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1. Introduction

In 1812 Laplace [14] remarked that one could approximate 7 by performing a Buffon
needle experiment. Since then several needle casters claim to have done just that.
Lazzarini’s 1901 Buffon approximation of 7 [15] was accurate to six decimal places.
This work was commended in several publications for illustrating the connectedness
of mathematics [13] and validating the laws of probability [3], [7]. However, the 1960
study of Gridgeman [9] suggested that Lazzarini’s experiment was not carried out in
an entirely legitimate fashion and perhaps didn’t warrant the praise it later received.
But Gridgeman stopped short of establishing that the experiment was contrived to
achieve the desired numerical result.

I will begin by reviewing the history of Lazzarini’s experiment and the work of
Gridgeman that debunked it. I will then extend Gridgeman’s work to virtually rule
out any possibility that Lazzarini performed a valid experiment. Some of this work
was anticipated by that of O’Beirne [16], however, it also goes beyond that of
O’Beirne. In this study elementary applications of probability, recurrence relations,
and various numerical techniques are used to look deeper into a small piece of the
history of mathematics. For brief expositions of the work of Gridgeman and O’Beirne
see also Pilton [17] and Zaydel [18].

2. Buffon’s Needle

In 1777 Georges-Louis Leclerc, Comte de Buffon, published the results of an earlier
study that has come to be known as the Buffon Needle Problem [4]. In its simplest
form it assumes that a needle of length [ is cast at random on an infinite plane, ruled
with parallel lines of uniform separation d where d > I. Tt asks for the probability of
the event that the needle intersects one of the lines. Buffon found this probability to
be 21/md. At this point let us review the technique of solution.
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Assume the grid is oriented in FiGure 1, y measures the perpendicular distance
from the lower end of the needle to the nearest grid line above it, and @ measures the
smallest counterclockwise angle from the grid direction to the needle. There is clearly
a one-to-one correspondence between possible tosses of the needle and ordered pairs
(6,y), where 0 <8 < and 0 <y <d. The needle hits one of the grid lines if, and
only if, y <lsinf. A random toss of the needle means that the needle’s vertical
displacement (y) and orientation (8) with respect to the grid are each random and
uniformly distributed and so the probability of a hit is the ratio of the area under the
curve y =1lsin @ to the area of the rectangular sample space of Ficugre 2, that is

e
lsin @ do
. 0 2l
PHY = ——TF— =73
Yy
N
d
1k
; 1 ¢
FIGURE 2

Elementary properties alone imply that the probability of a hit is proportional to
the length of the needle. This observation opens an interesting “back door” method to
obtain the Buffon result (see Gnedenko [8]). Suppose a convex polygon with n sides
of length [,,1,,..., [, is tossed at random onto the grid. Also suppose the polygon is
of diameter less than d and that a hit occurs if, and only if, exactly two sides hit. Then

P(polygon hits) = % Y K,
i=1

=ks/2 where s is the perimeter.

A limiting argument yields the same result for any closed convex curve.

Now let’s apply the result when the curve is a circle of radius r with 2r <d.
Looking at where the center of the circle falls at random between grid lines we see
that

P(circle hits) =2r/d, so
k(2mr)/2=2r/d
and hence k =2/(wd). So
P(ith side hits) = }_ p,; =k,
j#i
2l,
=1
which is the original Buffon result.

It is intuitively clear that the probability should be an increasing function of I and
a decreasing function of d, but that the probability depends on 7 is perhaps
unexpected and has been a source of many other studies—including this one.
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3. Lazzarini’s ““Approximation” of

Laplace recognized that Buffon’s result could be used to obtain an experimental
approximation of 7. If one casts N needles and if H of them hit, then since the
theoretical probability of a hit is approximated by the relative frequency, 21/7d =
H/N. Tt follows that

N _%lﬁ~w (A =B means A is defined by B).

