

The ENIAC at 70

Details of the Euler-Heun Computation

BRIAN J. SHELBURNE
This article is an addendum to the article “The ENIAC
at 70” in the February 2017 issue of Math Horizons. It
presents a more detailed description of the accumulator
and master programmer units and details how the
ENIAC could be programmed to execute the Euler-
Heun calculation presented in the article.

Details of the Accumulator
Unlike today’s computers, in
which storage (main memory),
computation (ALU), and
program control are
implemented as logically
distinct units, the ENIAC’s 20
accumulators combined
memory with computation and
program control.

Figure 1 shows the general
layout of an accumulator (and
other computational units).
Digit neons displayed the
accumulator’s contents. Digit
trays functioned as the
ENIAC’s common data bus.
Cables connected the digit tray
terminals (light blue blocks)
with the five digit-input (red)
and two digit-output (orange)
terminals for the accumulator.

The 12 sets of front panel
switches (yellow) on the front

of each accumulator were used to locally program the
accumulator. To trigger the local programming of an
accumulator, cables for control pulses (similar to digit
pulses) were connected to terminals below the front
panel switches from program lines in the program
trays. When an accumulator had completed its
operation, it could emit a control pulse to trigger the
operations of other accumulators. Thus, a sequence of
accumulator operations could be chained together.

An Accumulator’s Local Controls
Figure 2 shows the front-panel switches of an
accumulator. We see the various digit inputs and
outputs, switches, and program input/output ports
used for local program control.

Figure 1. The front view
of an accumulator.

Figure 2. An accumulator’s front panel.

The row of five (red) rectangles on the upper left,
labeled α, β, γ, δ, and ε, were the input ports used
to receive from the digit lines; the two on the right
(orange) labeled A and S were the output ports used to
transmit either additively or subtractively (or both).

Cables used to connect accumulators contained 11
lines for the 10 decades and the sign of the number
(PM). Special shifter cables could be employed to shift
the digits to the left or right for multiplication or
division by a power of 10 before being added or
subtracted. Thus, a calculation like

 yn = yn−1 + yn−1 ⋅ Δx was easily accomplished for

 Δx = 0.01 using a –2 shifter cable that shifted the
digits of yn−1 to the right two places and then added
the quantity to yn−1.

In the middle were 12 local program control switches
(yellow) arranged in two banks that were labeled α,

 β, γ, δ, ε, ◌, A, AS, and S to receive on inputs α
through ε, to do nothing, or to transmit additively
only, additively and subtractively, or subtractively
only, respectively. Each local program control switch
had a clear-correct switch (the brown circle in the
upper right) to optionally clear the accumulator at the
end of an operation.

Underneath was a row of eight repeat switches
(green) for local program control of switches five
through 12. They allowed the corresponding operation
to be repeated up to nine times.

Multiple accumulators could receive the contents
transmitted by one accumulator over the same digit
line (obviously multiple accumulators could not
simultaneously transmit over the same digit line) or
mutually exclusive sets of accumulators could be used
at the same time to transmit using different digit
lines—both being forms of parallel processing.

On the lower part were 12 input ports (blue), one for
each of the 12 switches; they could receive a control
pulse that would trigger the corresponding operation.
The eight output ports (purple) corresponded to
switches five through 12; they could forward a control
pulse to the next unit when the operation was
completed.

The Master Programmer
The master program provided a means of repeating a
sequence of accumulator operations, and when a preset
limit was reached, initiating a different sequence of
accumulator operations. It consisted of 10 units called
steppers, each with associated decades to count control
pulses.

Figure 3 shows the left panel of the master
programmer for steppers A through E, and figure 4
shows the schematic for a stepper. Each stepper had
three input ports (blue) and six output ports (purple),
one for each stage. Switches on the face of the master
programmer (yellow) were used to fix a count, nk, for
each stage k. Control pulses received by the stepper
input port (middle blue port) incremented that
stepper’s decade(s) sending a control pulse through the
output port (purple) of the current stage (like a
transceiver).

When the decade count reached the limit for that
stage, the stepper reset the stepper decades to zero and
advanced to the next stage, k + 1. This is like a for-

Figure 3. The front panel of the master programmer.

Figure 4. Stepper graphic used in ENIAC
programming diagrams.

loop in which the loop terminates after the limit, nk, is
reached. In this way, after a sequence of accumulator
operations was executed a fixed number of times,
another sequence could be executed.

A stepper clear switch (green) fixed the number of
stages used by the stepper (up to six) so that the
stages wrapped around to stage 1 when the last stage
completed. In addition, each stepper had a stepper
direct input port (left blue port) that immediately
advanced the stepper to the next stage regardless of
the current count (used for conditional branching) and
a stepper clear direct input port (right blue port) that
cleared (reset) the stepper to the first stage.

Each of the two panels for the master programmer
had 10 sets (columns) of decades that could be
combined horizontally to increase the capacity of the
stages for each stepper. For steppers A through E in
figure 3, columns 2, 4, 5, 6, 8, and 10 were allocated to
steppers B (2), C (4, 5, and 6), D (8), and E (10).
Decades in columns 1, 3, 7, and 9 could be allocated to
the stepper on the left or right, as determined by the
corresponding decade association switch (orange)

The ENIAC could also do conditional branching (if-
then-else control statements). Since digit and control
pulses were the same (except occurring at different
times within the 200 microsecond addition time), a
special cable could connect the PM line of the A
output of an accumulator to the control input of
another accumulator (which in turn emitted a control
pulse) or to the stepper direct input terminal of the
stepper in the master programmer (which immediately
advanced the stepper to the next stage).

