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Nature uses only the longest thread to weave her patterns, so each small piece of 
fabric reveals the organization of the entire tapestry. 

Richard P. Feynman 

§1. INTRODUCTION. In 1851 Jean Foucault (1819-1868) built a pendulum con- 
sisting of a heavy iron ball on a wire 200 feet long to demonstrate the rotation of 
the Earth (see Figure la and Figure lb). Foucault observed that such rotation 
would cause the swing-plane of the pendulum to precess, or rotate, as time 
went on, eventually returning to its original direction after a period of T= 24/ 
sin v0 hours (where v0 denotes the latitude where the experiment takes place). 

Figure la 

In a recent New York Times interview [Ang], the distinguished scientist and 
author Stephen Jay Gould proclaimed, "I've never understood why every science 
museum in the country feels compelled to have one of these [a Foucault pendu- 
lum]. I still don't understand how they work and I don't think most visitors do 
either." Gould is exactly right. Non-physicists generally have only the vaguest 
notion of how the behavior of the pendulum relates to the rotation of the Earth. 
The usual quite complicated analysis of this phenomenon of precession is in terms 
of rotating reference frames and the Coriolis force (see [Sym] and [Arn]). While 
these notions are part of elementary mechanics, they are not widely known among 
even mathematically aware non-physics students. 
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Figure lb. Path of the Pendulum 

The purpose of this article is to present the behavior of the Foucault pendulum 
as a simple consequence of doing Calculus on the sphere. This holonomy approach 
to the pendulum is mentioned in [W-S] and [Mar p. 16], but the details in terms of 
elementary Calculus do not seem to be well known. We believe this analysis of the 
Pendulum deserves a wide audience because it provides a beautiful down-to-'Earth' 
example of mathematical modelling in the context of Geometry and Calculus. 

While we only discuss the pendulum, the geometric concept of holonomy makes 
its presence felt in applied mathematics from optimal control to quantum mechan- 
ics (cf. [Enl], [En2] and [W-S]). It is hoped that the mathematical description of the 
Foucault pendulum presented here will spur interest in applications of Differential 
Geometry and will be accessible to any student acquainted with multivariable 
calculus and a touch of linear algebra. 

§2. THE SPHERE. Our first step in analyzing Foucault's pendulum is to under- 
stand the geometry of the sphere. Consider a sphere (denoted by S2) of radius R 
with patch 

x(u,v) = (Rcosucosv,Rsinucosv,Rsinv), 

where 0 < u < 2r and _ 12r < V < 12r. By 'patch' we mean a system of coordinates 
on the sphere, such as spherical coordinates (p, 0, +) with a fixed radius p = R. 
Note however that our patch differs from spherical coordinates in that v repre- 
sents the latitude on the sphere; that is, the angle up from the equator, not down 
from the North Pole (see Figure 2). 

The patch x has two special families of curves associated to it: the longitudes 
,8(v) = x(uO, v) obtained by setting u equal to a constant and the latitudes 
a(u) = x(u, v0) obtained by setting v equal to a constant. Since these curves are in 
3, their tangent vectors ' and ' are given by differentiating each coordinate of 
their expressions. For latitude and longitude tangent vectors respectively, we have 

'-(-RsinucosvO,RcosucosvO,O), 

,l3' = (-R cos u0 sin v,-R sin u0 sin v, R cos v). 

Note that the dot product ' ,l3' is zero, so that ' and ,l3' are perpendicular (or 
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Figure 2 

Figure 3. Tangent Plane with Basis E1, E2 

orthogonal) for all u and v. In particular, ' and ,l3' form a basis for the tangent 
plane TpS2 where p = x(uO, vO). That is, every tangent vector w at x(u, v) may be 
written in a unique way as w = Aa' + X,l3' for some real numbers A and B (see 
z . ns 

rlgure DJ. 

This basis for the tangent plane may be extended to a basis for 3 itself by 
taking a vector perpendicular to both ' and ,l3'; namely, the cross product ' x ,l3'. 
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In fact, things become simpler if we take unit vectors in the directions of og', ,B' and 
og' X ,B' obtained by dividing these vectors by their lengths log'l, I,B'I and log' x ,B'I. 
The vectors of our basis are now, 

og' :, 
E1 = | ,1 = (-sinu,cosu,0) E2= 1:,l = (-cosusinv,-sinusinv,cosv) 

and 
og' x:' 

U = I , x :'l = (cos u cos v,sin u cos v,sin v). 

The basis {E1, E2, U} provides a framework for comparing Euclidean geometry 
of 3 to geometry seen from the perspective of a 2-dimensional resident of the 
sphere. Because the perceptions of such a person are restricted to the 2-dimen- 
sional space spanned by E1 and E2, any event or object in 3 iS 'seen' by the 
resident of the sphere only through its projection onto the tangent plane. In 
particular, a vector w in 3 may be written uniquely as 

w = aEl + bE2 + cU 

but the resident of the sphere only sees aE1 + bE2. The viewpoint described here 
is useful in forming analogies between Euclidean geometry and curved geometry. 
For example, in 3 we know that lines, which may be parametrized by y(t) = p + tv 
for fixed p and v, are shortest paths between points. Further, from the parametri- 
zation, it is clear that lines are characterized by having zero acceleration vectors. 
By analogy, 'shortest paths' (or geodesics) on the sphere are characterized by 
having zero acceleration vectors as perceived by residents of the sphere. That is, any 
curve on the sphere with an acceleration vector entirely in the U-direction is a 
geodesic. Such curves on the sphere turn out to be the great circles. In the next 
section we carry this viewpoint further. 

§3. PARAXJI,FT, VECTORS ON THE SPHERE. What does it mean to say that two 
tangent vectors on the sphere in different tangent planes are parallel? It definitely 
cannot mean, in general, that the two vectors are parallel in R3. For consider a 
latitude circle on the sphere s2 at latitude v0 

o(u) = (R cos u cos v0, R sin u cos v0, R sin v0). 

It is easy to compute that, in R3, og'(0) may be written as 

a (O) = -R sinv0cosv0 E2(2 v v0) + R COS2 vo Ut 2 v v0) 

with respect to the basis {E1, E2, U} at °g(2) The non-zero U-component shows 
that no vector of the tangent plane at °g( 2 ) iS R3-parallel to og'(0). 

One way to compare vectors along a curve y(t) in R3 is to start with a tangent 
vector V0 at oy(0) and create a field of tangent vectors V(t) at y(t) which is 
differentiable in t. The rate of change in vectors along oy may then be computed as 
(d/dt)V(t). Further, we may say that a vector field V is parallel along oy if 
(d/dt)V(t) = 0 for all t. Of course this then implies that V(t) = VO, a constant, 
and this fits with our notion of parallelism in R3. 

We may extend this idea in a simple way to a tangent vector field V(u) along a 
latitude circle o(u) in s2 by saying that V is parallel along og if (d/du)V(u) has no 
E1(u) or E2(u) components. This means that (d/du)V(u) = C(u)U(u) for all u or, 
equivalently, that the projection of (d/du)V(u) onto the tangent plane at o(u), 
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projT52(d/du)V(u), is zero. We may think of this as saying that residents of the 
sphere see no change in vectors along o. (For readers versed in differential 
geometry, note that we may avoid the covariant derivative here because og is a 
constant-length u-parameter curve and V(u) is given in terms of u. Thus, covariant 
differentiation in 3, which is coordinatewise directional differentiation, reduces 
to ordinary differentiation d/du.) 

To return to our latitude circle, let V(u) be a parallel vector field along the 
latitude o(u). (We always assume that vectors are tangent to S2.) Then we may 
write V(u) = A(u)E1(u) + B(u)E2(u). The first thing we notice is 

Lemma. V has constant length. 

Proof: Because V is parallel, (d/du)V(u) = C(u)U(u) and therefore, 

d d 
d (V(u) V(u)) = 2d V(u) * V(u) 

= C(u)U(u) V(u) 

= O. 

Since V V is constant, so is IVl. [1 

From our expression for V(u) we see that we must have A(u)2 + B(u)2 = 
Vl2 = L2 where L is a constant. Therefore we may write A(u) = L cos 0(u), B(u) 
= L sin 0(u) where 0(u) is the angle from V(u) to E1(u). We then have 

V(u) = L cos 0(u)E1(u) + L sin 0(u)E2(u). 

From this expression it is clear that, in order to compute (d/du)V(u), we must first 
compute (d/du)E1(u) and (d/du)E2(u). We do this coordinatewise. 

d d 
d E1 = (-cos u,-sin u, °) d E2 = (sin u sin vO,-cos u sin vO, O) . 

The reader may check that, in terms of the basis {E1, E2, U} we have 

Proposition. 

d d 
d E1 = sin voE2-cos vOU -E2 = -sin roE1 0 

Remark. Note that the Proposition says that neither E1 nor E2 are parallel along 
o. 

The second thing we notice is that parallel vector fields always exist. In fact, the 
proof of this standard (but essential) result tells us precisely how vectors rotate to 
maintain parallelism. 

Theorem. Let VO be a tangent vector at a(0). Then there exists a parallel vector field 
Valong ot with V(O)= VO. 

Proof: The expression above for V(u) shows that a prospective parallel vector field 
V is determined by the angle 0(u). The condition that V be parallel will translate 
below into a complete determination of 0(u), thus constructing the desired V. The 
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product and chain rule give 

d dO d dO d 
du V(u) = -sin OdUEl + cosOd E1 + cos Od E2 + sin Od E2. 

Using our previous calculations of the derivatives of E1 and E2 along og, we obtain 
d d0- d0- 
d V(u) = -sinO sinvO + d E1 + cosO sinvO + d E2 - cosocoSvou. 