Several needle casters actually performed this experiment and published their
experimental values of 7. These results are summarized in Gridgeman. The focus of
this paper is the experiment reported by Mario Lazzarini in 1901. One of Lazzarini’s
results has been widely quoted; in it [ =2.5 cm, d =3 cm, N = 3408, and H = 1808,
so that # =(2(2.5)/3)X3408 /1808) = 3.1415929... . Since 7 = 3.1415926..., Laz-
zarini’s result gives six-decimal place accuracy.

But something seems a little suspect about those numbers 3408 and 1808. Why cast
3408 needles? Why not a nice round number like 1000 or 35007 Our skepticism
increases if we look at what happens when the number of hits is increased or
decreased by 1. If H = 1807, # =3.1433...; if H= 1809, # = 3.1398... . Lazzarini
appears to have been extraordinarily lucky!

Repeated trials are capable of a simple statistical analysis. If, using Lazzarini’s grid
and needle, one wants to be 95% confident that |7 — #] < 0.5 X 108 (six-decimal
place accuracy), then one needs to cast around 134 trillion needles! To obtain this
number, we seek N such that

5N e
P('ﬂ'— W‘ <05% 10 ) > 0.95.

311' N‘

Now ‘17 30 ‘ < € if, and only if, = if, and only if, (assuming 1/(x)

36 5¢

311' N ‘ (3 /5)  3q?
N

N _ H|< -5——6 Since H is binomially distributed with parameters N and p = 3

37 37,-2 3

its expectation is Np and its variance is Np(1 — p). Using the normal approximation,

Nz (05) % 10'6) = .95 we need
37

is locally linear near 3w /5) if, and only if,

>

in order to have P(‘ — —H

5N _
m(05) x 1078

VNp(1-p)

=~ 1.96

or N= 134 x 10'2,

In addition to questioning the number of needles cast, one may also question the
accuracy of the measurement of [ and d. Lazzarini reported that they were measured
to be 2.5 cm and 3 cm, but gave no tolerances on his measuring instruments. At the
turn of the century, state of the art micrometers had errors of about +0.0005 cm [12].
Incorporating these best error bounds, one calculates that 3.1404 < # < 3.1427. So
the last four figures of agreement of Lazzarini's # with 7 are meaningless. Zaydel
[18] gives additional analyses of measurement error in needle experiments.

Another source of skepticism emerges when we look more closely at Lazzarini’s

. 2(2.5) 3408 _ 355
=773 1808 113"
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This fraction is known to number theorists as a convergent in the continued fraction
for 7 ([1] and [11]) and historians recognize it as a rational approximation to
discovered by the fifth century A.D. Chinese mathematician Tsu Chung-chih [5]. So
to many mathematicians—and presumably to Lazzarini—it was a well-known rational
approximation of 7. Also, in terms of the magnitude of its denominator, it is an
exceedingly accurate approximation of 7. The next smallest denominator that yields a
strictly better approximation occurs in the fraction 52,163 /16,604.

4. A Lesson in ““Experimental Design”’

Let us consider how we would go about rigging up a good Buffon experimental
approximation to 7. To get Lazzarini’s approximation, we need to choose [, d, N, and
H such that

2IN _ 355 _ 355k _ 5-7lk
dH T 113

113k 113k -

A reasonable choice might be 21 =5 so [ =2.5 and d >, say d =3, resulting in
(N/H) = (213k /113k). The net effect is that if, at any multiple of 213 casts, we have
the same multiple of 113 hits, we achieve the desired approximation. Lazzarini
achieved this at the sixteenth multiple.

In his conclusion Gridgeman suggested that the mysterious 3408 was selected as a
stopping point only because it was a potential generator of 355 /113 and that by the
“very happiest of coincidences” the optimum H was observed. He went on to
question whether Lazzarini performed any experiment at all, or if the results were
purely mental concoctions.