The PM output was either zero (positive) or nine
pulses (negative) so a control pulse was sent if the
source accumulator contained a negative value.
(Alternately the PM line of the S output was nine
pulses if the accumulator was positive.) Because of the
different times at which digit and control pulses
occurred, an accumulator might be used (called a
dummy program) to convert the digital pulse into a
true control pulse.

Wiring the ENIAC
In the Math Horizons article we described how the
ENIAC could be used to solve the differential equation

dy
dt = y with initial condition y 0() = 1 using the Euler-

Heun recurrence equation

yn = yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1()

2
,

with y0 = 1. (A derivation of the Euler-Heun recursion
equation is given at the end of this article.) Our
purpose here is to describe the wiring of the ENIAC
that would carry out these calculations.

Since the ENIAC was programmed by rewiring units
and setting switches, graphic wiring diagram were used
for program setups. The 1946 article by Hermann and
Adele Goldstine [4] presents a very nice wiring diagram
for a simple ENIAC calculation of squares and cubes of
integers (see also [1] and [3]). The diagram of the
Euler-Heun calculation in figure 5 is based on this
graphic but using color.

In the wiring diagram, digit lines on top connect
AC17 statically to the printer (blue dashed line) and
link the four accumulators and the constant
transmitter with a common digit line (green line). Note
that AC19 and AC20 are connected by −1 and −2
shifter cables, respectively.

Next are the computational units: the initiating unit,
the four accumulators, and the constant transmitter.
Rectangles within each are local programming control
settings: T for transmit, C for clear, and R for receive.
Numbers indicate repeats. We do not show the printer
since it was accessed through the initiating unit.

Program lines (numbered 1 through 10) with
connecting red and black arrows link the various units
together through their local programming controls. A
red arrow triggers the local programming control of a
unit; a returning black arrow passes a control pulse
back, which in turn triggers the local program control
of the next unit(s) in the programming sequence.

For example, line 3 triggers AC17 to transmit and
AC18 and AC20 to receive (red arrows). When AC17
is done, it transmits a control pulse (black arrow) to
line 4.

Finally, steppers C and D control looping with stage
1 of stepper C counting 10 iterations and stage 2
triggering stage 1 of stepper D to eventually restart
stage 1 of stepper C (for 50 iterations).

The calculation has three parts: an initialization, an
integration step repeated 10 times to compute the next
value of et, and a print step to print et for increments
of 0.1.

Initialization: The initialing unit clears the
accumulators, readies the printer, and then uses line 1
to transmit 10,000,000 from the constant transmitter
to AC17, which is set to receive. AC17, now containing
y0, then transmits a control pulse to stepper C via line
2 to begin the main sequence.

Integration: The program uses lines 3 and 4 to
compute yn−1 + h ⋅yn−1, which is stored in AC18. To
do so, AC18 and AC20 are both initialized to yn−1,
then the −2 shifter cable from AC20 transmits

 0.01 ⋅(yn−1) to AC18.
Line 5 then transmits AC17 to AC18, so it now

contains

 yn−1+ yn−1+h ⋅yn−1().
Note that line 3 triggers AC18 to receive three times
before transmitting its contents to AC19 five times (via
line 6).

To divide by 2 (thus avoiding the use of the
ENIAC’s divider/square rooter), the contents of AC18
is transmitted to AC19 five times (via line 6), then line
7 transmits AC19 times 0.1 (using a −1 shifter cable)
to AC20.

Line 8 then transmits 0.01 times AC20, that is,

h ⋅yn−1 + yn−1 + h ⋅yn−1()

2
,

back to AC17, which now contains the next value of
yn,

yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1()

2
.

The program control pulse from AC17, via line 2,
increments stage 1 of stepper C of the master
programmer, which repeats the previous sequence until
the stage 1 limit of 10 is reached. At this point, the
decades in stepper C reset to 0 and stepper C advances
to stage 2. However, stepper C transmits a last stage 1
control pulse (to complete the 10th iteration), and
since stepper C is in stage 2, the next control pulse
goes via line 10 to stepper D. Stage 2 of stepper C also
reaches its limit (1) so it clears stepper C’s decades to
0 and wraps around to stage 1.

Printing: Stepper D sends a control pulse via line 9
to the print input terminal on the initiating unit,
which causes the contents of AC17 (yn) to be output.
At the end, a control pulse on line 2 to stepper C
restarts the integration steps for 10 iterations. After
reaching its limit of 50, stepper D advances to the next
stage, which has no control pulse output, and the
calculation halts.

And that demonstrates how the ENIAC was
programmed. Whew!

Addendum: The Euler-Heun Method
Euler’s method is a familiar algorithm for numerically
solving a differential equation. The Euler-Heun method
is not as well known. So, we will give a brief
introduction here for the special case of our differential
equation

dy
dt = y.

Euler’s method replaces the differential equation
with the recursive difference equation

Δy
Δt = y, or

 Δy = Δt ⋅y. From this we obtain

 yn = yn−1+Δy = yn−1+Δt ