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I,: 

"Visualizing Differential Geometry" 

Professor Tom Banchoff and a group of 
undergraduate and graduate students collab- 
orated in the summer of 1994 on a computer 
animated videotape featuring a fly-through 
of a translucent Klein bottle (above) and the 
Temple of Viviani (top right). 

Students in the photograph (right) from left to 
right are: Jeff Beall, Ezra Miller, Nee1 Madan, 
Julia Steinberger, Chenghui Luo, Laura 
Dorfman, Bin Wang and Cathy Stenson. 
Missing from the photo, Ying Wang. 

Artwork courtsey of Tom Banchoff. An 
article on Banchoff begins on page 18 of 
this issue. 
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Blizzards, Floods, and 
Paper Prices 

This issue is reaching you a little 
bit late because the Blizzard of '96 
prevented the staff of Math Horizons 
from getting to our offices for an 
entire week. And the warm weather 
and rapid melting resulted in floods, 
which further slowed our efforts to 
get this issue to you. 

Our recent survey of readers of 
Math Horizons was very gratifying. 
You told us that you like what we're 
doing. A few ofyou asked for articles 
that are tougher, but most of you 
seem to think the level is about 
right. Please continue to tell us how 
to improve Math Horizons, since it is 
for you-the student. 

During the past year, the cost of 
paper has risen dramatically. We 

have not increased the price of Math 
Horizonsin two years, but the recent 
increases in paper costs force us to 
increase bulk subscription prices 
for the first time. Currently each 
issue is priced at $1.25. Beginning 
with the 1996-97 academic year, 
the price of each issue will be $1.50. 
Even at $1.50 per issue, we view 
Math Hmizons as one of the best 
buys in our part of the universe. 

We're having a great time 
bringing Math Hokons to all 27,000 
of our subscribers. We could have 
an even better time if you would 
send us your articles, poems, 
problems, humor in the classroom, 
and suggestions. 

How to Reach Us 
e-mail: horizons@maa.org Call: (202) 387-5200 Fax: (202) 265-2384 
Write: Math Horizons, The Mathematical Association of America, 
1529 Eighteenth Street, N.W., Washington, D.C. 20036. 
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MARGARET WERTHEIM 

Pyt hagoras' Trousers 

E ven in his own time, Pythagoras 
was a legend. Rumored to be the 
son of the god Apollo by a virgin 

birth to his mother, Pythais, he was said 
to have worked miracles, conversedwith 
daemons, and heard the "music" of the 
stars. He was regarded by his followers 
as semidivine, and there was a saying 
that "among rational creatures there 
are gods and men and beings like 
Pythagoras." It is difficult to sort out fact 
from fiction about his life, for he lived 
in that brilliant but hazy zone where 
myth and history collide. None of his 
writing has survived, but ancient 
sources aboundwith references to him. 
Even in the works of that most logical 
of ancients, Aristotle, we find accounts 
of Pythagoras that mix tales of miracles 
with discussions of his mathematics 
and cosmology. Pythagoras' philoso- 
phy fully reflected his transitional age, 
for while it contained the seeds of 
mathematical science, it also main- 
tained a role for the pantheon of gods. 
Both in thoughtand in life, thissamian 
sage was a bridge between two worlds. 

In many respects the mythico-reli- 
gious dimension of Pythagoras' life 
bears an uncanny resemblance to the 
life of Christ depicted in the New Testa- 
ment. Both men are said to have been 
the offspring of a god and a virgin 
woman. In both cases their fathers re- 
ceived messages that a special child was 
to be born to their wives-Joseph was 
told by an angel in a dream; Pythagoras' 
father, Mnesarchus, received the glad 
tidings from the Delphic oracle. Both 

MARGARET WERTHEIM is an Australian 
science writer now living in Nelv York City. 

spent a period of contemplation in iso- 
lation on a holy mountain, and both 
were said to have ascended bodily into 
the heavens upon their deaths. Fur- 
thermore, both spread their teachings 
in the form of parables, called nkousmatn 
by the Pythagoreans, and a number of 
parables from the New Testament are 
known to be versions of earlier 
Pythagorean akousmata. One historian 
has suggested that early Christians may 
have taken elements of the Pythagorean 

Pythagoras is known to have been 
born around 560 B.C. on Samos, a pros- 
perous island in the Aegean Sea not far 
from the coast ofAsia 14inor. An impor- 
tant gateway to the commercial cities of 
the mainland. Samoswas also religiously 
significant, being the site of a monu- 
mental temple to Hera, queen of the 
Olympian gods. On  this island, 
Pythagoras was always something of an 
outsider, for while his mother is said to 
have been a native of Samos, his father 
was a foreigner, probably a Phoenician, 
who had been made an honorary citi- 
zen for giving grain to the Samians 

There was a saying during a time of drought. As an ethnic 
half-caste, Pythagoras was not consid- 

that among rational ered a true Greek, and hrthermore, his 
mystical bent singled him out early as a 

creatures there aregods misfit among the Samians. Later in life 
he turned away from Ionian culture 

and men and beings and identified himself strongly with the 

like Py thagoras. East, an allegiance he symbolized by 
rejecting the long robes favored by the 
Greeks and adopting instead the Per- 
sian fashion of trousers. 

myth and attributed them to their own 
prophet, for in the ancient world 
Pythagoras was known first and fore- 
most as a religious figure. During the 
closing centuries of the Roman Em- 
pire, when Christianitywasjust another 
cult vying for religious supremacy, a 
great revival of Pythagoreanism oc- 
curred, and latter-day followers of the 
"Master" promoted him as a Hellenistic 
alternative to the "king of the Jews." As 
had Christ, the Samian sage had prom- 
ised mystical unionwith the divine, and 
to his Roman followers his teachings 
offered a rational spiritual alternative 
to the rising tide of Christianity. 

As a wealthy merchant, Mnesarchus 
could afford to educate his son, and in 
this age of awakening, the young Samian 
was taughtbysome ofthegreatest of the 
new Ionian thinkers. His instructors 
included Anaximander, Pherecydes. 
and Thales, one of the legendan Seven 
Sages and the first true philosopher. 
But although Pythagoras \\.as trained by 
the best philosophers of the time. he 
hankered for something more. and af- 
ter absorbing the best of the 11-est, he 
setout for the East-ir~itiallyE<qg\pt, and 
later Babylon. (Thales had recom- 
mended that if he wished to be the 
wisest man alive, Q-rhagoras should go 
to the land of the pharaohs, where 
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geometry had been discovered.) There 
is controversy among historians about 
whether Pythagoras really made a trip 
to Egypt and Babylon or whether it was 
an invention of later disciples. But ei- 
ther way, historian David Lindberg has 
pointed out that the story encapsulates 
an essential historical truth: The Greeks 
inherited mathematics from the Egyp- 
tians and Babylonians, and Pythagoras 
is regarded as the person who intro- 
duced this treasure to the West. Be- 
cause he was undoubtedly the first great 
Greek mathematician, we shall assume, 
along with the ancients, that the jour- 
ney did in fact take place. 

According to Iamblichus, his third- 
century Roman biographer, Pythagoras 
traveled to Egypt by way of the Levant, 
the lands bordering the eastern shores 
of the Mediterranean, His intention 
was to learn the sacred rites and secrets 
of the region's religious sects. Some 
people collect stamps, other coins; 
Pythagoras collected religions, and he 
made it his business to be initiated into 
as many as he could. In this some of his 
ancient detractors accused him of cyni- 
cal motives, and even his supporters 

6 Math Horizons February 1996 

acknowledged the accusation was partly 
true. As a young man Pythagoras cer- 
tainly aspired to a career as a public 
speaker, and he clearly understood the 
public relations value of exotic mystical 
experiences. Nonetheless, he was also a 
genuinely religious man. 

When Pythagoras arrived in the land 
of the pharaohs, events didn't go en- 
tirely as he had hoped, for according to 
Porphyry, another Roman biographer, 
he was rejected by the priests at the 
temples of both Heliopolis and Mem- 
phis. Eventually, however, he was ac- 
cepted at Diospolis, where he studied 
for many years. The ancients disagree 
about how long Pythagoras spent among 
the Egyptians, but it seems to have been 
at least a decade. Porphyry tells us the 
priests imposed harsh tests on their 
foreign aspirant, but what he learned 
from them will forever remain a mys- 
tery because Pythagoras always honored 
their fanatical secrecy, which he would 
later make a cornerstone of his own 
religious community. 

Pythagoras' Egyptian sojourn came 
to an abrupt end in 525 B.C., when the 
Persians invaded Egypt and he was taken 

as a captive to Babylon. In that fabled 
city of the hanging gardens and the 
great ziggurat, he availed himself of the 
wisdom of the Babylonians. According 
to Porphyry, he studied under the sage 
Zaratas, from whom he learned astrol- 
ogy and the use of drugs for purifying 
the mind and body. He was also initi- 
ated into the mysteries of Zoroastrian- 
ism, with its opposing cosmic forces of 
good and evil. This dualism would pro- 
foundly influence his own thinking and 
would eventually be incorporated into 
his mathematico-mystical philosophy. 
The Babylonians were not only astrolo- 
gers but also great astronomers and 
mathematicians. Lindberg notes their 
mathematics was of "an order of magni- 
tude superior to that of the Egyptians." 
From them Pythagoras may well have 
learned the theorem forwhich he is still 
famous today: that for a right-angled 
triangle, the square of the hypotenuse 
is equal to the sum of the squares of the 
other two sides. Although we are taught 
in school that this is the Pythagorean 
Theorem, historians of mathematics 
believe it was almost certainly known to 
the Babylonians before him. 



If Pythagoras had been an oddity on 
Samos before he left for the East, how 
much more a misfit he must have been 
upon his return after two decades spent 
with foreign priests and sages. Now he 
not only wore trousers, but also never 
cut his hair or beard-a habit thatwould 
later become a hallmark of Pythagorean 
follo~vers. On Samos, he set himself up 
to teach philosophy and mathematics, 
offering lectures in the open air. Yet it 
soon became clear that his mystical lean- 
ings had little appeal to the Samians, so 
once again he left his homeland, this 
time forever. Pythagoras' aim now was 
to found his own community, where 
committed followers would dedicate 
themselves to a life of religious contem- 
plation and study of the "divine." As the 
site of this utopian community he chose 
the town of Croton in southern Italy- 
a place at the very extremity of the 
Greek world. 

Since none of the Pythagorean 
community's writings or records have 
been preserved, because of the group's 
fanatical secrecy, the details of its op- 
erations remain shrouded in mystery, 
but we do know that the lives of its 
participants combined elements of 
Greek religious practice with Egyptian- 
inspired rituals. In addition, the com- 
munity also operated as a philosophical 
and mathematical school. Members 
were of two kinds: the akousmatics and 
the mathematikoi. The former lived out- 
side the community and visited only for 
teaching and spiritual guidance. They 
did not study mathematics or philoso- 
phy butwere taught through akousmata, 
which espoused a simple, nonviolent 
way of life. For them Pythagoreanism 
was essentially an ethical system with 
mystical undertones and Pythagoraswas 
a purely spiritual leader. 

The mathematikoi, however, lived in- 
side the community and dedicated 
themselves to a Pythagorean life. That 
life was communistic in the sense that 
initiates had to give up their property to 
the community and renounce all per- 
sonal possessions. Pythagoras believed 
this \\.as necessary in order for the soul 
to be free from extraneous worries. 
Inspired by his life among the Egyptian 
priests, he \\.as also greatly concerned 
with purification, and the mnthenlatikoi 

were not allowed to eat meat or fish, or 
to wear wool or leather. It was said by 
ancient commentators that initiates had 
to undergo a probationary period of up 
to five years, during which they were to 
be silent to demonstrate their self-con- 
trol. While it is unlikely that silence was 
complete, it is clear that only those who 
were truly dedicated made it into the 
inner circle, handpicked by Pythagoras, 
to hear the Master's most secret teach- 
ings and study mathematics. Following 
the model of the Egyptians, all knowl- 
edge was kept secretwithin the commu- 

Py thagoras belieued 
tha t . .  . mathemat i c s  
should be revealed only 
to those who had been 
properly purijiied in 
both mind and body. 

nity, and one member was expelled 
when he revealed the mathematical 
properties of the dodecahedron, one 
of the five "perfect" solids. Pythagoras 
believed that, as divine knowledge, 
mathematics should be revealed only to 
those who had been properly purified 
in both mind and body, and the 
mathematikoi approached its study'in 
the spirit of priesthood. 

The Pythagorean community at Cro- 
ton is often referred to as the brother- 
hood, yet this is a misnomer because it 
also included women. Pythagoras him- 
self was married with several children, 
and his wife, Theano, was an active 
member and teacher in the commu- 
nity. But the controversial question is 
not so much whether women could be 
Pythagoreans but whether they were 
allowed to become mathematikoi, phi- 
losopher-mathematicians, or only 
akousmatics. Because no record of the 
community survives, it is difficult to 
resolve this issue, but in the writings of 
a number of ancient commentators 

there is evidence that there were women 
mathematikoi. Theano, for example, is 
said to have written treatises on math- 
ematics and cosmology. The idea that 
women could be members of 
Pythagoras' inner circle is also lent cre- 
dence by the fact that Pythagorean com- 
munities in the fifth century B.C. also 
included women: Phintys, Melissa, and 
Tymicha are three whose names have 
come down to us. Finally there is the 
example of Plato, who was deeply influ- 
enced by Pythagoreanism and was the 
only one of the great Athenian philoso- 
phers who advocated the education of 
women. Unlike Aristotle, Plato allowed 
women into hisfamousAcademy, where 
mathematics was taught. Thus it seems 
reasonable to conclude that among the 
original Pythagoreans women did par- 
ticipate in mathematical study. Given 
the nature of Greek society at the time, 
it is highly unlikely there were as many 
women as men among the mathematikoi, 
but given how misogynist the Greeks 
were soon to become, the community 
at Croton must be seen as one of the 
more gender-equitable havens of the 
Greek ~\.orlcl. In the beginning, then, 
mathematical men ackno~vledged and 
accepted the presence of mathematical 
women. 

The last years of Pythagoras' life are 
clouded in shadow. Between 510 and 
500 B.C., a Croton nobleman, Kylon, 
led an uprising against the Pythagorean 
community, which resulted in its de- 
mise. This event has been variously de- 
scribed as religious persecution and as 
a democratic revolt against an aristo- 
cratic sect. Ancient champions of 
Pythagoras depict Kylon as a tyrannical 
man motivated by revenge after having 
been rejected by the Pythagoreans, yet 
some historians believe the backlash 
against the community was a response 
to its elitist and secretive nature. Dur- 
ing the uprising Pythagoras fled and 
supposedlyspent the rest of his long life 
wandering in Italy, spreading his teach- 
ings. It is said that on his death he 
ascended directly into the heavens from 
a temple of the muses. H 

From Qti2agora.s ' Trotiserr bJ .\largaret 
WPrtha'm. Copjright 1 993 bJ .\lnrqaret 

MJoiheim. Reprinted p~nr~ission o j  Times 
Books, a division of Random Hottse, Inc. 
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nant isa tcornerAofa1 x 1 x 2  
box. It crawls along the surface 
along a geodesic, the shortest 

possible path, to a point B. Where is B 

o w s a l  x 
oining twc 

I x 2 bicube, a solid 
9 cubes. 

located to make the path as long as 
possible? 