Because a parallel V cannot have E1 or E2 components, and since sin 0 and cos 0 
cannot be zero simultaneously, we must have d0/du = - sin vO or 

0( u) = 0(0) - |sin vO du 

= o(0) - usinvO. 

This formula then defines 0 and, hence, the parallel vector field V. [1 

Defilnition-Proposition. The angle of rotation as u varies from O to 2 Tr is called the 
holonomy along a. By the proof of the Theorem above, the holonomy along og is 
given by 

-27rsinvO. 

Remark. Of course, all of this may be done in complete generality. Standard (and 
very good) references on Differential Geometry are [O'N], [Spi] and [DoC]; general 
results on parallelism and the covariant derivative may be found there. 

The calculation of holonomy above says that parallel tangent vectors rotate by 
-27rsinvO as they move completely around a latitude circle. Of course, as the 

Figure 4. A Parallel Vector Field on the Sphere 
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terminology 'parallel' signifies, 2-dimensional residents of the sphere see the 
vectors as parallel so, from their viewpoint, not rotating at all. This may seem 
contradictory since the angle between V(u) and E1(u) is changing with u, but it 
must be remembered that the vector field E1 along og is not parallel, so any angle 
change may be attributed to the direction change of E1. In fact, the product rule 
guarantees that two parallel vector fields along a curve maintain the same angle 
between their constituent vectors. 

Exercise. What happens at the Equator and why is the Equator special among the 
circles of latitude? 

§4. THE FOUCAULT PENDULUM. In order to analyze the Foucault pendulum 
from the viewpoint of geometry, assume the Earth to be non-rotating and the 
pendulum to be situated at latitude vO. Instead of the Earth rotating to move the 
pendulum, we move the pendulum once around the latitude circle in 24 hours at 
constant speed on this stationary Earth. This is clearly equivalent to the standard 
situation. The long cable of the pendulum and the slow progression around the 
latitude circle have two consequences (which are the usual physics arguments). 

First, the long cable provides a relatively small swing for the pendulum which is 
then approximately flat. Hence, we may consider each swing as a tangent vector to 
the sphere. By orienting these vectors consistently, we obtain a vector field of 
pendulum swing plane directions V. At each moment of time t there is such a swing 
direction vector V(t) and all these vectors may be placed along the latitude circle 
o(u) by associating a given moment of time t with the unique point describing the 
pendulum's movement along o(u). Hence we write V(u) for the swing plane vector 
field. 

Secondly, because we move around the latitude circle slowly, the consequent 
centripetal force on the pendulum is negligible ( 1/290) compared with the 
downward force mg. That says that the only force F felt by the pendulum is in the 
normal direction U. Thus, the vertical swing plane of the pendulum experiences no 
tangential force and so appears unchanging to a 2-dimensional resident of the 
sphere. That is, projected to the tangent plane TS2, 

dV( u) 
projTS2 du = ° 

where the covariant derivative again reduces to the ordinary derivative due to our 
special parametrization. By our earlier discussion, we then have 

Theorem. The vector field Vassociated to the Foucault pendulum is parallel along a 
latitude circle. 

Of course, as we transport the Foucault pendulum once around the latitude 
circle og, holonomy rotates the parallel vector field V by -27rsinvO radians. 
In particular, the angular speed of this vector rotation is then c3 = (27r sin vO rads/ 
24 hours). The equivalence of our geometric situation with the physical one then 
gives 

Theorem. The period of the Foucault pendulum's precession is 
27r rads 24 

= . hours. 
C3 sln vO 
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Of course, this is precisely the period obtained in physics. Here however, the 
precession of the swing-plane of the Foucault pendulum results from the holonomy 
along oe induced by the curvature of the Earth. Further, since we view the whole 
pendulum apparatus as stationary relative to the Earth, what can explain the 
observed precession of the swing-plane? As Foucault argued, we must have 

Corollary. The Earth rotates along its latitude circles. 

Exercise. Suppose a Foucault pendulum is transported around a latitude circle on 
a torus. (You should still assume the only force is normal to the torus.) Compute 
the holonomy and explain whether this experiment alone can tell you whether we 
live on a sphere or torus. 

Remark. While we have treated the pendulum because of its relative simplicity, a 
similar type of analysis can be made for one of the most useful of optimal control 
devices, the gyroscope. Indeed, in 1852 Foucault built a very refined gyroscope 
whose precession also demonstrated the Earth's revolution. Foucault, in fact, 
coined the term gyroscope from the Greek gyros meaning 'circle' and skopein 
meaning 'to view' because his gyroscope allowed him to see the rotation of the 
Earth. For more on gyroscopes see [Sca] for example. 

In its own simple way, this mathematical analysis of the Foucault pendulum 
epitomizes the physics of the 20th century-a physics which takes a decidedly 
geometric view of Nature. 
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