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Introduction

The whole is the sum of its parts—what might those parts look like? If we have two
very different-looking sets in the plane, when can their corresponding separate parts
look alike? It is a question with some surprising answers.

In Ficure 1, two closed sets A and B are composed of disjoint subsets—A = A, U A,
and B = B, U B,—in such a way that A, is similar to B, and A, is similar to B,. For
the “summands” to be truly disjoint, we must also account for the boundaries. To
obtain the desired similarities, we assign the bottom edge of the square A, to the
rectangle A, and the top edge of the square B, to the rectangle B,. Could the same
sort of decomposition be obtained if, say, the set A was replaced by a circular disk? A
glance ahead to Ficure 3 might affect your answer. And look at Ficure 4—can each of
those sets be partitioned into two disjoint subsets so that the corresponding parts of
each set look alike? How would you bet?

FIGURE 1

A remarkable result
Two sets A and B in the plane are homothetic, denoted A ~ B, if they are similar

and similarly oriented. For example, in Ficure 2, the sets A, B, and C are homothets
of each other, but not of set D (even though D is congruent to A) because “similarly
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oriented” does not permit rotations or reflections. Thus in Ficure 1, with A missing
its bottom edge and B, missing its top edge, the sets A, and B, are similar but they
are not homothetic because the similarity mapping A, onto B, involves a 180°
rotation. A homothetic transformation (or homothety) of the plane onto itself is a
mapping of the form f(v) =kv + a, where a is a constant vector and k is a positive
scalar constant. When k=1, f is a translation. When a=0 and k=1, f is the
identity mapping. When a =0 and k # 1, f is a contraction toward the origin or an
expansion about the origin, according as k <1 or k> 1. When k # 1, we may set
m =1/(1 — k) and note that

f(ma+ (v—ma)) =f(v) =kv+a=ma+k(v—ma),

thus representing f as a contraction toward or expansion about the point ma.

—

FIGURE 2

Using the definition, the reader will readily verify that the composition of two
homotheties is again a homothety, that the inverse of a homothety is a homothety, and
that each line is mapped by a homothety onto a parallel line.

We will say that two sets A and B are 2-homothetic, denoted A = B, if each of
them can be partitioned into two disjoint sets (A=A, UA, and B =B, U B, with
A, NA, =0 =B, NB,)in such a way that A; ~B; and A, ~ B,.

In Ficure 1, if square B, were on top of rectangle B, rather than below, then A
and B would be 2-homothetic, since the bottom edges of squares A; and B, could be
assigned to A, and B, respectively, and then no forbidden rotation would be needed
to establish the similarities. But when B, is tacked onto the bottom of B,, as in
Ficure 1, it becomes an interesting exercise to try to show that A and B are
2-homothetic by finding the required partitions, remembering to take care of the
boundaries.

Another example is found in Ficure 3, which suggests an infinite nesting of
inscribed squares and disks that might show the square and the disk to be 2-homo-
thetic!!l Of course, we must always be careful of what is happening on the boundaries
of the subsets. Is it really true that a square and a disk can be built from the same two
pieces if we are allowed just expansions and contractions?

FIGURE 3
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It is certainly not obvious that the two sets in Ficure 4 are 2-homothetic, since the
sets include isolated points, whiskers, random curves, components that may not be
Lebesgue measurable (the shaded eye in B), and are generally as badly behaved as we
could draw them. However, their 2-homotheticity is a consequence of the following
remarkable result.

FIGURE 4

THEOREM 2HOM. Two sets in the plane are 2-homothetic provided each of them is
bounded and has nonempty interior.

Although Theorem 2HOM seems surprising, it turns out to be an easy corollary of
the following strengthened form of the famous Cantor—Bernstein theorem, and thus is
a nice example to show the geometric power of abstract set theory.

THEOREM CBB. If f: A — B is a function that maps a set A one-to-one into a set B
(i.e., onto a subset of B) and g: B — A is a function that maps B one-to-one into A,
then there are partitions A=A, UA, and B =B, U B, such that f(A,)=B, and
g(By) = A,. Setting h(a) = f(a) for all a € A,, and Wa) =g (a) forall a € A,, we
have a one-to-one mapping h of A onto B.

Proof of Theorem 2HOM. Suppose that A and B are both bounded, and each has
an interior point. Since A has an interior point, A contains an entire circular disk C,
and since B is bounded, a sufficiently great expansion of C about its center produces
a larger disk D that contains B. The inverse of this expansion is a contraction (hence
a homothety) that maps B into A. Similarly, there is a contraction that maps A into
B. Since these contractions are clearly one-to-one, an application of Theorem CBB
immediately yields the stated conclusion. |

Under the hypotheses of Theorem 2HOM, there are infinitely many contractions
that pull set A into set B, and infinitely many that pull B into A, so there are
infinitely many partitions A =A, UA, and B = B, U B, for showing that A and B are
2-homothetic. Nevertheless, it is an interesting exercise to try to draw (or even
imagine) such a partition in specific cases such as the one provided by Ficure 4.

The original Cantor—Bernstein theorem asserts the existence of a one-to-one
mapping h of A onto B, without specifying the relationship of h to the original
mappings f and g. According to Fraenkel [8], the stronger form stated above is due to
Banach [1], so we think of it as the Cantor—Bernstein—Banach (CBB) theorem. (The
name of Schréder is often associated with the Cantor—Bernstein theorem. However,
according to [8], the theorem was conjectured by Cantor, the first complete published
proof was due to Bernstein, and an independent proof of Schrider turned out to be
defective.) See [3] for an extension of the CBB theorem.

The first explicit statement of Theorem 2HOM may have been the one in [12], but
Banach in [1] had already mentioned the possibility of geometric applications of the
CBB theorem, and Theorem CBB was used in [2] to establish the famous Banach—Tarski
paradox (see (7) below).



6 MATHEMATICS MAGAZINE

Two proofs of the CBB theorem

With such a strong corollary, you might expect that CBB has a difficult proof, but the
classic proof of Banach [1] (found also in Birkhoff and MacLane [4] ) is short and easy.
It is the second proof below. Another nice proof of the CBB theorem uses a
fixed-point theorem of Birkhoff [3]. To set this up, we need a quick review of
complete lattices.

A partial order for a set S is a binary relation < on S (i.e., a subset of the
Cartesian product S X S) with these properties:

1) Reflexivity: For each a € S the pair (a, @) is an element of the subset < of S X S.
(We usually write @ <b to mean (a, b) € <. Thus reflexivity is the condition that
a<aforal a€S)

2) Anti-symmetry: If a <b and b <a then a =b.

3) Transitivity: If a <b and b <¢ then a <c.

The pair (S, <) is called a partially ordered set, or poset. For example, the real
numbers form a poset with their usual ordering. But the reals have the additional
property that every two elements are comparable, and hence we say that they form a
totally ordered set. However, in posets it may happen that two elements a and b are
not comparable—i.e., neither ¢ <b nor b <a is true.

An element s €S is a lower bound for the set TCS if s<¢ for each t€T.
Similarly u € S is an upper bound for T if ¢ <u for each t € T. The (necessarily
unique) least upper bound for a subset T is an upper bound m for T such that m <u
for every upper bound u. Greatest lower bounds are similarly defined. A lattice is a
non-empty poset in which each set of two elements (and hence each nonempty finite
subset) has a least upper bound and a greatest lower bound. A complete lattice is a
lattice in which every nonempty subset has a least upper bound and a greatest lower
bound. The upper bound for the whole set S is usually denoted 1 and the lower
bound for S is denoted 0.

Some examples might help.

Example 1. Let L denote the integer lattice in the Cartesian plane—the set of all
points with both coordinates integers. If we define (x, y) < (u, v) to mean x <u and
y < v (in the usual sense) then (L, <) is a poset. Some pairs of points, such as (5, 8)
and (9, 6), are not comparable. But the point (5,6) is the greatest of all their lower
bounds. The finite part of L shown in Ficure 5 is a complete lattice. The upper right
point is the upper bound and the lower left point is the lower bound for the whole
subset shown. However, the infinite set L is a lattice but not a complete lattice.

[ ] (5.’8) [ ] [ ] [ ] [ ]
Y D X

FIGURE 5
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Example 2. Let 2(R?) denote the collection of all subsets of the plane R*. Then
(2(R?), ©) is a complete lattice. For any nonempty collection C of elements of
ZP(R?), the least upper bound (resp. greatest lower bound) of C is the union (resp.
intersection) of all elements of C.

When a function f maps a set S into itself, a point ¢ € S is a fixed point for f if
f(a) = a. Fixed-point theorems are among the most interesting and useful tools in
mathematics. Theorem FP below is an all-time favorite that will be used to give a
proof of the CBB theorem. A mapping f of a poset (S, <) into a poset (W, <) is
order-preserving if x <y in S implies f(x) <f(y) in W.

THEOREM FP [3]. Every order-preserving function f of a complete lattice (S, <)
into itself has a fixed point.

Proof of Theorem FP. Let T={a € S|a <f(a)}. Clearly 0 € T so T # . Let m be
the least upper bound of T. Since t <m for every t € T, and f is order-preserving,
t <f(¢) <f(m), so f(im) is also an upper bound of T. Hence m < f(m) because m is
the least upper bound of T. Thus f(m) <f(f(m)), so f(m) €T and f(m) <m. Since
m < f(m) and f(m) <m, it follows from anti-symmetry that f(n) =m and m is the
desired fixed point. |

Fixed-point Proof of the CBB Theorem. Assuming without loss of generality that the
sets A and B are disjoint, we will use the given one-to-one into functions f: A — B
and g: B — A to define a function ¢ from the complete lattice (£?( A), C) into itself.
For each subset of A, let C'={a € A|a & C} denote the complement of C in A.
Similarly if D CB let D' denote the complement of D in B. Then for each C CA
define o(C) = g((f(C'))). That is, we take the complement of C in A, map it into B
by f, take the complement in B, and map this complement back into A by g. Since
C, CC, implies f(C,) ¢f(C,) and C| 2 Cy, it is easily seen that ¢ is an order-pre-
serving mapping of 2( A) into itself. Hence by Theorem FP, ¢ has a fixed point. Call
this fixed point A,, set A, =A,, and set B, =f(A,)=Bj. Then the restrictions
f+ A, > B, and g: B, > A, are one-to-one and onto, and the partitions A=A, UA,
and B = B, U B, are the ones desired for the CBB Theorem. n

Classic Proof of the CBB Theorem [1,4]). We again assume that the sets A and B are
disjoint. A point x €A U B is a parent of a point y EAUB if x €A and f(x) =y,
or x€B and g(x)=y. Since A and B are disjoint and the mappings f and g are
one-to-one, each point of A U B has at most one parent. That parent (if it exists) has
at most one parent, etc. This sequence of parents forms the ancestral chain of y. The
sequence may be empty, as would be the case if y € B\f(A) or y € A\ g(B). It may
be infinite, as would be the case if y=g(f(y)) or y=f(g(y)). If the ancestral
chain is neither empty nor infinite, it terminates in a point that has no parent. (See
Ficuse 6).

Now let A, A, and A, denote the points of A for which the length of the
ancestral chain is respectively even, odd, or infinite. This partitions A, and B has a
similar partitioning. It is clear that f maps A, into B,, A, into By, and A ;4 into
B, Further, since each point of B, U By, has a parent, the first two mappings are
onto; that is, f(A,) =B, and f(A,,,)=B.yq. Similarly, g(B) = A,, and g(B,,) =
A 4q- Setting

even

Al =A UAoo: AQ =A0dd’ Bl = Bodd ] Boo: alld Bg =B

even even ?

we have the partitions whose existence is asserted by the CBB Theorem. u
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B

FIGURE 6

ExaMmPLE 3. In Ficure 6, the contraction f about the point y, in the interior of B
maps set A homothetically and one-to-one into set B. Similarly, the contraction g
about the point x, €A is a homothety which maps B one-to-one into A. Clearly,
each of the points x,, y,, and y is an orphan (i.e., has no parent). Thus the ancestral
chain of x; =g(y) is just {y}, of (odd) length 1. Since «x, =g(y.)=g(f(x,), the

ancestral chain of y,, € B is {x,, Yu, Xe, Us, ...}, Of infinite length.