Intuitively one would guess B to be 
at the corner marked X because this is 
the point the farthest from corner A. 
Yoshiyuki Kotani, a professor of - 
mathematics in Saitama, Japan, recently 
made a surprising discovery. Point B is 
not at X, but one-fourth of the way 
down the diagonal of the square face as 
shown! 

., The Geodesic from A to X is easily 
traced by unfolding the solid along a 
hinged edge as shown in Figure 2. The 
Pythagorean theorem gives the path as 

MARTIN GARDNER is best known for his 
long running "Mathematical Games" 
column in Scientific American. He has 
published five bookswith the Mathematical 
.Issociation of America. 

the square root of 8, or 2.828.. . If you 
trace the geodesic from A to B, the ant 
can take either of the two routes shown 
in Figures 3 and 4. By symmetry there 
are two similar routes along the hidden 
sides of the solid. Two of the four paths 
go over two sides, and the other two go 
over three sides. Applying the 
Pythagorean theorem to these four 
paths, they all have the same length of 
2.850 ..., about .022 longer than the Figure 3 
path from A to X! 

I do not know whether Kotani 
generalized the problem to 1 x 1 x n Label the diagonal of the square 
solids. In any case, physicist Richard face with 0 at X and 1 at the diagonal's 
Hess, who first called my attention to bottom corner. The distance of B from 
the problem, and four mathematicians X, along this diagonal, as a function of 
to whom I sent the problem (Ken n, is (n-1) /2n. If n = 2, the formula 
Knowlton, Robert Wainwright, Dana puts B a quarter of the way down the 
Richards, and Brian Kennedy) each diagonal. If n = 3, B is 1/3 of the way 
independentlysolvedthismoregeneral down. As n approaches infinity, B 
case. I expected that calculus would be approaches 1/2 at the limit, placing it 
required, but it turns out that by at the center of the diagonal. Ofcourse 
unfolding the solid along hinged edges, n can take any real value greater than 1 
and applying basic algebra, the formula and not necessarily an integer. 
for the location of B is not too difficult 

find. 
-. P roblems about a spider at spot A 

on the wall of a room that crawls 
along a geodesic to catch a fly at 

spot B are in many classic puzzle books. 
Henry Dudeney, the British puzzle 
maker, gives such a problem in The 
Canterbury Puzzles, and his American 
counterpart Sam Loyd has the same 
problem in his Cyclopedia of Puzzles 
(page 219). The French mathematician 
Maurice Kraitchik poses asimilar puzzle 
in Mathematical Recreations, with an 

1-1 2 illustration showing all ways of 
FW unfolding the room. 
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Such problems can be  further  
generalized to solids (or rooms) of 
dimensions a x b x c. A more difficult 
question, suggested by computer  
scientist Donald Knuth, is to find 
maximum-length geodesics on such 
solids. For example, the maximum 
geodesic on the 1 x 1 x 2 solid is not 
from the center of one square face to 
the center of the other, a distance of 3. 
Hess has made the surprising discovery 
that the maximum path has a length of 
slightly more than 3.01. But Hess's 
results on maximum-length geodesics, 
as yet unpublished, are a long story. W 

Figure 

Gardner welcomes your comments, p-obkms, and solutions. Write to him at the following address: Martin Gnrdner. 3001 Chestnut Road, 
Hendersonville, NC 28792. 

GRADUATE PROGRAMS AND FELLOWSHIPS IN MATHEMATICS 
THE UNIVERSITY OF CALIFORNIA at RIVERSLDE 

At UC Riverside, you'll have easy access to the faculty. With about 45 graduate students enrolled in our 
programs in Mathematics, and with 20 members on our faculty, we are able to work closely with each and every 
student. 

Over 110 Ph.D.'s in mathematics have been awarded in the 34 years that UC Riverside's graduate mathematics 
program has been in existence. The Department also offers programs leading to M.A. and M.Sc.. Faculty 
research areas in which students may work on a Ph.D. thesis include: Algebraic Geometry, Approximation 
Theory, Commutative Algebra, Complex Analysis, Differential Equations, Differential Geometry, Fractal 
Geometry, Functional Analysis, Lie Theory, Mathematical Physics, Order Theory, Probability Theory and 
Topology. 

The Department has about 35 teaching fellowships and assistanships. Departmental and University Fellowships 
are available on a competitive basis. A limited number of non-resident tuition grants are also available. 

Riverside is a city of 250,000 people. You can reach downtown Los Angeles, the desert, the mountain, ski 
resorts or the Pacific Ocean beaches in approximately one hour. 

For application forms and information, address inquiries to: 

Jan Patterson Phone: (909) 787-3 1 13 
Graduate Secretary Fax: (909) 787-7314 
Department of Mathematics e-mail: jan@math.ucr.edu 
University of California 
Riverside, CA 92521 

Math Horizons February 1996 9 

% 



DANIEL ASIMOV 

There's No Space Like Home 

1 
I Daniel Asinlovisa mathematician and senior 

I 

computer scientist at the NASA Arnes 
Research Center in Mountain View, 
California, and a visiting scholar in the 
mathematics department at Stanford 
University. 

T o prepare for reading this article, 
try a few simple warm-up exer- 
cises. First, press your finger on 

the period at the end of this sentence, 
here: . Finished? Thank you. You have 
just touched numbers. Now raise your 
finger into the air and poke. You are 
prodding numbers. Now snap your fin- 
gers. You snapped numbers. More pre- 
cisely, each of your gestures put you 
into contact with three numbers: the 
real numbers that, at least in this small 
region of the universe, describe the 
location of every point in space. There 
is no escaping those numbers. Wher- 
ever you go, whatever you do, you live 
and breathe and move amid a swarm of 
constantly changing coordinates. They 
are your destiny, the birthright of every 
denizen of three-dimensional space. 

It is not clear who first conceived of 
a world saturated with numerical ad- 
dresses. The idea of identlfylng points 
by longitude, latitude and altitude goes 
back at least to Archimedes, but it was 
not formalized until 2,000 years later, 
when the seventeenthcentury French 
mathematicians Pierre de Fermat and 

ceeded to define n-dimensional Euclid- 
ean space (n-space, for short), for any 
positive integer n, as the set of all n- 
tuples of real numbers (x ,,..., xn ). The 
symbol for such a space is an odd-look- 
ing R (for the real numbers) garnished 
with a superscript n: Rn. 

Having crossed that bridge, math- 
ematicians found it fairly straightfor- 
ward to extend geometric concepts such 

I - - -  

RCne Descartes forged the link between 
geometry and algebra. Then, at some 
point in the nineteenth century, math- 
ematicians took an important leap of 

1 logic. If ordered lists of numbers de- 
scribe a space perfectly, they reasoned, 

1 -, 

why not say that those lists of numbers 
are the space? And in that case, why 

i stop at three? They then boldly pro- 

We are luckier than any 
hypothetical higher- 

dimensional beings: our 
space is the highest- 

numbered space with any 
hope of being sorted out. 

as line and sphere into higher dimen- 
sions. By applying the algebraic and 
trigonometric tools originally invented 
for analyzing the 2-tuples (ordered 
pairs) and 3-tuples (ordered triples) 
associated with ordinary geometric 
spaces, they were able to calculate ana- 
logues for lengths, angles, areas, vol- 
umes and a host of other quantities. 
What mathematicians could not do, 
and cannot do now, is visualize directly 
what higher-dimensional objects really 
look like. Instead, those of us who work 
with such concepts rely on calculation 
and intuition, supplemented, over the 
centuries, by agrab bag of technique* 
including projections, cross sections and 
animations-to which computergraph- 
ics have added somevaluable new twists. 
Nowadays the concept of n-dimensional 

Euclidean space permeates virtually all 
branches of mathematics: algebra, analy- 
sis, geometry, topology and even prob- 
ability and statistics. 

You might expect that as the number 
of dimensions gets larger and larger, 
space gets stranger and more interest- 
ing. And so it does, in the trivial sense 
that any space has all the lower-dimen- 
sional spaces packed inside it. If planes 
(Bspace) contain lines (1  -space) and 
three-dimensional space contains 
planes, then, in away, anything that can 
take place on aline also takes place in 3- 
space, as well as in any higherdimen- 
sional space. From a deeper point of 
view, however, every Euclidean space 
has its own character, and as far as the 
number of dimensions is concerned, 
more is often less. 

Considered strictly on their own 
merits, higher-dimensional spaces tend 
to blur together into multidimensional 
sameness. It is often among the low- 
dimensional spaces that the most dra- 
matic transitions take place: as the num- 
ber of dimensions rises, fundamental 
propertiessuddenly flash into existence 
orvanish forever, never to change again. 
For many such properties, the birth- 
place or killing ground lies in the very 
space in which you are reading this 
article, "ordinary" three-dimensional 
space. Indeed, once you remove the 
blinders of familiarity, it turns out that 
3-space is a fascinating place; in many 
importantways, there really is no space 
like home. 

Are you skeptical? Then consider 
this statement: Three-dimensional 
space is the first Euclidean space in 
which it is possible to get hopelessly 
lost. To appreciate how that can be so, 
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cold as anything can possibly be. Now 
revisit each point to drop off a heat 

Some O-manifo[ds source-a perfectly symmetrical object 
that maintains a steady temperature, 
come what may, forever. (On the line 
such a symmetrical "space heaternwould 
be a rod: on the plane, a disk; in %space, 
a ball.) M'hat happens next? 

Eventually each space will warm up 
until it  approaches an equilibrium dis- 
tribution of temperatures. In 1-space 
and "space those temperatures are the 
same e\-er?~\.here: they are the tempera- 
ture of the heat source. But in 3-space 
the equilibrium temperature distribu- 
tion is not constant; far from the ball, it 

it helps to see why it is impossible to get 
lost in one- or two-dimensional space. 

Imagine that you are about to set out 
on a random walk through 1-space. You 
are perched like a tightrope walker on 
an infinitely long, infinitely narrow 
thread, the real-number line. To each 
side ofyou, stretching away endlessly as 
far as you can see, dangle tags repre- 
senting the integers-positive to your 
right, negative to your left, each num- 
ber exactly one step apart. The zero 
point, or origin, lies between your feet. 

In one hand you hold a perfectly fair 
coin. Flip the coin and catch it. If it 
lands heads, step one number to the 
right; if tails, step one number to the 
left. Then flip the coin again. If you 
imagine (as mathematicians routinely 
do) that there is no death, fatigue or 
boredom to disturb your flipping and 
stepping, what is the probability that 
your random walk will eventually take 
you back to the origin? The answer 
turns out to be surprisingly simple: on 
a scale of zero to one, the probability is 
one-infinite likelihood. 

Next, imagine repeating the random 
tour on a plane, taking your instruc- 
tions not from a coin but from a four- 
sided die say, a regular tetrahedron, its 
faces labeled north, south, east, west. 
M'hat is the probability that you will 
return to your starting point at least 
once in the course of your random 
walk? Again the answer is one, virtual 
certain?. 

Now try the same thing in three di- 
mensions, reading directions off an 
ordinary six-sided die with faces labeled 
north, south, east, west, up, down (in 
addition to being immortal and inde- 
fatigable, you have acquired the ability 
to levitate). If you can take infinitely 
many steps, what is the probability that 
you will return at least once to your 
starting point? If you sense a setup, you 
are right. This time the probability turns 
out to be only about 0.3405373, or 
roughly 34 percent. In higher dimen- 
sions the chances of returning to the 
origin are even slimmer. In spaces with 
a large number of dimensions, n, the 
probability of a return is approximately 
1/(2n)-the same as the probability 
that you will return to the origin on 
your second step. In other words, if you 
do not make it home at the first oppor- 
tunity, you are probably lost in space 
forever. Wandering aimlessly is not likely 
to get you back; there are too manyways 
to go wrong. (See inside cover.) 

In the physical world, random walks 
in space provide an ideal model for 
Brownian motion, the zigzag movement 
of molecules colliding in a gas. Because 
Brownian motion also describes the dif- 
fusion of heat, the properties of ran- 
dom walks have profound implications 
for heat conduction. Imagine, for in- 
stance, that mathematical space is made 
of a uniform, homogeneous substance 
that conducts heat. Imagine further that 
the space starts out at absolute zero, as 

will al.cvays approach absolute zero. No 
heater can ever generate enough heat 
to warm up all of three-dimensional 
Euclidean space or, for that matter, anv 
other multi-dimensional space between 
3-space and infinity. To rephrase 
GertrudeStein, there is simply too much 
there there. 

Euclidean space is a reassuring 
place-smooth, rectilinear, all-encom- 
passing but it is also just a wee bit artifi- 
cial. Real objects, after all, come in a 
multitudinous variety of shapes, some 
of them fiendishly complex. Just think 
of all the shapes you can make from 
one-dimensional "material": not only 
polygons but also every imaginable 
closed figure, every letter of every al- 
phabet, e\7ery conceivable squiggle and 
doodle, including some so intricate that 
it would take eons to draw them. But 
however complicated such afigure may 
be, any small piece of it, viewed up 
close, resembles the one-dimensional 
Euclidean space of a straight line. Such 
shapes, created out of Euclidean space 
as modeling clay, are what mathemati- 
cians call manifolds, and they can come 
in any number of dimensions. 

Facedwith an unexplored manifold. 
you can find out quite a bit about it  by 
showing that it is topologically equi\a- 
lent to asimpleror better-knoi\n shape. 
To prove that two shapes are topologi- 
cally equivalent, mathematicians set up 
a smooth one-to-one correspondence 
(known technically as a homeo- 
morphism) between the points on the 
first shape and the points on the second 
one. The topological equk-alence classes 
of the Geometric font of sans serif capi- 

Math Horizons February 1996 11 



I \ / I Any simple closed curve is topologically equivalent to a circle. 

