially in connection with their possible
use in cryptography (see, e.g., [5] for examples).

Figure 7 The full twist d in the case n = 3.
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We can easily understand the “belt trick” or the “plate trick” using algebra. In our
experiment with the ball let’s perform two full rotations (full twists) around a vertical
axis (FIGURE 8). A single full twist, as in FIGURE 7 leads to the braid d := (σ1σ2)

3.
For two full twists, using twice Artin’s braid relation, we get:

d2 = (σ1σ2)
6 = (σ2σ1)

6 = σ2σ1σ2σ1σ2σ1(σ2σ1)
3 = σ2σ1σ1σ2σ1σ1(σ2σ1)

3

= r3σ
2
1 σ2σ1σ2σ1σ2σ1 = r3σ

2
1 σ2σ2σ1σ

2
2 σ1 = r3r2r1

Therefore we can unplait the braid d2 by applying the sequence of flips r−1
3 , r−1

2 , r−1
1

(in that order). Intuitively this is the same as flipping the whole bunch of three strands
together above and around the ball. It is also obvious that it should not matter with
which strand we start, so cyclic permutations of the above sequence of flips should
also unplait the braid. If we look at some of the identities in Equations 6 we see indeed
that r3r2r1 = r2r1r3 = r1r3r2.

1
3

1
2

1
1 rrr −−−

 

Figure 8 The “belt trick.”

There is an obvious generalization of some of the results of the previous sections to
the case n > 3. The minimal number of strands that is needed to capture the nontrivial
fundamental group of SO(3) is n = 3. When n > 3 any full rotation will give rise to
a pure spherical braid but the whole group of pure braids will not be generated in this
way. It is relatively easy to see that in this way, after projecting stereographically, we
will obtain a subgroup of Pn , generated by a single full twist d of all strands around an
external point and a set of n flips ri :

d := (σ1σ2 · · · σn−1)
n,

r1 := σ1σ2 · · · σn−2σ
2
n−1σn−2 · · · σ1,

r2 := σ 2
1 σ2 · · · σn−2σ

2
n−1σn−2 · · · σ2,

ri := σi−1 · · · σ2σ
2
1 σ2 · · · σn−2σ

2
n−1σn−2 · · · σi , i = 2, 3, . . . n − 1,

rn := σn−1σn−2 · · · σ2σ
2
1 σ2 · · · σn−2σn−1.

FIGURE 7 shows a full twist for the case with 3 strands while FIGURE 9 shows
a generic flip. Straightforward calculations give the following generalization of
Lemma 1:

LEMMA 1′. The subgroup R ⊂ Pn, generated by ri , i = 1, . . . n, is normal in Bn.
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12 i n

Figure 9 The flip ri.

Proof. As in the proof of Lemma 1 we exhibit explicit formulas for the conjugates
of all flips ri :

σ j riσ
−1
j = σ−1

j riσ j = ri , i − j > 1 or j − i > 0,

σi−1riσ
−1
i−1 = riri−1r−1

i ,

σ−1
i−1riσi−1 = ri−1,

σi riσ
−1
i = ri+1, i ≤ n − 1

σ−1
i riσi = r−1

i ri+1ri , i ≤ n − 1.

Let us denote by S the subgroup, generated by d and ri . Using purely topological in-
formation, namely that π1(SO(3)) ∼= Z2, we can deduce the following generalization
of Proposition 1:

PROPOSITION 1′. The factorgroup S/R is isomorphic to Z2.

An equivalent statement is that d2 ∈ R.
Given a braid with more than 3 strands it is generally not simple to determine

whether or not it belongs to the group S, or in other words whether or not it can
be plaited when its strands are tied together at each end, starting from the trivial braid
and performing flips ri and twists d and their inverses (to the upper end). It turns out
that this question is of importance for the construction of knitting machines and has
been solved explicitly in [10]. The braid in FIGURE 10 for example can be obtained by
a sequence of flips. Since the strands in this case stay in pairs we can think of them as
representing ribbons. You can play around with this example by taking a paper strip,
cutting two slits parallel to the long sides and trying to plait the shown configuration
or you can look at Bar-Natan’s gallery of knotted objects [3] from which the example
was borrowed. In fact the “braided theta” in FIGURE 10 can be obtained by perform-

2
1

3
1

23 RRRR −−

Figure 10 “Braided theta.”
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ing a sequence of ribbon flips R1, R2, R3 and their inverses, which are similar to the
ones in FIGURE 6 but performed on the 3 ribbons. By definition we have Ri := r2ir2i−1

and the effect of a flip Ri is similar to that of the usual flip ri except that it twists the
i th ribbon by 720◦ (counterclockwise). It is easier to find experimentally, rather than
doing the algebra, that the “braided theta” in FIGURE 10 is the product R3 R−1

2 R−1
3 R2.

If one tries to generalize the main result of this paper to higher dimensions, one
would notice immediately that the isomorphism fails. On the one hand braids in higher
than three-dimensional space can always be untangled. On the other hand the funda-
mental groups of SO(n) are nontrivial. The reason for this failure is that we are able to
attribute a path in SO(3) to any spherical braid with 3 strands but this is not the case
for n > 3 (4 points on S3 may not determine an orientation of the orthonormal frame
in R

4.)
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