Remarks and open problems

1) The setting for Theorem 2HOM was the plane R2, but the definitions (2-homo-
thetic, bounded, interior) and the proof of Theorem 2HOM are all valid in an
arbitrary (even infinite-dimensional) normed vector space.

2) When two subsets A and B of d-space are 2-homothetic and are both geometri-
cally “nice” in some sense, it is interesting to ask how nice their summands (the
sets A, Ay, By, B, in the partitions) can be made. Of course, niceness is in the
eye of the beholder, and in any case the answer must depend on geometric or
topological properties of the sets A and B. In particular, if the set A is
connected, then it is impossible for A, and A, both to be closed (or both to be
open) relative to A unless one of A, or A, is empty. However, one might hope to
have A, closed and A, open relative to A, and then of course B, closed and B,
open relative to B. Ficure 7 shows that this can happen in some cases. In Ficure
7a, the sets A and B are both bounded and convex, but neither is compact. In
Ficure 7b, the sets A and B are both compact, but neither is convex. However, it
seems that the following problems are open for each d > 2:

(a) Is there an example of two d-dimensional compact convex subsets A and B
of d-space such that A and B are not homothetic but they are 2-homothetic
by means of convex summands, A=A, UA, and B = B, U B,, in such a way
that the sets A, and B, are not only convex but also closed?

(b) If A and B are both d-dimensional compact convex sets in Euclidean
d-space, must they be 2-homothetic by means of summands A; and B; that
are connected?
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3)

4)

FIGURE 7

In both cases, A; and B; are closed relative to the sets A=A; UA, and B=B; UB,
respectively. In 7a, A and B are convex but not compact, and in 7b they are compact but not
convex.

In connection with problem 2(a), note that if A and B are compact subsets of
d-space, each with nonempty interior, and A=A, UA, and B = B, U B, are the
partitions constructed in the proof of Theorem 2HOM, then each A, and each B,
is both an F -set (the union of countably many closed sets) and a Gs-set (the
intersection of countably many open sets). This follows from Banach’s proof of
the CBB Theorem. For let f and g be homotheties which, respectively, carry A
into B and B into A. Define A;=A, B, = B, and having defined A, and B, set
A, =g(B) and B,,; =f(A,). Then each A, and each B, is compact, hence is
a Gy set, and

AOQAIQ“'» BOQBIQ

It follows that each set A,\A,,, is o-compact, as is each set B;\ B,,,. Now
define

Agen = (A\A) U (A\A3) U - U (Azj'—z\Azj—l) U e

Agaa = (A\A) U (A\A ) U -V (A2j—l\A2j) SN
A, =A,NA N,

and
Beyen = (Bo\B;) U (By\B;) U -+ U (B2j—2\B2j—l) SR

Boga = (B)\By) U (B3 \B,) U+ U (BZj—l\B2j) U
B,=B,NB, N .

Then each of the sets A,, and B,, is compact, each of the sets A, Aoids Bevens
B,yq is o-compact, and we have already seen that the desired partition is obtained
by setting

Al =A UAoo> A2 =A0dd’ Bl = Bodd U Boo, and 32 =B

even even *

Since the disjoint sets A; and A, are both F,-sets and their union is the compact
set A, A and A, are both also Gg-sets. Similarly, B, and B, are both F,-sets
and Gg-sets.