Radial projection provides a homeomorphism 
beti~~een a square and a circle. Note that this 
correspondence takes each point ofthe square to 
n po~nt of the circle, and is both one-to-one and 
onto. Further, both the correspondence and its 
inverse (taking the circle onto the square) are 
continzrous. Hence we know this is a topological 
eqtrivalence. 

tal letters are as follows: {C, G, 1, J, L, M, 
N, S, U, V, W, Z} (line segments), (E, F, 
T, (lines with one "arm"), (K, X) 
(figures with four arms emerging from 
the same point), {D,O) (circles), {P, (21 
(circles with one arm), (A, R) (circles 
with two arms). B and H each stand 
alone. (If you have trouble seeing how 
some of the correspondences work, re- 
member that topology lets you rotate, 
bend, stretch and flip objects as neces- 
sary, to make, say, the bottom bar on the 
E match up with the lower part of the 
stem of the F.) 

One simple but useful class of mani- 
folds is made up of manifolds that are 
finite in extent, have no boundary and 
come in one piece. The one-dimen- 
sional manifolds, or I-manifolds, with 
those properties include the letters D 
and 0 as well as ovals, ellipses, polygons 
and every other closed curve. All of 
them are homeomorphic to the circle, 
conventionary denoted S'. 

The 2-manifolds, or surfaces, are 
more interesting. They come in two 
varieties, orientable and nonorientable. 
A nonorientable surface is one that 
contains as a subset a Mobius band, the 
surface that results when you give a half- 
twist to a strip of paper and then tape 
the ends together. Orientable surfaces 
are easy to describe: each of them is 
homeomorphic to the surface of a but- 
ton with some number of holes (possi- 
bly none). A button with no holes is 
topologically equivalent to the ordinary 
sphere S2. The surface of a button with 
one hole is homeomorphic to a dough- 
nut, which topologists call a torus. 

A circle is NOT  topological^ equivalent to a 
Jgure-eight curve, since unlike thefigure eight, 
there is no point of the circle whose removal will 
leave the circle disconnected in tzuo pieces. 

Three-dimensional space can also 
be bent and stretched into any number 
of shapes. Because such distortions may 
veer into higher dimensions, people 
cannot visualize them "from the out- 
side," but one can imagine what they 
would look like from the inside. To see 
how that works, imagine a twodimen- 
sional creature-a paper-doll cutout, 
perhaps-living on the surface of a 
torus. The creature cannot stand out- 
side the surface and observe the torus as 
a doughnut in three dimensions, but it 
can observe the peculiar properties of 
the surface itself. For example, light 
rays that shoot off to its right suddenly 

The sphere is NOT topologically equivalent to a 
torus since unlike the situation for the torus, 
eve9  closed curve on the sphere can be 
continuously shrunk to a point. 

square, the top edge identified with the 
bottom edge, the left edge identified 
with the right. 

Similarly, one of the simplest 3-mani- 
folds is the 3-torus, which we three- 
dimensional creatures can visualize as a 
"glued" cube. The top of the cube is 
identified with ("glued" to) the bot- 
tom, the north face with the south face, 
and the east face with the west face. 
Denizens of such a manifold would see 
infinite repetition in all directions. 

By gluing, twisting and otherwise 
identifying segments of complex sur- 
faces, one can build up a bewildering 
array of possible 3-manifolds. But by 

The Mobius band can be modeled with a strip ofpaper whose ends are taped together after a half- 
twist. It is not orientable-which means that only one kind of spin, not two, ispossible. By contrast, 
the cylinder (or plane, or sphere, or torus) is mientable: clockwise and counterclockwise spins can be 
distinguished @om each other. 

reemerge on its left,just as objects do in 
many video games. As a result, by look- 
ing in either direction, the creature can 
see the back of its head, and beyond 
that, as if in a hall of mirrors, infinitely 
many copies of itself and its surround- 
ings. Gazing upward, the creature can 
see the light from its feet-and beyond 
that, an infinite number of receding 
copies of its environment as seen from 
below. From those observations, a pa- 
per-doll topologist could model its two- 
dimensional universe as a simple flat 

establishing classes of topologically 
equivalent manifolds, topologists have 
made remarkable progress in narrow- 
ing down the possibilities. In that re- 
spect we are luckier than any hypotheti- 
cal higher-dimensional beings. It has 
been shown mathematically that, in di- 
mensions four and up, manifolds get so 
complicated that no algorithm can iden- 
tify all of them. Nobody knows whether 
that is true in three dimensions. Here, 
then, is something else special about 3- 
space: In an important sense, it is the 
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highest-numbered space that has any 
hope of being sensibly sorted out. 

Given the variety of shapes a blob of 
space can assume, it always comes as a 
relief when an unfamiliar manifold 
turns out to be topologically equivalent 
to a simpler one. In any space, the 
pinnacle of simplicity is the manifold 
known as the unit sphere, defined as 
the set of points in Rn that lie precisely 
one unit from the zero point, or origin, 
of the space. In the plane R2, the unit 
sphere is just the familiar unit circle, 
called the 1-sphere, or S'; it can be 
thought of as a one-dimensional line 
segment bent around and glued to it- 
self. In 3-space the unit sphere is the 
ordinary spherical surface S2 ; it does 
not include the points inside the sur- 
face. (The superscript of Sn refers not to 
the dimension the sphere resides in but 
to the stuff it is made of.) 

The 3-torus i s  a 3-manifold and can be 
conceptually modeled from a solid cube by gluing 
the top-face to the bottom face, the left face to tlte 
light face, and theji-ont face to the back face. 
Thesegluings cannot all be cam'ed out i n  3-space, 
but t h q  can be done i n  4-space. 

In 1904 the French mathematician 
Henri Poincari. suggested a possible 
simple test for classifying three-dimen- 
sional manifolds. It might be true, he 
hazarded, that a 3-manifold is topologi- 
cally equivalent to the 3-sphere if any 
loop in the manifold can be continu- 
ously shrunk down to a point. The loop 
test shows whether a manifold has any 
holes in it; spaces that pass the test are 
said to be simply connected. A 2-sphere 
is simply connected (as are its spherical 
cousins in every higher dimension) ; a 2- 
torus is not. That is why you can tie a 
firm slipknot through an iron ring but 
not around a basketball. 

A lotus tnaj be modeled by a square zuhose top edge A is identijed or "glt~ed" to ils bottom edge A, and 
whose lefl edge B is "glued" to its right edge to B,. A two-dimensional being who lives i n  such a torus 
cozcld see the buck of its own head. A t m t s  is homeomorphic to an  inner tube or the surface of a bagel. 

PoincarC's Conjecture is clear, 
elegant and potentially quite useful. 
Unfortunately, neitherpoincari. norany 
other mathematician to this day has 
proved that it works for all 3-manifolds. 
Proving what has come to be known as 
the Poincari. conjecture remains one of 
the great unsolved problems of 
mathematics. 

Strangely enough, an expanded ver- 
sion of the conjecture has been proved 
for all dimensions higher than three. 
The so-called Generalized Poincari. 
Conjecture is slightly more complicated 
than Poincare's original conjecture. The 
mathematical objects that must be 
shrunk to a point include notjust loops 
(1-spheres) but also ordinary spheres 
(2-spheres) , 3spheres, 4spheres and 
so on, up to half the number of dimen- 
sions of the manifold in question. For 
example, to prove that a 4 or 5-mani- 
fold is homeomorphic to a four-or five- 
dimensional sphere, you must be able 
to shrink both loops and ordinary 2- 
spheres; for a 6- or 7-manifold the tests 
involve loops, 2-spheres and 3-spheres; 
and so on. 

In 1960 Stephen Smale of the Uni- 
versity of California, Berkeley, aston- 
ished the mathematical world by prov- 
ing the Generalized Poincari. Conjec- 
ture for dimensions five and higher. 
Smale's ingenious proof involved de- 
composing a manifold into pieces called 
handles and then rearranging the 
handles until almost all of them can- 
celed one another. What remained 
could be easily identified as homeo- 
morphic to the sphere. In 1966 Smale 
was awarded the Fields Medal-the 
mathematical equivalent of the Nobel 
Prize-for that work. 

Only the third and fourth dimen- 
sions remained. There Smale's tech- 
niques failed, because, in a sense, low- 
dimensional space is just too cramped. 
In dimensions five and higher there is 
plenty of maneuvering room to rear- 
range the handles to cancel one an- 
other. In dimensions three and four, 

O n  a 2-sphere, any closed curue can be 
continuously shrunk to a point. This 
means thesphere is "simply-connected. " 

O n  the torus, hozuever, s o m  c r l t ~ ~ ~ s  (like B or C) 
cannot be shrunk to (I poittl. So t h ~  torus Is not 
simply-connected. 

however, the handles wind up hope- 
lessly tangled. In 1982 the mathemati- 
cal world rcas again astonished when 
Michael H. Freedman of the University 
of California, San Diego, proxred the 
four-dimensional Poincar6 Conjecture. 
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The ABCs of Topological Surgery 
. 

The torus has many interesting homeomor~hisms to itsey For example, its two kinds of "holes" 
can beinterchanged: Surgery on a 3-manifold involvesfirst removinga solid torus, then gluing 
it back i n  dqferently by using an interesting homeomorphism of its baundaly (an ordinaly 
torus) to itself: 

Even though Freedman's proof cov- 
ered only a single dimension, i t  was 
much more complex than even Smale's 
had been. In 1986 Freedman, too, was 
awarded the Fields Medal for his achieve- 
ment. 

And so the matter stands: the 
Poincari Conjecture has been proved 
in every dimension except three-the 
dimension in which it was originally 
stated. 

Why is the three-dimensional case so 
hard to prove? Nobody knows, but one 
can speculate. For any n-manifold, the 
conjecture requires tests involving a 
certain number of spherical objects. 
For even-numbered manifolds the num- 
ber is n/2; for odd-numbered ones, (n- 
1)/2. For dimensions four and above, 
the number of tests ranges between 40 
and 50 percent of the number of di- 
mensions. For three dimensions, how- 
ever, it is a mere 33 1/3 percent. It may 
be no coincidence that the toughest 
nut to crack is the space with the fewest 
constraints relative to the number of 
degrees of freedom. 

The PoincarC Conjecture aside, in 
recent years the study of %manifolds 
has surged forward. Some of the most 
important advances have come from 
work on the large class of manifolds 
that are finite in extent, orientable and 
made of a single piece. In one particu- 
larly amazing and useful breakthrough, 

topologists have discovered that they 
can start with the 3-sphere and, via a 
process of cutting and pasting called 
surgery, refashion it to produce any 
other finite, orientable, one-piece 3- 
manifold. Though more roundabout 
than a homeomorphism, the route from 
the sphere to amanifold can give much 
important information about the mani- 
fold itself. 

How does topological surgery work? 
In the space defined by the 3-sphere, 
draw a simple closed curve. (Anycollec- 
tion of separate closed curves would 
work as well, but it is simpler to consider 
one.) Now let the curve expand to an- 
nex all the points within a small dis- 
tance of it, as if they were frost forming 
on the cooling coil of a freezer. The 
result is a solid torus, the shape of a 
doughnut. Now transport the points 
inside the torus somewhere else, leav- 
ing only the surface wrapped around 
the doughnut-shaped hole in space, 
and stuff the points back into the hole 
in a different way. You have changed 
the 3-sphere into a new, but still finite, 
orientable, single-piece Smanifold. By 
repeating the operation enough times, 
you can transform the original sphere 
into any finite, orientable, single-piece 
manifold you like. 

Return to the first step in the sur- 
gery, a simple closed curve in %space. 
Topologists have aword for such a curve: 

knot. Confusingly, topological knots 
include loops that any 
nonmathematician would say are not 
knotted at all. Such rubber-band-like 
loops and their topological equivalents 
are considered unknotted knots (in 
much the same way that, in arithmetic, 
you might think of zero as a numberless 
number). Real knots-knotted knots- 
reveal another unique aspect of the 
third dimension. Amazingly enough, 3- 
space is the only Euclidean space in 
which they are possible. In all spaces 
with higher dimensions, any such curves 
can be transformed, without being cut, 
back into unknotted loops. (There are 
consolations, however. In 4space you 
gain the ability to tie knotsin a 2sphere.) 

The discovery of surgery has made 
possible some of the most dramatic 
recent advances in topology. They re- 
sulted from the work of the mathemati- 
cian William P. Thurston, then at 
Princeton University and now the di- 
rector of the Mathematical Sciences 
Research Institute in Berkeley. In the 
early 1980s Thurston discovered that 
each manifold in a large class of 3- 
manifolds can be carved up into pieces 
with relatively simple geometric p rop  
erties. Eight kinds of pieces, he deter- 
mined, are enough to do the job: those 
with constant positive curvature; those 
with constant negative curvature; those 
with zero curvature; and five hybrids. 
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Result: a (usually) t@ologzcallj distinct 
3-manifold from the miginal one. 

Step I :  Remove solid torus from 3-manifold, Step 2: Replacesolid torus back i n  3-manqold 
having solid torus shaped hob. 4 using a n  interesting homeomorphism of 

its boundary ( a torus to the boundaly of the 
hob, which also is a torus). 

3 

Solid torus-shaped hoh  Solid torus that was removed 

1/2, 2/3, 3/4, 4/5 and so on. The 
accumulation point is 1 .) 

Now, hold on to your hats! For if you 
ignore the original volume points and 
look only at the accumulation points 
bracketing them, you will see that those 
points have accumulation points them- 
selves; and those accumulation points 
have accumulation points; and so on ad 
infinitum, each new accumulation point 
marking the volume of at least one 
complete hyperbolic %manifold. And 
with that endlessly unfolding display of 
numerical pyrotechnics, unparalleled 
in any other dimension, I wish you a 
pleasant return to your native mani- 
fold. 