I will give a more definitive answer to this question. Is there any chance that
Lazzarini actually performed an experiment? Assuming that # is computed after each
cast, one could stop at any point at which # = 355/113. What is the likelihood of a
sequence of casts yielding # = 355/113 at some stopping point, for his choice of
d=3and [ =257

Let A, denote the event that 113k hits occur during 213k casts, and let
ay = P(A}). If N needles are cast then there are [N/213] =: m such events. We are
interested in the value of P(A, UA,U --- UA, ) =: P(U,), the probability that the
ratio 113 /213 is achieved at least once in the first 213m casts. We will find out in
Section 6 that Lazzarini claimed to have dropped N = 4000 needles, which corre-
sponds to m = 18. We will show shortly that P(U,g) is about 0.30. So there is a good
possibility that Lazzarini could actually have performed his experiment and achieved
his reported result at some point.

To get this value for P(U,y) we first use Stirling’s approximation [6] on the binomial
probabilities a; and simplify:

(213k)!

__&lok):  nskpq o \100k gk
= (113k)1(100k) 17 (1—p) ca* /Vk

ay

where

213213
* 11311001

/ 213 5
Ci= 113-2-1007 =0.05477 + andp—ﬁ,

p3(1 —p)'” = 0.99999 9999999132 + ,
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and where we use “~7 in the standard sense that the ratio of the two sides
approaches 1 as k — . The error bounds of Stirling’s formula [18] can be used to
show that a, is actually within 1% of this estimate for all k. An explanation for «’s
closeness to 1 is that, considered as a function of p, @ takes its maximum value of 1
when p =113/213 and 5/3 is extremely close to 113 /213.

Whenever one of the events A; occurs, we may think of the entire experiment and
the accounting of hits as beginning anew. In other words, for j>i, P(A;|A,)=
P(A;_) and so P(A;NA,)=a,a;_,. Properties of this type will play an important
role in our computations. For instance

m—2
Y P(ANANA)= X Y P(ANALNALL)
l<i<j<k<m i=1 l<j<k<m-—i
m—2

= Z Z P(Ai)P(AH—j mAi+k|Ai)
i=1 1<j<k<m-—i
m—2
= Z P(Ai)P(Aijk)
i=1 1<j<k<m—i
m—2

= Y a,5(2,m—1)

i=1

where S(u,v) is the sum of the probabilities of all intersections of u members of
AL, ..., A,. With $(0,0):=1 for 0 <v<m, we can show by induction on u that
S(u,v)=2""¢*1q,S(u — 1,0 —i) for v =u,u +1,..., m. By the principle of inclu-
sion-exclusion, P(U,) = S(1,m) — S(2,m) + - -+ +(—1)""'S(m, m). This provides a
reasonably efficient, O(m®/3), way to compute P(U,). Using this algorithm, we
obtain P(U,,) ~ 0.3041.
The sequence u,, = P(U,) is slow to converge; u, = 0.05, u;, = 0.23, u,, = 0.45,

U0 = 0.55, and uy, = 0.76; it is unclear what its limit is.

5. Is Ultimate Success a Certainty?

The next question is whether, in an infinite sequence of casts, the ratio 355/113 is
certain to occur. That is, is lim,, _,,P(U,,) = 1? The answer is no, and we can argue as
follows. The expected number of occurrences of this ratio, 27 _,a; is finite because
a, ~ca*/Vk and @ < 1. If the desired ratio occurs with probability 1, then it must
occur with probability 1 at some finite A; and then accounting of successes and
failures could begin anew and we may argue that with probability 1 it must occur at
some subsequent finite A; and then at yet another and so on, ad infinitum. But since
the expected number of such occurrences is finite, this is impossible.

More precisely, let B, be the event “n or more A’s”. Then B, = U%_,A;.
The sequence B, is nested decreasing so B,,,=B,,,NB, and P(B,,,)=
P(B,.,NB,)=P(B,) P(B,,,|B,)=P(B,) P(B;), and by induction we have
P(B,) = (P(B)))". If P(B,) were equal to 1, then we would have P(B,) =1 for all n
and hence P(N%_,B,) =lim,_,P(B,) = 1. But N%_,B, = “infinitely many A’s” =
NG- 1 U%-;Ar So 1 <P(U%_;A,) < Z7_;P(A)) for all j, contradicting the conver-
gence of Xy _,a;. Thus P(B)) <1.

A more detailed analysis will yield a numerical approximation of f:=
P(U%_,A;) = P(B,), the probability of ultimate success. The value of f is related to
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that of a:=X}_,a;. The relation f=a/(1 +a) is standard renewal theory and is
derived by Feller [6] using generating functions. It can also be derived from the
above analysis and the identity, E(X) = X%_,P(X >n) where X :=“the number of
A, that occur.” The following is a more direct, elementary proof.

Let F, be the event “355/113 occurs first at trial 213n”, ie. F,=A N
AS_1N - NAS. The F’s are mutually exclusive and A,=F, U --- UF,. So
P(U:=1An) =f= P(U:=1Fn) = Eo:=l n Where fn = P(Fn)

Also for k>1, a,=P(A})
=P(A,NF)+P(A,NFy)+ - +P(A,NF)

(*) =P(F,)P(A(|F,) + P(Fy) P(A[Fy) + -+ +P(F) P(ALlFy)
=fia_,+feay_o+ -+ +fia,, where a,=1.

Expanding, collecting terms with like sums of indices, and using (*) one obtains

(fl +f2+ T +fn)(a0+a1+a2+ T +an)
=a,+a,+ - +a,+b,,,+ - +b,y,, where0<b, <aq.
So

n

n n
Ya< X fi
k=1 k

2n
a,< Y a;, and
0

=1 k= k=1
n n n 2n n
Y a, (l+ Yal|< Y i< Y a (1+ Zak) forn=1,2,....
k=1 k=1 k=1 k=1 k=1

Letting n — o we obtain that a < implies f < 1, as obtained earlier, but further-
more, that f=a/(1 + a) for all extended real a.

So to estimate f, we first need to estimate a and its Stirling approximation,
r_ca’/Vn.

Since a*/Vx is decreasing for x > 0,

©

Y a/Vn > fma“'/\/;dx
1

n=1
and

Y a"/Vn =a+ ia"/x/ﬁ <a+f°°a"/\/;dx.
n=2 1

n=1

By the change of variable ¢ ==V —Ina Vx

/;ma"'/\/;dx =2/V—Ina f‘;o__e"zdt.

—Ina

Also,

f\/__e“z dt < fwe‘tz dt =V /2

0

and
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J; J;
>yVr/2—V-Ina.

Combining these inequalities we obtain

Vr/(—lna) —2< i a"/Vn <a+y/r/(-Ina).
n=1

With the values of @ and ¢ from section 4, we get

1,902,750 < Y a"/vn < 1,902,760

n=1

and

104,218 < Y. ca™/Vn <104,219.

n=1
The bound of Stirling’s approximation of factorials [6] reveals that for each n,

0.9988ca”/Vn <P(A,) <ca"/Vn

and so

104,092 < Y P(A,) =a < 104,219.

n=1

Finally, since P(US_1A,)=f=a/(1 +a),

0.99999039 < P( U A, ] <0.99999041.
n=1

We conclude that it is not certain that Lazzarini would eventually have obtained
the optimum 7, but the odds favoring it are overwhelming (assuming no measure-
ment error).

Note: The estimation of the above numerical values and that of @ originally caused
many headaches. While this work was in progress my school got a multiple precision
arithmetic package. The headaches went away! Students” reliance on calculators may
be shaken by asking them to calculate @. Some methods yield results less than 1,
some greater than 1 and some yield overflow.