It is an easy exercise to show that for any two homotheties f and g, the
commutator fgf 'g~' is merely a translation. Thus, although the group of



10

MATHEMATICS MAGAZINE

5)

6)

homotheties is not commutative, its first commutator subgroup is commutative.
This (the fact that the group of homotheties is solvable) is a key to showing that
Lebesgue measure in d-space can be extended to a finitely additive measure that
is defined for all bounded sets and is not merely invariant under translation but
multiplies properly under all homotheties. When d =2, a similar conclusion
applies to the group of transformations of the plane generated by the rotations
and the homotheties. (See [20], Chapter 10.)

It is easy to see that the homothety relation ~ is reflexive, symmetric, and
transitive. In particular, if B=kA +a and C=mB +b, then C = (km)A +
(ma +b), so A~ C. The 2-homothety relation = is reflexive and symmetric, but
it is not transitive. Ficure 8 shows sets A, B, and C, made up of parallel
half-open intervals in the plane, with A= B and B = C, but it is not true that
A=C.

C

A B
FIGURE 8

For any integer r with 2 <r <|A|=|B| we may define sets A and B to be
r-homothetic in the obvious way: there exist partitions A=A, U - UA, and
B=B, U - UB, and homotheties f(x) =k,x+a; such that f(A,)=B, for
each i. If, in addition, each A, and each B; has at least two points and the scalars
ky,...,k. are all different, we say that the sets A and B are nontrivially
r-homothetic. In Ficure 8, A is nontrivially 3-homothetic to C but A and C are
not 2-homothetic. Other aspects of r-homothety make easy exercises.

7) A new family of problems arises when the group of homothetic transformations is

8)

9)

replaced by some other group of transformations such as the rigid motions. The
most famous result in this direction is the Banach—Tarski paradox [2], asserting
that if d >3 and A and B are subsets of d-space each of which is bounded and
has nonempty interior, then A and B are equidecomposable in the sense that for
some finite n, A can be partitioned into n sets A,,..., A, and B can be
partitioned into n sets By,..., B, such that A, is congruent to B, for 1 <i<n.
See [18] and [9] for expositions of some aspects of the Banach—Tarski result, and
see Wagon’s book [20] for an extensive study of the “paradox” and related
material.

In connection with the questions in 2), see [17] and [11] for some results and
problems that involve decomposing two convex sets into a finite number of
respectively congruent convex parts. And see [6] for a proof that in partitioning a
ball of unit radius (in 3-space) into five sets that can be rearranged to form a
partition of the union of two such balls, it can be arranged that each of the five
sets is both connected and locally connected (of course, they cannot all be
measurable).

Because of the measure-extension result mentioned in 4), if two subsets of the
plane are both bounded and Lebesgue measurable, they cannot be equidecom-
posable unless they have the same measure. In 1925, Tarski [19] posed the
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following modern version of the problem of squaring the circle: If D is a circular
disk and S is a square of the same area, are D and S equidecomposable? Dubins,
Hirsch, and Karush [7] showed that a circle and a square cannot be decomposed
into respectively congruent parts that could (intuitively speaking) be cut out with
a pair of scissors. However, Tarski’s question did not restrict the nature of the sets
in the partitions, and a brilliant affirmative solution to the question was given by
Laczkovich [15] in 1990. His partitions involve a very large number of sets, but he
requires only translations rather than the full group of rigid motions to move
these sets from a disk-filling position to a square-filling position. For an excellent
exposition of his work, see the article by Gardner and Wagon [10]. See also [14]
and the 1994 survey article by Laczkovich [16].

10) Even though Theorem CBB has the remarkable decomposition result Theorem

2HOM as an easy consequence, neither proof of CBB used the axiom of choice.
This is in contrast to the situation for the measure-extension result mentioned in
4), for the Banach—Tarski paradox in 7), and for the theorem of Laczkovich in 9).

Acknowledgment. We are indebted to Jack Robertson for suggesting that we write this article and to him,
Stan Wagon, Richard Gardner, and Kevin Short for helpful comments. A shorter version appeared in [13].
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