I 

Illustrations b~ Jolz n Joh nson 

From that standard kit of eight basic pline that considers a bagel equivalent 
components, a wide variety of mani- to a beer stein is filtering out a lot of 
folds can be assembled. information. To determine curvature, 

One of the eight components isvastly however, you must be able to measure 
more useful than the others. In an argu- the distance between any two points on 
ment that relied heavily on the tech- a manifold, and measurement comes 
niques of surgery on knots and links, under the purview of geometry. 
Thurston showed that most of the 3- In dealing with manifolds, another 
manifolds he had in mind can be bro- useful quantity to measure is volume. 
ken down solely into pieces with con- The 3-manifolds Thurston considered 
stant negative curvature, or what is (technically known as complete hyper- 
known as a hyperbolic structure. That bolic manifolds) may be either finite or 
makes such negatively curved manifolds infinite in extent, but each of them 
extremely useful for studying 3-mani- encloses a finite volume. Volume marks 
folds in general. yet another way in which %manifolds 

Thurston's work earned him the are unique. In all other dimensions the 
Fields Medal in 1983. By that time he possible volumes of complete hyper- 
had published a conjecture that, if true, bolic manifolds crop up along the posi- 
would be even more sweeping: that not tive side of the real-number line as tidily 
just "a large class" but all 3-manifolds as telephone poles. For 2-manifolds (sur- 
can be decomposed into the eight g e e  faces) with constant negativecurvature, 

This article is repinfed permission of 
THESCIENCES and is from theSqbtember/ 
October1 993 isszle. Indizidua1~~bsrn'ptions 
are$21.00per~ear. I l n f e  to: Tht Sciences, 
2 East 63rd Sfreef, ,Yeza~ I'urk, .\Y 10021 or 
call 1-800-THE-.\2:-iS. 

metric components. A proof of the volumes fall at points exactly 2rc 
Thurston's geometrization conjecture apart; for Li-manifolds, the distance is 

* would be a stunning advance for topol- 4rc /3. 
ogy. Among other things, the three- Plot the possible volumes for com- 
dimensional Poincare conjecture would plete hyperbolic Smanifolds, on the 

I* follow as an instant corollary. But do other hand, and the pattern you get is 
not expect to see it in tomorrow's head- incomparably more interesting and 
lines: some mathematicians working in beautiful. Instead of spreading out at 
the field suspect the Poincare conjec- prim intervals, the volume-measures 
ture is false. cluster alongside accumulation points- 

In grappling with curvature, numbers with an infinitude of possible 
Thurston strayed beyond the bounds of volume-measuresjammed next to them, 
topology. Topology deals only with creepingupfrom below. (Foranideaof 
shapes, not quantities; clearly, any disci- how that looks, try plotting the sequence 
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ANDY LIU 

Counting Sides and Angles 

A partition of a polygon into 
triangles is called an anti- 
triangulation if no nvo triangles 

share a complete common side. Figure 
1 shows an anti-triangulation of a 
triangle. 

A very attractive and challenging 
problem was proposed by Nicolas 
Vasilievof Moscow for the international 
MathematicsTournament of the Towns 
conference at Beloretsk, Russia, in 
Augustof 1993. Partofit is todetermine 
all positive integers n for which there 
exists an anti-triangulation of a convex 
n-gon. 

We urge the reader to experiment, 
formulate a conjecture and try to prove 
it. 

Nicolas was probably the proposer 
of the following problem in the Fall 
1993 tournament. A convex 1993-gon 
is partitioned into convex 7-gons. TWO 
adjacent 7-gons share a complete 
common side, and each side of the 
1993-gon is a side of a 7-gon. Prove that 
there exist three consecutive sides of 
the 1993-gon which are sides of the 
same 7gon. 

This problem can be solved by the 
technique of counting sides and angles. 

--vv - - 
ANDY LIU 1s professor of mathematics at the 
~niversitv of Alberta. 

Let f denote the number of 7-gons, v 
the number of their vertices inside the 
1993-gon, and e the number of their 
sides inside the 1993-gon. 

Each 7-gon has 7 sides. Hence the 
total number of sides, counting 
multiplicities, is 7f: Each side of the 
1993-gon contributes 1 to this total, 
while each interior side contributes 2. 
It follows that 7f= 1993 + 2e. 

The sum of the angles of each 7-gon 
is 5n. Hence their total measure is 5fn. 
The angles of the 1993-gon contribute 
1991n to this total, while the angles 
around each interior vertex contribute 
27c. It follows that 5f=1991+271. 
EliminatingJ we have 3972=10&14v. 

Let bdenote the number of vertices 
of the 1993-gon which lie on at least 
one interior side. Since the 7-gons are 
convex, each interior vertex lies on at 
least 3 interior sides. Hence 2 e 2  3vtb. 
It follows that 39722 15v+ 5b- 14v> 5b 
or 795>b. 

This means that more than half of 
the vertices of the 1993-gon do not lie 
on any interior sides. Hence there exist 
two such vertices which are adjacent. 
The three consecutive sides of the 1993- 
gon around them must be the sides of 
the same 7-gon. 

We now return to the anti- 
triangulation problem, which can be 
solved by the same technique. 

Consider an arbitrary partition of a 
convex n-gon into triangles, as 
illustrated in Figure 2with n=4. Denote 
by f the number of triangles. Here, f = 

9. There are two types ofvertices on the 
boundary of the n-gon. Type-C vertices 
are those of the n-gon. Type-B vertices 
are those which lie on the sides of the n- 
gon. There are n of the former, and 

denote by b the number of the latter. 
Together, they divide the boundary of 
the n-gon into n+bboundary segments. 

There are also two types of vertices 
inside the n-gon. Type-D vertices are 
those which arevertices ofevery triangle 
to which they belong. Type-A vertices 
are those which lie on a side of at least 
one triangle. Denote their numbers by 
d and a respectively. 

An interior segment is defined to be 
any side of a triangle inside the n-gon 
which is not a proper subset of a side of 
another triangle. Denote their number 
by e. In figure 2, e = 10. C,4, and A$, 
are not segments because both are 
proper subsets of C,A,. Similarly, C,D, 
is a segment but C,A, and A,D, are not. 

If such a partition is to be an anti- 
triangulation, we must have at least 
one Type-A vertex on each interior 
segment. Thus a necessary condition is 
eI. a. 

Each triangle has 3 sides. Hence the 
total number of sides, counting 
multiplicities, is 3J Each of the n+b 
boundary segments contributes 1 to 
this total. Each interior segment 

16 Math Horizons February 1996 



contributes 2 plus the number of Type- Eliminatingf; we have References: 
A vertices on it. It follows that 3 f = n + b 

1 Liu, A., "A Mathematical Journey," 
t 2e+ a, since eachType-Avertexlieson e -  a = n - 3 + b + 3d 2 n - 3. 

Crux Mathernaticomm 20 (1994) 1-5. 
exactly one interior segment. 2 Niven, I., "Convex polygons that 

The sum of the angles of each If n > 3, then e > a and we cannot 
cannot tile the plane," American 

triangle is n. Hence their total measure possibly have an anti-triangulation. 
is fn. The angles of the n-gon contribute Hence the only convex polygon which 

Mathematical Monthly 85 (1978) 785- 

(n -2 )n  to this total. The angles around can be anti-triangulated is the triangle! 
792. 

each Type-A and Type-B vertex For an account of the Beloretsk 
contribute n ,  and those around each Conference, see [ I ] .  For another 
Type-D vertex contribute 2n. It follows example of the technique of counting 
thatf= n - 2 +  b +  a+2d.  sides and angles, see [ 2 ] .  ' 

The PhD Program in Mathematics at Dartmouth 
The Dartmouth Teaching Fellowship. The program requires that students develop both as research 
mathematicians and teachers. All regular students in the program are teaching fellows. Fellows begin 
as tutors, usually tutoring two or three evenings a week for twenty weeks each year during the first two 
years of study. After admission to candidacy for the PhD degree, students take a course on teaching 
mathematics and then teach one ten-week course per year. Dartmouth takes teaching seriously, and 
supports its teaching fellows strongly, especially as regards the careful selection of teaching assignments. 

Program Features. A flexibly timed system of cenification, through exams or otherwise, of knowledge 
of algebra, analysis, topology, and a founh area of mathematics, replaces formal qualifying exams. There 
is a wide choice of fields and outstanding people to work with. Interests include algebra, analysis, 
topology, applied math, combinatorics, geometry. logic, probability, number theory, and set theory. 

For More Information. Write to Graduate Program Secretary, Mathematics Department, Dartmouth 
Colle._ge, 61 88 Bradley Hall, Hanover, NH 03755-355 1 

TEXAS TECH UNIVERSITY 
MATHEMATICS AND STATISTICS 

m e  Universitv: Texas Tech University is located in Lubbock, Texas, a city of 
200,000. Lubbock is in the South Plains of West Texas. Texas Tech University 
is a multipurpose university with 26,000 students and 3,800 graduate students. 
m e  Dewartrnent: The department offers study in a broad range of areas leading 
to the M.S.and Ph.D. degrees. A special M.S. degree with emphasis in computer 
science and a M.A. degree designed for precollege teachers are also offered. 

The department, with 45 faculty members and 70 graduate students, 
provides a friendly and collegial atmosphere. Active research is carried out 
in such areas as algebra, algebraic and differential geometry, biostatistics, 
dynamical systems, finite geometries, flow in porous media, logic, 
mathematical biology and epidemiology, mathematical physics, numerical 
analysis, kinetic theory, linear and nonlinear systems and control theory, one 
and several complex variables, partial differential equations, solid 
mechanics, statistics, topology, and optimization. 
Financial I j j J :  Teaching assistant stipends for the academic year 1996-97 range 
from $8,700-$10,000. Summer support is normally available. Out of state 
tuition is waived and medical insurance is provided for teaching assistants. 
For: Call the Graduate Director at (806)742-2566, E-mail 
at graddir@math.ttu.edu or write 

Director of Graduate Studies 
Department of Mathematics 
Texas Tech University 

Lubbock, Texas 79409-1042 
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DONALD J. ALBERS 

Tom Banchoff: 
Multidimensional Mathematician 

rofessor Thomas Banchoff is one 
of the first people on planet Earth 
to interact with the  fourth 

dimension. Thanks to a blend of his 
powerful imagination and computer 
technology, he has made it possible for 
all of us to see beyond the three- 
dimensional space in which 
we live. The images that he 
displays on his computer 
screen are  beautiful, 
exciting, and often 
surprising. To  be more 
precise, what Banchoff 
enablesus to "seeVare three- 
dimensional shadows of 
four-dimensional objects. 
'We're trained from very 
early childhood," Banchoff 
explains, "to interpret the 
two-dimensional shadows of 
three-dimensional objects. 
We all learn to infer the 
shapes of three-dimensional 
objects from their shadows. 
So if we want to visualize a 
four-dimensional object, 

a futuristic laboratory where his guide afternoon cornering Father Jeffrey, a 
says, "This is where our scientists are sympathetic biologyteacher, and trying 
working on the seventh, eighth, and as hard as he could to explain his 
ninth dimensions." A thought balloon theory-if God came from the fourth 
rises above the hero's head: "I wonder dimension into our three-dimensional 
what ever happened to the fourth, fifth, world, all we would see is a 'slice' 
and sixth dimensions." Banchoff, too, person who would look like us, but 

there would still be two other 
parts of God thatwe couldn't 
see, and that's where the 
Trinity comes in. Father 
Jeffrey was amused by his 
earnestness and asked why it 
was so important for the 
theory to be validated that 
day. He answered, "Because 
tomorrow I'm going to be 
sixteen years old." 

Banchoff grew up in 
Trenton, New Jersey. His 
father, who was a payroll 
accountant, impressed upon 
him the fact that English and 
arithmetic were the most 
important subjects in the 
curriculum. He was also very 
concerned that Tom should 

the best thing to do is work Profr~rcr I'om Rnnchofb J L L J I  bcrrl<f,om anotlzrr ( l ~ l c o u ~ ~ l ( ~ ~  111trh the be a "regularguy."Hisfather . . -  with three-dimensional fourth dzmenszon. was actually rather suspicious 
shadows." of intellectuals. He knew 

has been wondering ever since. He people who read books and discussed 
Captain Marvel decided to keep trying until he  them, but he himself wasn't a reader. 

understood the fourth dimension Hisfavoriteexamplewasamiddle-aged, 
- r - Banchoff has been fascinated with completely or until it became boring. somewhat eccentric neighbor who 

the fourth dimension since he was ten Very soon he realized that he would spent most of his time in the library and 

years old. He first read about it in a never be able to figure it all out, and carried hislaundryinapapersack. "My 

comic book, "Captain Marvel Visits the that it would  ever get boring. father warned me," recalls Banchoff, 

World of your Tom or row^" one ofthe He really got into thinking about 'You don't want to grow up like him." 
panels shows a boy reporter going into the fourth dimension as a student at On the other hand, his mother, a 

Trenton Catholic Boys' High School. kindergarten teacher,wasagreatreader 

DONALD J. ALBERS is the editor of iMath By the time he was a sophomore, he and was very encouraging. 
H o , ~ ~ o n s a s  well as co-author of Mathematzcal had developed a full-fledged theory of SO Tom proceeded to become a 
Peopk  the  Trinity. H e  remembers o n e  regular guy. He played on the tennis 
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In 1884, a ;ter, 
Edwin AbbottAuuoi~, wr ore ule uassic 
introduction to the dimensional 
analogy. His small book Flatland is 
narrated by A Square, living on a two- 
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Y to 
conceptualiz~ rth spatial 
dimension. 1 invited to 
empathize wid- eriences of A 
Square, first of all in his own two- 
dimer cia1 satire on 
Victor then as he is 
c o n f r c l ~ ~ ~ r ; ~  WILII ~ V I S I L ~ L I O ~  byabeing 
from a higher dimension, A Sphere, 
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and changing circular figure. This 
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As A .  Sphere passes through Flatland, the two-dimensional section changes, starting as a point, 
reaching maximal extent as a circular section, and then reduong to a po~n t  as it leavesflatland. 

! 

argument, I could accept that. I didn't 
have the tolerance for ambiguity that 
was necessary to become a scholar of 
literature. But in mathematics, I k n e ~  
by that time that I could come up with 
original ideas, and the courses definitely 
were challenging. So I decided to 
become a mathematics teacher." 

Many teachers influenced Banchoff. 
In his freshman year of high school, 
Father Ronald Schultz stood out. 
"Although I never took a class from 
him, he was the first one who really 
listened to my mathematical ideas and 

experience challenges A Square to 
rethink all that he had previously 
taken for granted about the nature of 
reality. Analogously, we are  
challenged to imagine the experience 
of being visited by beings from a 
fourth spatial dimension. 

and soccer teams. In addition, he was 
in the school play, orchestra, band, and 
debating team as well as editor of the 
school paper and the yearbook. At his 
high school, it was considered all right 
to get high grades as long as itwas clear 
that you weren't spending all the time 
studying, so he maintained a 99+ 
average over four years. He won the 
regional science fair, represented his 
district in the National Student 

encouraged me, especially in 
geometry." 

Congress, and was in the first class of 
National Merit Scholars. And he was an 
altar boy, too! 

In January 1996, Banchoff won one 
of the MAA's Distinguished Teaching 'I Awards. He cares deeply about teaching 
and is proud of his award. He always 
knew that he would be a teacher, but he 
wasn'tsure at firstwhat itwas he wanted 
to teach. For several years it was a toss- 
up between mathematics and English. 
At Notre Dame, he remembers, "In 
mathematics when I made a mistake 
and the teacher pointed ou t  a 
counterexample o r  a flaw in the 

Shadows 

Banchoff discovered his first 
geometry theorem as a freshman. 
"Every Friday morning, the whole 
school would file into church for Mass, 
and our home room was the first to 
enter. While waiting for the rest to 
come in, there was plenty of time to 
contemplate the shadows advancing 
across the tiles at the base of the altar 
rail. When we first arrived, the narrow 
of the altar rail covered only a small 
portion of the triangular tiles, and by 
the end of Mass, almost the entire 
triangle was in shadow. When, I asked 
myself, did the shadow cover half the 
area? I hadn't studied any formal 
geometry yet, but I figured that if you 
cut an isosceles right triangle in half by 
aline perpendicular to the hypotenuse, 
then one of those halves could be 
rotated to give the triangle that remains 
when the shadow was covering half of 
the original triangle. It surprised me 
that the line did not pass through the 

centroid of the triangle! To this day, I 
still use that example when I teach 
calculus students about centroids." 

Another early influence Jvas Herbie 
Lavine, who was three years older than 
Banchoff and "real smart." Herbie 
worked in his father's grocery store, 
and when Tom was in grammar school, 
he would teach him the mathematics 
he was learning. His father would 
remind him that he was supposed to be 
unloading packing crates and not doing 
algebra on them! When Tom was in 
seventh grade, Herbie told him about a 
classic problem involving twelve billiard 
balls, one of which was either heavier 
or lighter than all the rest. How could 
you find the 'odd ball' in three 
weighings using just a balance scale? 
Tom couldn't solve it right away and 
Herbie was about to show him the 
answer. Tom said "no," he wanted to 
work it out by himself. 'We both forgot 
about it," Banchoff recalls, "and soon 
afterward Herbie went off to college, 
while I started high school. Once again 
it was at one of the Friday morning 
masses that I received an inspiration: a 
pattern on one of the stained glass 
windows reminded me of the billiard 
ball problem from three years earlier, 
and the pattern gave me the idea for 
solving it. I sent my solution off to 
Herbie at the University of Slichigan, 
and got a letter back saving i t  $\-as right. 
It made me feel good to know that I 
could solve a problem that took a long 
time, and not just the usual problems 
that you can either do immediately or 
not at all." (Herbie \vent on to become 
an actuary and a professional bridge 
player. He and his wife and son visited 
Brown a couple of years ago, and Tom 
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took them out to lunch. He astounded right now and find the correct form." I 
them by telling them that Herbie had said, 'You mean, go to the blackboard 
been his mathematical hero when he right now and just do it?" He nodded, 
was young.) so I went up and figured it out. As I 

In high school, one of the things turned around, as surprised as I was 
Tom liked most about mathematicswas proud, he smiled. Just like that I wanted 
that he was asking questions that were to be a mathematician again." 
different from the ones that his 
classmates and teachers were asking. YOU wil l  never he a 
'72hen I got to college, I realized that mathemati 
was still true. I knew that most of the 
things I observed had been seen before, As a senior at Notre Dame, Banchoff 
but I thought even then that maybe I received from Ky Fan the only C of his 
might have some insights that nobody life in a second year graduate course in 
else would have, that I would prove general topology. He didn't realize at 
something that nobody everwould have 
thought of if I hadn't done it. And that 
was very appealing to me. I loved the 
creative aspect of mathematics. I was 
lucky enough to realize something 
about the creative aspect of 
mathematics when I was young 
Individually, the theorems I proved are 
almost trivial things, but I remember 
them very clearly. Curiously enough 
some of them keep showing up-I'm 
still watching shadows and cutting 
things in half! " 

Duringhissenioryearofhigh school, 2 
Banchoffs math project on three- 
dimensional graphs of complex valued 2 

S 
functions of a real variable won the 
regional science fair and earned him a $ 
trip to the National Science Fair in 3 
oklahoma. on his return trip, he h"~n ( /~o / /  1 5  / ) c ~ r f z ( ~ t / ~ r l j  fond of thncloror, 

rerouted himselfso he could make his especzul!y thote of foz~br-dimenszonal obects. 

first visit to the University of Notre 
Dame, where he hadjust been admitted. the time that he didn't really have 
He met the Dean of the k t  sand Letters enough background in advanced 
College who introduced him to the analysis to appreciate the very formal 
well-known research mathematician, generalizations and proofs. "It was in 
Professor Ky Fan. When he started that class that I began to appreciate 

. '  explaining his science project, Fan how it feels to be lost most of the time. 
interrupted him to say that he should I was also taking courses in literature 
spend his time learning mathematics, and philosophy at the time, and Dr. 
not trying to do original projects. Fan had formed the impression I was 

The next person he met was the not a serious mathematics student. I 

-./ mathematicsdepartmentchairman,Dr. was so intimidated by the lectures that 
Arnold Ross. "I hear you are interested I would study the notes from the 
in becoming a mathematician," said previous year before each class just in 
Ross. "I was until five minutes ago," case he would ask a question. One day 
responded Banchoff. "Oh? Tell me my fears were realized. He turned and 
about it," he said in his very fatherly said, 'Banchoff, what is a set of the 
way. He listened asBanchoff explained second category?' I started my answer, 
his project, and then said, "There is a "Well, a set of the.. ." and that was as far 
mistakeinthisexpressionforthefourth as he let me get. He shouted back, 
root of -1. Go up to the blackboard "'Well, you say 'Well'? This is not an 

English class, this is amathematicsclass. 
When I ask a mathematical question I 
want a mathematical answer, not 'well'." 
I then responded: "A set of the second 
category is a set that cannot be 
expressed as a countable union of 
nowhere dense sets." 'Why didn't you 
say that the first time? 'Well'!" It was 
pretty clear that the chemistry between 
us wasn't very good." 

He stayed in that course for the 
second semester and gradually began 
to catch on so that he was able to raise 
his grade to a B. After missing class one 
day, he managed to infuriate Dr. Fan by 
a question he asked him in the hallway 
after class. At the top of his lungs he 
delivered his estimation of Banchoff, 
loud enough for the whole department 
to hear: "Mr. Banchoff, you will never 
be a mathematician, never! never!" At 
that moment he seriously wondered if 
he was in the right field. 

After receiving his bachelor's degree 
in 1960, Banchoff began graduate 
studies at the University of California, 
Berkeley. Algebraic and combinatorial 
topology with topologist Edwin Spanier 
and differential geometry with visiting 
professor Marcel Berger introduced 
him to the areas that became his 
specialty. He became a research 
assistant to the differential geometer 
Shiing-Shen Chern who suggested a 
thesis project in total absolute 
curvature, the study of surfaces like a 
torus of revolution, that are "as convex 
as they can be." After making a great 
many drawings and models, he found 
an elementary way of interpreting that 
condition called the Two-Piece 
Property (TPP), and he found himself 
in the unusual position of being able to 
explain what his thesis topic was about, 
even to non-mathematicians. Using the 
TPP, he could consider polyhedra as 
well as smooth surfaces, and he came 
up with some models to show the 
difference between the smooth and 
the polyhedral cases. He was making 
some progress, but he still didn't have 
a big breakthrough. 

One day Professor Chern told 
Banchoff that he wanted to introduce 
him to Nicolaas Kuiper, a special visitor 
from Holland. 'You two think alike" he 
said. Kuiper showed him some of his 
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Two-Piece Property 

Certain items on a breakfast table have the property that they fall into at most two pieces when they are sliced is-ith a 
long straight knife, for example an orange, or a hard-boiled egg. Other objects, like a fork or a sufficiently cu17.ed banana 
will fall into three or more pieces when cut in a certain direction, so they do not have the two-piece property (TPP).  
convex object has the TPP, but there are also non-convex objects with this property, for example a doughnut 01- baeel:. 
or a half-cantaIoupe, or a stemless apple (but not a pear or a peach). The study of smooth surfaces that ha\-e the TPP 
involves "total absolute curvature," a notion from differential geometry, the subject that applies calcul~~s techniques to 

problems in the geometry of curves and surfaces in the plane, in three-space, and in higher-dimensional spaces. .\closed 
curve with the TPP must lie in a plane, whether it is smooth or polygonal. By a theorem of Nicolaas Iiuiper. a smooth 
surface with the TPP has to lie in a five-dimensional space, but, surprisingly, there are polyhedral surfaces with the TPP 
in six-space that do not lie in any five-dimensional subspace. More generally, in n-space there are TPP pol\-hedral surfaces 
not lying in any space of lower dimension, although for higher and higher dimensions, the surfaces milst become more 
and more complicated. This is the primary contribution of Thomas Banchoff s Ph.D. thesis. 

I 

Images courtesy of Tom Bancltoff: These images may bt viewed on Bnnchoff's MMdd I1'irl~ 1\26 P n g ~ .  1\1\71. nddr~rs: 
htt~://zu~zu.geom.um~z.edtc/-banchoff/ - 
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Hypercube 

M%at does a shadow of a four-dimensional cube look like? To draw a two-dimensional shadow of a three-dimensional 
cube, we start with a parallelogram that is the shadow of a face of the cube, then move the parallelogram along a third 
direction in the plane and connect the corresponding vertices. Similarly we can obtain a three-dimensional shadow o; 
a four-dimensional cube, or "hypercube," by moving a parallelepiped along a fourth direction in three-space and 
connecting the corresponding vertices. If we collect the shadows of an ordinary cube as it rotates, then we create an 
animated film that we learn to interpret as the images of a cube. In a similar way, if the hypercube rotates in four-space, 
then its shadows in three-space will produce an animation that we can interpret first as shadows of an object moving in 

recent papers on smooth surfaces with 
minimal total absolute curvature, and 
told him about his key result that says 
there are no smooth examples of this 
phenomenon in dimensions higher 
than five. He suggested that Banchoff 
might find the polyhedral analogues of 
these theorems, and so he went to work. 

Benefits of Doing Laundry 

A week later, while Kuiper was still 
visiting, he was folding his wash in the 
laundromat, and at the same time trying 
to come up with an argument to show 
why there were no TPP polyhedral 
surfaces in sixdimensional space, when 
all of asudden, he saw how to construct 
one! He made a paper model that could 
be folded together in six-space and 
showed it to Kuiper the next day. He 
was astonished. He said to Banchoff, 
"What you have here is a gold mine. I'll 
give you six months to write a thesis 
about it. Ifyou haven't done so, I'll give 
the problem to one of my students. It's 
too good a problem not to be done by 
somebody." He finished the thesis 
project in three months, and he also 
started studying Dutch. He knewwhere 
hewanted to do his postdoctoral work! 

After receiving his Ph.D. in 1964, he 
was a Benjamin Peirce Instructor at 

Harvard for two years. He then spent a 
year with Kuiper in Amsterdam, and 
continued to work with him as a 
colleague up until his death in 1994. 

Shortly after taking up his faculty 
position at Brown in 1967, Banchoff 
met Charles Strauss, an applied 
mathematician with special talents in 
computer graphics, which was then a 
brand new field. Strauss was looking 
for new problems for his interactive 
"three-dimensional blackboard," and 
it was clear that these new programs 
could not only show two-dimensional 
images of complicated three- 
dimensionalobjects, but also they could 
produce rotating shadows of objects 
from four-dimensional space. 
Together,  Banchoff and Strauss 
produced a series of computer- 
animated films, the most notable being 
"The Hypercube: Projections and 
Slices," first shown at the International 
Congress of Mathematicians in Helsinki 
in 1978. It is a grand tour of a basic four- 
dimensional object that has never been 
built and never can be built in our 
three-dimensional space. 

Almost a quarter century has passed 
since Banchoff began using computers 
to enhance his interaction with the 
fourth dimension. Tremendous 
advances with hardware and software 

Illustration by Tom BanchoJ 

have enabled Banchoff to help all of us 
see beyond the third dimension 

"Right up until the time I got my 
Ph.D., I had this recurring nightmare 
that my advisor Professor Chern would 
run into Dr. Fan and that my name 
would come up in their conversation. 
Then Professor Chern would come back 
and tell me, regretfully, that he had 
learned that I would never be a 
mathematician, never, never. As it 
happens, several years later I saw Dr. 
Fan at a mathematics meeting in New 
Orleans. I went over and introduced 
myself as one of his former students. 
He tried to place me. 'You were in my 
freshman course?" "No, you're thinking 
ofJim Livingston." 'Youwere interested 
in the four-color problem?" "No, that 
was Jim Wirth." "Ah, yes, 'Banchoff" 
He paused, then he said, "Mr. Banchoff, 
I am happy to see that you have 
developed into a mature 
mathematician." . 

AuailabIe Films 
"The Hypercube: Projections and Slicing, " 
InternationalFilm Bureau, 332 South Michigan 
Ave., Chicago, IL. 60604, (312) 427-4545 
"The Hypersphere: Foliation and Projections, 
and Fronts & Centers," The Great Media 
Company, PO Box 98, Nicasio, CA 94946 (415) 
662-2426 
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JOEL CHAN 

Prime Time! 
he ancient Greeks were among 
the first to look at prime 
numbers, but mathematicians 

learned most of the interesting stuff 
about primes during the 19th cen- 
tury. As we all know, prime num- 
bers are natural numbers which are 
not multiples of any smaller positive 
integer except 1. 

Here are the numbers 1 through 
100. Take the number 2 and circle 
it, then cross out all multiples of 2. 
Then circle the smallest uncrossed 
number and cross out all its multi- 
ples. Repeat the process. 

Is N prime? If it is, we've got a 
problem, since there are now more 
than n primes! So N must be com- 
posite. But if it is composite, then 
it can be factored into a product of 
primes. But AT divided by any of the 
primes pl, . . . , p, gives a remainder 
of 1. This means that N has to be 
factored by primes other than those 
12, primes. Contradiction. Fini. 

A mathie would be quick to state 
that I've assumed a famous state- 
ment, known as the Fundamental 
Theorem of Arithmetic: 

This is known as the Sieve of 
Eratosthenes, which was invented 
around the 3rd century BC. Of 
course, this raises a few questions. 
One can imagine that the distribu- 
tion of primes becomes smaller as 
we look at bigger numbers. So how 
many prime numbers are there? 

Theorem 1. Th,ere are an infinile 
number of primes. 

Pooft. Assume that there are n 
primes. Call them pl,p2, p3,. . . , pn. 
Now consider 

- 

JOEL CHAN is a contributing editor for 
.WIT 007 I News, the undermaduate 
mathematical newsletter of the~niver-  
sity of Toronto. 

Theorem 2. Eve9 positive integer 
pealer than 1 can be expressed as a 
product of primes in only one wa?. 

Poof: Take a course in number 
theory. 

One of the most intriguing prob- 
lems in mathematics is determining 
whether a large number is prime. 
So far, the algorithms that mathe- 
maticians have found are not very 
efficient (this is actually a good 
thing-see the article "Three Guys 
and a Large Number" in the Febru- 
ary 1995 :bIath Horizo,ns), but at least 
checking primes provides construc- 
tive work for supercomputers. 

The largest known prime is: 

It would take too many pages to 
type the number. It has 258,716 
digits! This number was discovered 
on January 4, 1994 using a CRAI' 
supercomputer. 

As for the distribution of primes, 
Carl Friedrich Gauss examined a ta- 
ble of primes in 1792-he was 15!- 
and conjectured (that's mathie- 
speak for "guessed") that the num- 
ber of primes less than or equal to 
x is asymptotically equal to 

where logt is the natural logarithm 
of t. Since the integral is approx- 
imately equal to x/logx as x gets 
very large, this led to the famous 
prime number theorem, which \+.as 
independently proven in 1896 b!- 
J. Hadamard and C.J. de la ITalleC 
Poussin. 

Theorem 3. Tlae number of primes 
not exceeding x is qlmptotictlli~ equal 
to x/ log 2. 

Poof. Take an advanced course in 
number theory. 

Surprisingly enough. Gauss' in- 
tegral is much more accurare than 
x/ logx in estimating the number of 
primes less than r .  Denoring -!r) 
as the actual number of primes less 
than or equal to s. 

4 poof is one of the follouving: 
A proof that sneaks up on you and hits you like an uncountable number ofbricks and then 
gets erased From the chalkboard before you absorb i t .  
The  main point o f  such a proof. 
4 highly improbable construction (especially nonconsrrucrive) k-hich gives rise to such a 
proof. (The rabbit that gets pulled out of the hat.) 
Something which some students supply !\.hen asked to give a proof. panicularl?- on tests. 
Saicl students d o  not necessarily continue in mathematics. 
Proof by intimidation: "You all see this, don't you::.:" 

Math Horizons February 1996 23 



~ ( 1 0 ~ "  = 221.2:3$.:341.0:3:3.927 Sot 0111) is Goldbach's Conjec- 
ture a prime candidate (excuse the 

lo1' dt pun!) as one of the nlost ~\,ell-kno~\.n 

1 G? z 279.2:33.:3:37.819.293 unsolved nlysteries ill mathematics, 
G. H. Hard! also described this 

1 0lC' -- - 2S7.012.6:30.878.:318. problem as one of the most difficult. 
lo: 101" The conjecture came about 111 a let- 

(If course. I\-h!- bother with estinia- ter fro111 Christian Goldbach (1690- 

tion: 1764) to Leonhard Euler in 1742, 
~vhen Goldbach speculated that this 

I.! was true. 
Theoren1 4. r (x) = - 1 + f ( j ) ,  The consensus seems to be that 

J=I  Goldbach's Conjecture is indeed 

Those weird brackets denote the 
greatest integer of that mess. 

Before I forget, here is a cute ob- 
serlpation that was proven by Euler 
in 1737. 

Theorem 5. x?, $ (liilerges to i t ~ f i n -  
it>. 

That is to say, the sunl of the re- 
cil~rocals of the prime nulnbers di- 
verges to~i~ards infulity. 

N 
ow that Andrew Wiles has 
spoiled all the fun and proven 
Fermat's Last Theorem, a 

~iicc. question to ask ourselves is: 
what is the most intriguing inath- 
elllatical nlystery that hasn't been 
solved? X simple criteria should 
be ~chether or not the nlathemati- 
cal problem can be understood by 
the general public, regardless of 
whether there are an)- applications - - - or results that come as a conse- 
quence. h/lathematicians (and com- 
puter scientists) might vote for the 
problem of whether or not P = 
NP,  a problem involving computa- 

- - /  J tional complexity, but it cannot be 
explained in layman's terms. There 
are certainly man) questions involv- 
ing prime numbers that have not 
been solved, so let's look at a felt. of 
those problems t\.hich baffle mathe- 
maticians today 

Goldbach's Conjecture. EIW? Pi!e)l 
i i i t c y ~ ~ .  g r ~ a t u '  t h m  2 can. be 7c~i t t~ t z  as 
the Si i t? l  0f (7110 f I ) . jn l~~ .  

true. The conjecture has been 
proven correct for all even inte- 
gers up to 20,000,000,000. There 
have also been man)- proofs \chic11 
have shown that. if the integer is 
sufficiently large, then it can be ex- 
pressed as a sun1 of two primes. 

Goldbach also conjectured that 
any odd integer greater than 7 can 
be expressed as the sum of three 
odd ~xinles. This is also an open 
problem, but it was sho~\.n in 1937 
that this conjecture is true for an!. 
integer bigger than 3313!  YOU inight 
sa!-, "OK, \cell, let's use a supercom- 
puter and check for all odd integers 
less than 3""," but this nunlber is 
over seven lnillion digits long! 
.b an exercise, show that Gold- 

bach's Conjecture is equivalent to 
the statement: Every integer greater 
than 5 can be expressed as the suln 
of three primes. 

Twin Primes Conjecture. The odd 
integers p and p+ 2 are twin prinles 
if both p and 11 + 2 are prime. There 
are i)tfi?zite/? nzutly t~oiiz primes. 

Like Goldbach's conjecture, nu- 
merical evidence suggests that the 
T~t-in Priines conjecture is true. But 
here is a reasonable argument that 
the conjecture is true. 

PooJ By the prime nunlber the- 
orem, the nulnber of prirnes that 
are less than n (when 77 is SUE- 
ciently large) is about n/  log 77, or the 
probability that a certain sufficiently 
large odd integer is prime is about 
I /  logn. So the probability that two 
consecutive sufficiently large odd in- 

tegers are priine is about 

1 -. 1 1 
%- 

log n l o g ( ~ ~  + 2) (log n)2 ' 

That is, given a sufficiently large 
odd integer n, there are about 

(log 72)" 

pairs of twin primes. Observe that 

so this strongly suggests that there 
are infinitely many pairs of twin 
primes. 

A siinilar unsolved problem is 
~chether or not there are infinitely 
many prime triplets of the form 
(p. p + 2,  p + 6). It is a trivial exer- 
cise to show that there are finitely 
nlany sets of primes of the form 
( P > P +  2 , p +  4). 

Mersenne Prhnes Conjecture. A 
X.Iersenne firime is a prime num- 
ber that can be written in the 
form 2" - 1. The largest known 
prime which was stated earlier is a 
Jlersenne prime. Tl~ere ore i~nfinitely 
m a ~ !  ,IIersenne prin~es. 

Even though only 33 Mersenne 
primes are known, Paulo kben-  
boil11 has conjectured that there 
are infinitely many! Like the twin 
prililes conjecture, Ribenboim uses 
a probabilistic argument to convince 
us that this is probably true. 

As an aside, if a Mersenne num- 
ber is prime, then the number 
2"-l(2" - 1) is perfect, in other 
\\~ords, it is exactly the sum of its 
proper divisors. 

Sierpinski's Postulate. For any pos- 
itive i ~ z t ~ g e r  n, there exists a prime num- 
ber between 7z2 and (12 + I ) ~ .  

This is based on Bertrand's 
Postulate-for any integer n there 
exists a prime nunlber between n 
and 27z-\vhich was proven true in 
the late 19th century. Another siin- 
ilar open-ended question is the fol- 
lowing: 
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Brocard's Conjecture. Between thg 
squares of two success%ve pmmes greater 
than 2 there are at least four prima, i.e., 
.(Pi+l) - . i r (Pi )  L 4 f o r  n L 2. 

There is another question that re- 
mains unsolved: Is there a simple (r~on- 
constant) formula th,at generates eveq 
prime, or only pm'mes? So far, no "sim- 
ple" formula is known. For instance, 
it can be easily shown that there is 
no nonconstant polynomial f with 
integer coefficients such that f (n) is 
prime for every positive integer n. 

inally, we look at useless 
primes. We take them from 
Paulo Ribenboim's book The 

Little Book of Big Primes, which I 
highly recommend. 

First we note that 11 is prime and 
all of its digits are 1s. The next such 
prime is 

101°31 - 1 . 
9 

IS the largest known 
prime with all its' digits equal to 1. 

is the largest known palindromic 
prime. (The underlined stuff indi- 
cates 4997 zeroes!) 

And finally the champion of use- 
less primes: 

is the largest known prime whose 
digits are all prime! 
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A Bunch of Nonsense1 
Deanna B. Haunsperger 
Stephen F. Kennedy 

The game of creating specialized col- 
lective names for groups of like indi- 
viduals has enriched our language with 
such linguistic gems as a parlianrent of 
O ~ V / S  and a nrrcrdm- of cro7os. In  .4 Gag- 
gle of Geeks [.C.lnth Holi;ons, September, 
19951 the authors asked Ailnth Ho~iwns '  
readers to join us in playing the math- 
ematical version of this game. We were 
delighted with the response and present 
here a constellation of highlrghts. 

;\Ian? people poet~cally particular- 
ized mathematical specialities: a residrre 
of conrplm analjlsts [Karl David], a clrqrre 
ofgraph thconsts [Roger Kirchner], a brin- 
dle of' algebraic topologists Uon Bamise], 
an rl~rcrrtaint~~ of physicists [Zine Smith]. 
.Andy Tubesing proposed a polygon of 
geometels for an indeterminate number 
of them and suggests the appropriate 
specific polygon be used x\.hetl we know 
holv manv there are, i.e., five geometers 
are a pe?ijagon of geometers. ~ & k  Iiruse- 
meper took Andy's idea to its natural 
limit with his a ri,rclc of  geo)netell~. 
.in alluring allotment of alliterative 

amalgams also alighted in our mail- 
box: a tangle of topologisls [ ,~~onyrnous] ,  a 
fioblem set of pocket-protected people [.Uisa 
Walz-Flmnnigan], and a s?c?~~ey of statisti- 
cians [Shasta Willson]. . h d ,  of course, 
piles of people proposed passels of 
puns: a fignient of .\it,t0~1 and a bit on the 
Heaviside [Sandy Keith], a i k r - p  esidmcy 
of algorithms [Kathryn Jones], and a fol- 
l o ~ ~ i n g  of comllnries, our favorite entry, 
which earns Keith Durham a year's sub- 
scription to J/lath Horizons. 

Readers suggested the following for 
a group of mathematicians: n pa,tt~rn of 
inathenraticians [ I < a t h ~ n  Jones], a tmltol- 
ogy of mathematicians [Kathy Treash], a 
mess of mathematicians Uon Banvise], and 
a pit of adders [Sandy Keith]. Matthew 
Shaffer, a junior math major at Cal 
State Hayward, must have been hav- 
ing a tough semester: he proposed mi 
obsc?l~ity of mathematicians and an absrrr- 
dity of ~nathmnra~ticions. Finally, we were 
charmed by the elegant pithiness of 
David Jones's s.um nerds. 

We u-ould like to thank all those who 
joined us in this game. ,4U the entries 
are accessible on the World-Wide Web 
[http://w~vw.mathcs.carleton.edu/facuIty 
iskennedylvenery]. Please continue to 
send us your mathematical terms of ven- 
ery; we will post them on the Web. In 
particular, our search for the perfect 
term of collection for a set of mathemati- 
cians contulues. 

 he authors are indebted to Zalman Usiskin 
whose reaction to our original article pro- 
vided us with a title for this follo~\,-tip. 

Summer Program 
for Women 

Undergraduates 

Carleton and St. Olaf Colleges 
will, if funded by the NSF, con- 
tinue their successful, intensive, 
four-week summer program to en- 
courage talented undergraduate 
women to pursue advanced de- 
grees in the mathematical sci- 
ences. 

Students will take two challenging 
courses in exciting areas of mathe- 
matics not normally offered in the 
undergraduate curriculum with fe- 
male instructors who are both ac- 
tive professionals and outstanding 
teachers. The students will receive 
instruction in mathematical com- 
putation and electronic communi- 
cation, participate in recreational 
problem solving, visit the Geome- 
try Center, learn about graduate 
school and careers in mathemat- 
ics, and attend twice-weekly collc- 
quia. 

Participants in the 1995 program 
reported: 

Tltis experience has rezticed m y  
mathematical soul and charg- 

ed m e  up. 
The program has gicen m e  the 

confidence tliat I can succeed 
in ma th ,  both ns a student 
and as a woman. 

I feel like a f u t u re  in math s a z  
opened for me tlirough thc 
program. 

For information or application ma- 
terials, ernail Deanna llaun-sperger 
at dhaunspe Gcarleron.edu. --rite to: 

Sumlner Slath Program 
SIath Depanmenr 
Carleton College 
Sortlfield. S ly  55057 

or visit the program's home page: 
hrtp://u-nn.srolaf.edu/scolal/depts/ 

mat h/SurnrnerProgarn.htnil. 
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DAVID L. WHEELER 

The Statistics of Shape 
A mathematician uses morphometrics to analyze the brains of schizophrenics 

I n the scientific world, mathematics 
often goes unnoticed until it is 
applied to a famous problem. So it . . 

was with Fred L. Bookstein's brand of 
L 

math, known as morphometrics. 
Using a "statistics of shape," he has ,$ 

studied bee wings, mole skulls, and the .$ 

effects of jaw surgery on the human 
face. But his method, a mathematically 
rigorous analysis of biological forms, 
did not find a broad audience until he 
applied it to the human brain. 

Mr. Bookstein, a mathematician at 
the University of Michigan, began his 
brain research after a psychiatrist 
suggested that he use morphometrics 
to find out what was different about 
schizophrenic brains. Beginning in $ 
1994, Mr. Bookstein examined the 
cross-sectional images of schizophrenic 
brains produced by brain scans in a Fred Bookstein 
search for clues to causes of the disease. 
A morphometric analysis, aided by His brain research, done in 
powerful computer graphics, revealed collaboration with John DeQuardo, an 
that the region of schizophrenics' assistant professor of psychiatry, and 
brains that connects the two William D. K Green, amathematician, 
hemispheres is narrower than in both also at Michigan, has lured other 
"normal" brains. neuroscientists to his method. 

- . -  Other researchers are checking the Brain research, says Michael F. 
finding and are tryingtounderstand its Huerta, associate director of the 
meaning. But Mr. Bookstein believes division of neuroscience and behavioral 
the discovery is a milestone for science at the National Institute of 
morphometrics. Mental Health, needs "sophisticated 

- 
-~-/ P. 

'The schizophrenia example is the ways of approaching data, because we 
single most compelling argument I can are drowning in it." 
imagine for the relevance of this kind 
of methodology," he says. "If we are Variation in Size and Shape 
right, we have made a discovery that 
could not have been made without Mr. Huerta says scientists are trying 
having this method." to find out how much of the enormous 

variation in the sizes and shapes of 
DAVID WHEELER is an assistant editor for human brains and their components is 
the Chronicle of Higher Education. normal and how much is related to 

disease. "The tools Fred is developing 
will letusanswer that kind ofquestion." 

Other neuroscientists are beginning 
to use morphometrics to analyze the 
brains of those who are paralyzed, who 
have Alzheimer's disease, or who were 
born with fetal-alcohol syndrome. 
Scientists in other fields, looking for 
mathematical help in analyzing 
biological shapes, may join the 
neuroscientists. 

"All my previous work has 
culminated in data sets that, while 
charming and scientifically interesting, 
were of absolutely no  political 
importance," says Mr. Bookstein, who 
is quick with words as well as with 
computer keyboards. 

He is proud of a book that he and 
several colleagues wrote about 
morphometrics and the evolution of 
fish that was published in 1985. 

"It was brilliant," says Mr. Bookstein. 
"But itwas about fish, and not from the 
fisherman's point of view, either." 

Now he has come upon schizo- 
phrenic brains and the Human Brain 
Project, the federally coordinated effort 
to develop tools for understanding the 
human brain. The project supports his 
research and has helped put 
morphometrics software into the hands 
of neuroscientists. 

In previous work examining 
schizophrenics' brains, psychiatrists 
and neurologists have studied the 
volume of various portions and found 
them different from those of control 
brains. For instance, the fluid-filled 
ventricles in the brain are often larger 
in schizophrenics, and their brains are 
often smaller. But the differences, says 
Mr. Bookstein, were too small to lead to 
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theories of causation and not useful 
enough to classify psychiatric patients. 

The difference that he and his 
colleagues found, however, was three 
times more statistically significant than 
any found before. "If it's true, it's 
changed the discussion by an order of 
magnitude," he says. 

Mr. Bookstein came to morpho- 
metrics after some sharp twists and 
turns in his early career. He grew up in 
Detroit and was a child 

powersseemed to return-but this time 
theywerein geometry instead ofalgebra 
or calculus. He went back to Michigan 
as a graduate student, feeling that now 
he had a chance to create a new kind of 
statistics, one that would make it 
possible to compare biological forms 
scientifically. 

He took his first stab at creating 
morphometrics and received a Ph.D. 
in statistics and zoology. He had never 

The British scientist, Francis Galton, 
who invented weather maps and 
explored patterns in fingerprints in 
the late 19th century, apparently did 
not know about Durer's work, but 
continued to develop the foundation 
for morphometrics. Galton, who was 
part of the burgeoning eugenics 
movement, attempted to use a science 
of shape to describe the distinctive faces 
of criminals and to determine a "Jewish 

type." Galton, says Mr. 
prodigy in mathematics, 
winning a state high-school 
competition at the age of 14. 
He came to the University of 
Michigan as a freshman when 
he was 15. Although he grad- 
uated in three years, with a 
major in mathematical 
physics, the work became 
more and more difficult for 
him as time went on. "As is 
often the casewith child prod- 
igies," he says, "I lost it." 

He started graduate work 
in mathematics at Harvard 
University at the age of 19 
but dropped out after four 
weeks. "If the problem didn't 

have an answer in the back of Theprotomwphomtrician, aged 19, earnestly studjrng the ~ t a l  
thebook,"hesaYs, ''Icouldn't fmn, The object of concern is most like4 a rock or a waterfall. 
solve it." 

Failure to Progress in Sociology 

He transferred into graduate work 
in sociology, became a tutor in political 
philosophy, and taught a course on the 
concept of freedom. He earned a 
master's degree in sociology but was 
eventually discharged from the  
department for "failure to progress." 

"Whatever I was doing, I wasn't 
turning into a sociologist," he says. 

Embarrassed by his status as an 
outcast from sociology, Mr. Bookstein 
took a job as a computer programmer 
at the Harvard School ofpublic Health. 
In 1972, someone asked his department 
to describe the effects of orthodontic 
treatments, such as braces, on the 
shapes of children's skulls. 

Inspired by the problem, Mr. 
Bookstein began his quest to devise a 
statistics of shape. His mathematical 

taken a course in either field and 
remains self-taught in the mathematics 
he uses. "For a person pursuing an 
elementary problem that has been 
overlooked," he says, "it turned out to 
be exactly the right background." 

It Began with Diirer 

The story of morphometrics, Mr. 
Bookstein says, does not begin with 
him, orwith the small cadre of scientists 
who developed it in the late 1970s and 
early '80s. Morphometrics, he says, 
began with the Renaissance painter 
and engraver Albrecht Diirer. In a book 
published in 1528, Diirer put grids on 
faces and then distorted the grids and 
the lines drawn within them. He used 
this method to explore what happened 
to faces as the proportions of various 
features changed-where an ear  
belongs on a long face, for instance. 

~ookstein,  was on the right 
trackwith his math, even if 
his attempts to apply itwere 
rvrong. Galton used key 
points, such as the tip of 
the chin or the nose, as 
landmarks for numerical 
coordinates to describe the 
face. 

In the early part of this 
century, other scientists 
laid down the foundation 
of modern statistical 
methods. They learned 
how to relate many 
measurements of a 
population, for example, 
and how to examine 

lstic,y ofnatural differences amonggroups. 
"By 1950, everything the 
modern applied stat- 
istician uses for the core of 

inferential statistics was in place," says 
Mr. Bookstein. 

Butitwasn'tuntil about 10 years ago 
that statisticswas successfullyfused with 
geometry into morphometrics. Mr. 
Bookstein says that he and other 
mathematically oriented scientists 
created the synthesis that made a 
powerful numerical analysis of shape 
possible. 

Filled with False Starts 

The history of morphometrics, he 
says, is filled with false starts. He 
confesses to having taken a wrong turn 
himself in his doctoral dissertation, 
which he later retracted. "I ilnderstood 
the problem," he says, "but I had the 
wrong solution entirely.'' 

Modern morphometrics, he says, has 
thequalities that statisticianslike. When 
used correctly, it takes advantage of the 

Math Horizons February 1996 27 



information available in a shape and 
gives meaningful averages of groups of 
shapes. 

The use of morphometrics has made 
it possible, for example, to come up 
with a picture ofan average brain, which 
is helpful to neuroscientists. They 
previously had difficulty summing up 
the wide variation in brain shapes and 
sizes. 

The software for morphometrics that 
l l r .  Bookstein and his collaborators 
have developed, called "Edgewarp," 
generates a grid on the figure being 
analyzed. Distortions in the grid lines, 
which look like a spider's web being 
pulled out of shape, point the way to 

variationsfrom the norm. The software 
is available free on the Internet. (It is 
available by anonymous FTP from 
brainmap.med.umich.edu in the 
directory pub/edgewarp.) 

Mr. Bookstein and his collaborators 
are extending the program so that it 
can analyze three-dimensional data, 
something that will be necessary for a 
more powerful analysis of brains. 

Both Mr. Bookstein and Dr. 
DeQuardo, the psychiatrist, would like 
to apply morphometrics to the brain 
scans of those who are at risk of 
schizophrenia but do not yet have the 
disease, which frequently strikes in late 
adolescence. Families with a history of 

schizophrenia often ask if physicians 
can check the brains of their children 
to see if they will get it, too. 

Some evidence indicates that early 
treatment greatly alleviates the  
symptoms of the disease, and Dr. 
DeQuardo wonders if antipsychotic 
drugs administered before itssymptoms 
even appear might head it  off 
altogether. 

Right now, says Dr. DeQuardo, he 
has nothing to offer those who don't 
yet have schizophrenia but fear getting 
it. Someday, he hopes, he will have 
something that can help. W 

Copyght O 1995 772e Chrazde of Higher 
EcZucation. Reprinted with pennzssia. 

orphometrics combines geo- 
metry and statistics in tools for 
the scientific description of 

biological or medical shape variation 
and shape change. Its tactics differ over 
the different kinds of information from 
pictures of organisms o r  organs 
locations of named points, locations of 
boundaries (such as curving outlines), 
or quantitative pictorial content, such 
as darkness or color, over much of the 
whole picture. (If the "picture" is a 
CAT scan or similar three-dimensional 
medical image, the "boundaries"'might 
be whole two-dimensional surfaces 
instead of curves.) Our techniques are 
best developed for the first type ofdata, 
locations of named points, and that will 
be my main topic here. 

Where do shape data come from? 

Figure 1 is typical of the way shape 
data arise from pictures. This particular 
image is a "slice through the headv-a 
magnetic resonance image just off the 

Morphometrics 
FRED BOOKSTEIN 

midline of a normal brain. The ten 
labelled landmnrkpointsrepresentsome 
reliable anatomical structures that 
intersect this plane. My exemplarydata 
set includes this image and 27 others 
like it. 

In ordinary language, the shapeof an 
object is described by measurements 
that do not vary when the object is 
moved, rotated, enlarged, or reduced. 
The translations, rotations, and changes 
of scale we are ignoring constitute the 
simila,itj p u p  of transformations of 
the plane. \{%en the "objects" are point 
sets like that in Figure 1, it turns out to 
be useful to say that their shape simply 
is the set of all point sets that "have the 
same shape." This kind of definition 
may already be familiar to you-we just 
defined the shape of a set of points as 
the equivalence class of that point set, 
within the collection of all point sets of 
the same cardinality, under  the  
operation of the similarity group. 

We need a distance measure for 
shapes defined this way. If we were 

talking just about sets of labelled 
points, a reasonable formula for 
squared distance would be the usual 
Pythagorean sum of (squared) 
distances between corresponding 
points over the list. Since shapes are 
equivalence classes of these point sets, 
it is reasonable to define shape distance 
as the minimum of these sums of 
squares over the equivalence classes- 
over the operation of the group of 
similarities that shape is supposed to 
ignore. The squared shape distance 
between one point set A and another 
point set B might then be taken as the 
minimum summed squared Euclidean 
distances between the points of A and 
the corresponding points in point sets 
C as C ranges over the whole set of 
shapes equivalent to B. For this 
definition to make sense, we have to fix 
the scale of A. The mathematics of all 
this is most elegant if the sum of squares 
of the points of A around their center- 
of-gravity is constrained to be exactly 1. 
(Asmall adjustment of the definition is 
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Figure I .  Lnnrlmnrlr dotn orr(i,~rrrilj n~-iseJ,ovr the i ( l r ~ ~ t i ' c ~ ~ t i o ~ z  of/)r~rlic~rln~- nnmrd points in 
routine biomedical images. Here we identif?' ten landmarks in a parasagittal ~nag.netic resonance 
image ofa  ncwmnl brain. Bottom to top: bottom ofcerebellum, bottom ofpons at medulla, tentmiurn 
at durn, obex offouith ventricle, top ofpons, optic chiasm, top ofcerebellu.m, supen'or colliculus, 
splenium ofcorprcs callosum, genu of cmpus callosum. The landmarks i n  this data set zuere located 
by Dr. John DeQua,rdo ofthe University ofiMichigan Dqai-tment of Psychiatiy. 

required to make it symmetric in A and 
B.) 

The series of steps that is involved in 
this computation can be followed down 
the rows of Figure 2. The top row shows 
two quadrilaterals of four landmarks 
(the dots and the X's) that might have 
come from a data source like Figure 1 .  
We connect each landmark to the 
centroid of its own form and rescale so 
that the sum of squares of the distances 
shown are exactly 1 in each form 
(second row). We then simply pick up 
one of the forms (here, the one to the 
left, with the X's) and put it down with 
its centroid directly over the centroid 
of the other form, the one made out of 
dots. This gives us the distances between 
corresponding points shown at the left 
in the third row. The final step in 
computing Procrustes distance consists 
in computing the  rotation that 
minimizes the sum of squares of those 
residual distances. This can be 
computed analytically using complex 
algebra, or one can simply experiment 
with a few tentative reorientations, like 

the one third row right, and minimize 
the sum of squares numerically. 
Eventually one arrives at the rotation 
that minimizes this residual sum-of- 
squares, the one shown at the left in the 
bottom row. The Procrustes distance 
between the forms, which is the sum of 
squares of those residuals a t  its 
minimum, can be seen graphically as 
the total area of the circles shown at the 
lower right, divided by pi. 

How does one average a set of 
shapes? 

To average ordinary numbers, you 
add them up, then divide by their count. 
Because we can't add up shapes or 
divide, instead we use a different 
characterization of the ordinaryaverage 
of a list of numbers: it is also the "least- 
squares fit" to those numbers, the 
quantity about which they have the 
least sum of squared distances. Since 
we already have a distance between 
shapes, we inherit a notion of average 
in this way as soon as we have an 

algorithm for minimizing that sum of 
squares. That turns out not to be too 
difficult. The average of the 28 shapes 
like that of the red dots in Figure 1 is 
shown at the left in Figure 3. 

After we've computed the average, 
we can put each individual shape down 
over the average using the similarity 
transformation that made the sum-of- 
squares from the average a minimum 
for that particular case. There results 
the picture in the center of Figure 3. 
These points, the Procrustes shape 
coordinates of our sample, describe the 
variation of the whole set of shapes 
around the  average in terms of 
variations "at" the component points 
separately. (The description is not 
complete until we have linked up the 
changes across the different points of 
the same case, using techniques I will 
no t  review here . )  T h e  shape 
coordinates help us to carry out many 
familiar operat ions of ordinary 
scientific statistics. At the right in Figure 
3, for example, is the computation of 
two averages for subsets of this one data 
set. Now it is fair to tell you that the 28 
cases here consisted of points from 
brains of 14 normal people and 14 
patients with schizophrenia. The 
averages in Figure 3c are for these two 
subgroups. 

How can we read the ways in 
which two shapes differ? 

To render shape differences legible, 
we turn to an ideaas old as the invention 
of artistic perspective in the 
Renaissance. We can show the 
displacements of points in Figure 3c as 
one coherent graphical display by 
imagining one of the averages, say. the 
normals (the dots), to have been put 
down on ordinary square graph paper. 
Call it the startingshape. lye deform the 
paper so that the dots now fall directly 
over the otherset of points. the uiangles 
constituting the target shape. Figure 4 
shows what happens to the grid. 

Naturally i t  matters {chat 
deformation one uses. \lorpho- 
metricians prefer one particular choice, 
the thin-plate spline, that minimizes yet 
another sum-of-squares. In thiscontext, 
we are minimizing the summed squared 
second derivati\-es (integrated over the 
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Flgure 3. What Promstes shape coordinates are for. (left) The Promstes average o f 2 8  shapes like that ofthe set often landmark points i n  Figure 1. 
i r ~ n t p ~ )  Promstes shape coordinates comefromJittingevey individual case back overthe sample average (left) the procedure oJFqpre 2. (right) One 
ran carq out ordina~y statistical manipulations of these coordinates. Here zue show the average shapes ofthe two subpoups making u p  our original 
sample. Triangles, schizophrenics; dols, nmmals. 

between the schizophrenic and 
normal groups. As the figure 
indicates, the difference is 
highly localized to the relation 
between the landmarks at  
upper center in Figure 1, the 
segment from colliculus to 
splenium. 

What about the rest of the 
picture? 