6. The Case Against Lazzarini

The result of section 5 suggests that it is at least plausible, ignoring measurement
error, that Lazzarini actually performed the experiment. However, Lazzarini did not
report just a single experiment of 3408 casts and 1808 hits. He reported a series of
casts:

N 100 200 1000 2000 3000 3408 4000

H 53 107 524 1060 1591 1808 2122
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It is highly suspicious that all the values of H in this series are very close to their
expected values Np, which are respectively 53.05, 106.10, 530.52, 1061.03, 1591.55,
1808.00, and 2122.07. Ordinarily we expect much greater fluctuations than this in
random data. In fact, even if we only look at those hits when N is a multiple of 1000,
the probability of being this close to the expected values is exceedingly small. Define
G, to be the event that the number of hits, H;, in 1000k casts is at least as close to
the expected number of hits as Lazzarini reported. Then

G, = {524 < H, <537}

G, = {1060 < H, < 1062}

G, = {1591 < H, < 1592}

G,={H,=2122} and

P(G,NG,NG,NG,)
=P(G,) P(G,lG,) - P(G4lG, N G,) - P(G,IG, N G, N G,)
<P(G,) - P(G,|H, =531) - P(G,|H, = 1061) - P(H,|H, = 1592)
< P(524 < H, <537) - P(1060 — 531 < H, < 1062 — 531)
- P(1591 — 1061 < H, < 1592 — 1061) - P(H, = 2122 — 1592).

Using the normal approximation to the binomial probabilities we obtain a probability
of less than 0.00003. Thus it seems exceedingly unlikely that Lazzarini carried out a
random series of tosses with results as nearly optimal as he reported. So it seems
likely the experiment was not done—at least not in a random fashion.

7. Speaking of Hoaxes

But setting aside measurement error and granting that the experiment was a hoax,
one may ponder the quality of the hoax. Here are three hoaxes to compare with that
of Lazzarini.

In hoax one, let d =10 cm and [ = 7.1 cm. It seems not unlikely that a garden
variety needle might measure 7.1 cm and a round figure for d >1 is d = 10 cm. In
this hoax any multiple of 250 casts is a potential generator of 355/113—one needs
the same multiple of 113 hits. This hoax has the advantage that the optimal stopping
points are plausible; for instance, every multiple of 1000 is such a point.

In hoax two, let [=7.1 cm and d =113 cm. These seem like less plausible
“objective” values of [ and d, but in the experiment, the occurrence of 355/113 is
more assured because every multiple of five casts is a potential generator.

In hoax three, we go for an even more accurate #. As mentioned earlier, the next
improvement on 355 /113 is 52,163 /16,604. This was found by computer and may not
have been known to nineteenth-century mathematicians. But continued fraction
convergents were available and the next convergent after 355 /113 is 103,993 /33,102.
But 103,993 is a prime and so this convergent is not a good candidate, but the one
after that, 104,348 /33,215, does lead to a plausible hoax. Since 104,348 =2-2-19-
1373 and 33,215=5-7-13 73, we can take [ =2-2-1373 X 1073 = 5.492 cm, and
d=7-13-73X107%=6.643 cm. These aren’t particularly plausible but they are
within the accuracy that was then measurable and the payoff is that every multiple of
19 casts is a potential generator of # that misses 7 by less than 3 X 107'° and so is
accurate in the ninth decimal place.
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The advantage of hindsight (which Lazzarini lacked) allows us to design bogus
experiments that foil today’s statistical tests designed to expose them. It seems to me
that hoax one does just that. This is especially true if only a final value of # is
reported or, if reported, a series of values of hits has sufficiently random dispersion.

Today, one occasionally hears of bogus experiments and/or rigged data [2], [10].
Presumably modern hoaxers are aware of the type of statistics that exposed the
Lazzarini hoax and put enough dispersion in their “data” to avoid the same fate. It
will be interesting to see what, if any, (future) statistical or scientific test will be
brought to bear on their work, thereby labeling them as only poor hoaxers and
properly removing them from the ranks of objective scientists.
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WEATHER REPORT ON T.V. NEWS, 11:15 p.m.
November 21, 1990 (reported by Ralph Boas)

“It’s warmer right now than today’s high.”
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