Here's another old idea 
(Francis Galton, the inventor 
of weather maps and the 
regression coefficient, was 
already doing something like 
this in the 1880's). We can . . unwarp" each case of each 
group to its own group average 
image byrunning the thin-plate 
spline "in reversem-warping 

1 
whole plane) of the map in the 
figure-something like the 
summed squared deliations of 
the shapes of the little squares 
from the shapes of their 
neighbors, and thus a measure 
of local information in the 
mapping. That  minimum 
actually turns out  to be a 
quadratic form in the 
coordinates of the points of the 
target shape, with coefficients 
that depend on the starting 
shape. This quadratic form, the 
bend ing  energy, joins the one 
we're already exploited 
(Procrustes distance) and the 
one that the statistician will 
automatically contribute (the 
covariance matrix). Morph- 
ometrics seems unusual among 
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branches of modern applied Figure 2. Steps i n  computing the Pmms tes  shape distance the average onto the landmarks 
statistics in the centrality of this between a p a i r o f f m .  (topr07u) Thedata: tzuoquadrilnterak of each case and then copying 
set of three quadratic forms of landmarks. (second row) Each fonn is scaled separately to back the picture contents from 
rather than the usual two. unit sum of squares around its orcm centroid. (third row) 

Any scientistworth her salary The centroids are superposed and one fmrn rotated with the case onto a fixed grid of 

would check the "finding" in respect to the other. (bottom row) Proortstes distance is the little pixel the 

Figure 4 to see if it is "statistically minimum sum ofsquared distances betrueen corresponding average landmarks. Once 
points ovmtheserotations; it ispropo~-iionalto thesum ofthe unwarped, images can be 

significant'-if it is larger than areas o,-the circb drawn ,zm averaged the old-fashioned way- 
would plausibly arise by chance -add them up, pixel by pixel 
fromgroups thatvarywithin themselves significant. Weare thereby encouraged and group by group, then divide. We 
as in Figure 3b. The grid in the figure is, to argue that those ten-landmark sets arrive at the pair of averaged images in 
indeed,  comfortably statistically do systematically differ in shape FigUR (where thenormalsareon the 

0 

0 
0 0 

z .  

1 5 ;  I g .  

1 O 1  

I !  

I I. I 
,.:.a 

;;t:.:. ': I : -. r7 
21 ' :ac:. 

:.p . . .. 
- 1  4 I 

:! y 39 .*. 
I $; 

N ' 
i O ;  *: .... 

: a -  , * , ' -  
" J  
9 -* 

0.6 -0.4 -0.2 0.0 0.2 0.4 -0.6 .0.4 -0.2 0.0 0 2 0.4 -0.6 .0.4 -0.2 0.0 02 0.4 

Promstes average, sample o f 2 8  Procnlstes shape coordinates Means, nmmal nd sclzizophrenic groups 



left, the schizophrenics on the canonical set of \ 
the r ight) .  Near the maneuvers I have just 
landmarks, these images are shown you but also many of 
gratifvingly clear, so the its open questions are still 
registration is working well quite elementary. (For 
for lining up information instance: can an algorithm 
about curves, notjust about be trained to find the 
the landmarks we used. At difference in splenium 
the same time, the cortex shape I pointed out across 
and the facial bones are the panels of Figure 5?) To 
badly blurred, mainly learn more, you might 
because they are well enjoy browsing my 
outside the hull of this monograph Morphometric 
landmark set. (Locating Tools for landmark Data 
cortical points usually (Cambridge University 
requires more data than is Figure 4. The thiniblate spline is a n  interpolation function betrueen pairs of Press, 199 1 ) . If you have 
containedin any single two- pointssels that minimizes thevariation ofitsaffineda'vative. Thegrid here, access to a u n i x  
dimensional picture.) the spline from the dots to the triangles i n  Figure 3 (?ight), kads  the q e  workstation, my colleague 

Now an additional group immediately to the strongly local nature of the shape di@erence shown there. William D. K. Green 
difference has become distributes free software for 
clear: the shape of the splenium, which All the techniques I have just experimenting with the thin-plate 
is the blobby structure at the right end reviewed for you are elementary, and spline and producing average shapes 
of the thick white arch at center. The yet all are remarkably new by the and averaged unwarped pictures like 
scientist (in this case, a psychiatrist) standardsof our profession. The logical these. Point your Internet browser to 
can go back to the original images and flow through which I just led you was the file README.EDGEWARP at ftp:/ 
measure more carefully in this region, not familiar even to specialists until /brainmap.med.umich.edu/pub/ 
and thus even more sharply localize 1990 or so. As an efflorescence of new edgewarp and follow the FTP 
the characterization of this particular tools, morphome trics is thus of instructions there. I 
image plane for this particular sample remarkably sudden onset. It remains a 
of schizophrenics and normals. new discipline, then, so that not only 

I"ip1re 5. 14,Zrrn thr or ig in~l  imag-rs are nr~progrd nprr being nnrua,prrl bntk lo 11r~ir or~ln Lgrot~/) mrcr~r lcrndmnrk r / t n / ~ ~ , .  /!I tr r8vrcioti of tlrr srr~t~r t l~ in-  
plate spline, there emgefurthersystematicg7oup d i fmnces  i n  nezcroanatom~. Left, average of 14 normals; rii~Ilt. of 14 srhizoj~lrrenirs. The shr~pes of 
the dots are the same as those i n  Figure 3 (right). 
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Problem Section 
Murray Klamkin 
C - / l i z ! e ) ~ i ~  of Abberta 

I This section features problems for students at the under- 
graduate and (challenging) high school levels. As new 
editor, the problems will of course reflect my tastes as ! t\.ell as the submissions of its readers. My preferences are 
for problems that are not highly technical so they can be 
easily understood by the general reader. There should 
be a certain elegance about the problems; the best prob- 
lems are elegant in statement ("short and sweet"), ele- 
gant in result, and elegant in solution. Such problems 
are not easy to come by. Nevertheless, any problem sub- 
mitted should include a solution and be elegant in at 
least one of the three categories. Original problems are 
preferred but this does not rule out elegant problems 
which are not well known (these will be indicated by a 
dagger (t)). For the latter, any known information about 
them should be included. Also to be includecl are 

"hlathematical Quickies." These are problems which can 
be solred laboriously but ~\.ith proper insight and knowl- 
edge can be solved easily. These problems will not be 
identified as such except for their solutions appearing 
at the end of the section (so no solutions should be sub- 
mitted for these problems). 

=U1 problems and/or solutions should be submitted 
in duplicate in easily legible form (preferably printed) on 
separate sheets containing the contributor's name, mail- 
ing address, school affiliation, and academic status (i.e., 
high school student, undergraduate, teacher, etc.) and 
sent to the editor, 3lath. Dept., University of Alberta, 
Edmonton. Alberta T6G 2G1, Canacla. If an acknowl- 
edgement is desired an e-mail address or a stamped 
self-addressed postcard should be included (no stamp 
necessar! for outside Canacla and the US). 

Proposals 
To be considered for publication, solutions to the folio\\-ing problems should be received by June 15, 1996. 

Problem 41. Proposed by J. 0. Chilaka, Long Island 
% University. 

Consider the locus of a point P on a segment of 
length E whose endpoints lie on the nonnegative parts 
of the x and y axes of a rectangular coordinate system as 
the angle the segment makes with the x-axis varies from 
0 to 7r/2. Determine (i) the maximum area bounded by 

- -- the locus and the x, y axes; (ii) the minimum length of 
the locus. 

Problem 43. Proposed by E. hll. Kaye, \'ancouver, B.C. 
Solve the differential equation [x~" 9 D 2  + 9]y = 0 

if it is gilren that F(.r), G(x), and H ( z )  are three linearly 
independent solutions of [XD" DD" + 11 y = 0 ( D  = dldx). 

Problem 44. Proposed by Paul Wagner, Chicago, Illi- 
nois. 

Determine P(7ztl) if P(:c) is a polyno~~lial of degree 
IZ such that P ( k )  = 3"or k = 0.1. . . . , n-1 and P(n,) = 1. 

Problem 45. Proposed by K. M. Seymour, Toronto, 
Problem 42. Proposed by the Problem editor. Ontario. 

Given any continuous curve joining the points Determine the extreme values of 
Pl(O,O) and P2(h, k) in a rectangular coordinate sys- 
tem where h and k are integers which are not rela- 1 

tivelj- prime. Prove that there exist ttvo distinct points x I + i l  + 3 - 1 ~ 2 + . . . + ~ l z ~ " . . . x ~ - ~  

P(.rl. yl), Q(x2,ys)  on the curve (other than the end- where xlxZ-..x,, = 1, .ri > 0, and the sun1 is cyclic over 
points) such that both xz - x1 and y2 - y~ are integers. the indices 1 , 2 . .  . . ,IZ. 
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Solutions 
Problem 31: An Inequality 

Prove that 

6 + Ja2 + . . . + L Jal  + 302 + ...  + (212 - l )a l ,  

where a1 2 a2 2 - - - 2 a,, > 0. 

Equivalent solutions by Christopher Ackler (zt?zcltrgradz~ate) 
Fitchbztrg Stale College, R. J. Covill, Atkinson, il'H, and R. 
T. Sharp, McGill University. 

{ c & ) ~ = c ~ ~ + ~ c ~ > c ~ ~ + ~ c o ~  
= z ( ( 2 j  - l ) a j } .  

Also solved (mostly) inductively by James Camacho, 
Jr., John Christopher, J. M. Coker, (2. H. Darwish, 
David Doster, Fresno Problem Solving Group, Geoff 
Goodson, L. C. Helenius, D. K. Johnson, Andrew Miller, 
C. A. Minh (undergraduate), J. S. Rombough (under- 
graduate), and E. T. H. Wang. 

Edito~ial  note. By letting a.,-k = r,, + r,- I + . - + z,,-k, 
k = 0 ,1 , .  . . , n - 1, the given inequality becomes 

2 d'xl + 4x2 + 923 + - - - + n2r1,. 

which is an inequality due to D. J. Newman which he 
establishes by an imlnediate application of illinkowski's 
inequality. More generally, one call show in a similar 
fashion that 

f i+ &+.. .+ 6 2  v b l a l  + b ~ n z + - - - +  b,n, 

where r > 1 and bk = kr - ( k  - 1)'. 

Problem 32t. Derivative Evaluation 

Evaluate {a, [D + ~z/.r]"' - am [D + m / r ] "  )eax where D = 

dl&.  

Solution by Fresno Problem So l~ l i~?g  Group, California State 
Universitj]. It follows that 

[ D  + k/rc][D + r l x ]  = [ D  + ( r  + l ) / . r ] [D  + ( I ;  - l ) / .r] .  

Using this identity successivel!-, h.e find that 
[D + ~ z / z ] " D ~  = [ D  + rnlrc]" D"'. Then 

Hence the given expression is zero. Also the Group sub- 
mitted a second long expansion solution. 

Editorial comment. For proving operator identities, the 
exponential shift theorem is often very useful, i.e., 

e J p d x p ( ~ )  = F ( D  - p)eJpd'. SO that 

- - krnl-l' [D + ni/.r]" D"' 

since an'D1" and xnD'kommute .  The latter follows 
since rrD' expands into a sum of POI\-ers of a D  with 
constant coefficients. 

Problem 33. Extremal Cones 

A cone with a plane base is inscribed in a sphere of 
radius R.  Determine (i) the lllaxirnum volume of the 
cone (no calculus please), (ii) the maximuln lateral area 
of the cone. 

Solrctio,z of ( i )  bj D. K. john so)^, Valley Cutholic High School. 
It is clear that for a maximum volume, the cone will 
have to be a regular one. Letting its height be R + a, 
its base radius squared r' = R' - r? Hence 61'/7; = 
(2R-2r ) (R+x) (R+z ) .  Since the sum of the latter three 
factors is 411, it follo14-s by the A.M.-G.M. inequality that 
the rnaxilnum of the latter product equals (4R/3)%nd 
is taken on when 2R  - 2 s  = R + x or x = R / 3  and then 
max 1 ' = ~ ( 4 ~ / 3 ) ~ / 6 .  

Solution of (ii) b~ the proposer. It is intuitive that the cone 
must be a right circular one. To prove this, let the equa- 
tion of the sphere be 7% +2 + 2' = R~ and let the base 
be parallel to the ay  plane with its center at (0.0. -p ) .  If 
the vertex be at (q, 0,  h) with 8 + h2 = R', then the slant 
height C from the vertex to the point ( n  cos 8. cc sin 8. - p )  
on the base (here a2 = a2 - p') is given b~ i" = 

( q  - a cos 19)~ + a2 sin2 0 + (11 + 2)' = 2 ~ '  + 211,) - 2qa cos 0. 
The lateral area is now given b) 

or 

Then by the power mean inequalit). 
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I \\-it11 equality if q = 0 or  h = R. I t  n o ~ ~  remains to maxi- Editorial commant. More generally it can be shown that 
mize ( R " ~ ' ) ( ~ R " + R ~ )  and as in (i), this occurs when if n is not a multiple of 5 and (n2 - k2)/(25 - k2 )  is an  
,I = Ri3. Finally mas A = 8.i;~~&/9. integer m for k = 1.2,3, or 4, then m = 0 o r  2 mod 5. 

Problem 34. Prime Congruence 

Prove that for any prime p > 5 ,  

(1.'2-1)/24=0 or 2rnod.5. 

So l~ r t i o~z  b? Joh'n Christopher, California State U)ziversitjl. It 
follows easily that p2 - 1 0 mod 3 and mod 8. Hence, 
i p 2 -  1) = 24q where q is an  integer. The only possibilities 
for p are p = f l  or h 2  mod 5. If p = f 1 mod 5,  then 
p' - 1 = 249 = 0 mod 5 ,  hence q = 0 mod 5 .  If p = f 2, 
then p2 - 1 = 24q = 3 mod 5 or  24(q - 2) = 0 mod 5,  
hence q = 2 mod 5. 
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Also solved by Christopher Ackler, Ryan Buschert 
(undergraduate), J. M. Coker, R. J. Covill, Fresno Prob- 
lem Solving Group, Don Hancock, D. K. Johnson, Ja- 
hangeer Kholdi, Andrew Miller, C. A. Minh, R. T. 
Sharp, and the proposer. 

Problem 45. (Quickie) Constant Sum 

In the sum multiply the numerator and denominator 
of the 2nd term by zl,  the 3rd term by 21x2,. . . , the 
nth term by zlz2 - - z,- I .  After using zlzz - . . z, = 1, all 
the terms now have the same denominator and thus the 
given sum = 1. 
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Take a random hike ... 
This computer graphic shows a random walk of 289 steps in 3-dimensional space, starting from the 
green dot and ending up at the red dot. Each step was equally likely to go forward, backward, right, 
left, up or down. Extended indefinitely, the walk has only about a 34% chance of ever returning to its 
starting point. This is in sharp contrast to the 1- and 2-dimensional versions of such a random walk, in 
which returning to the starting point is indefinitely likely. 
The artwork is courtesy of Daniel Asimov. His article appears on page 10 of this issue. 
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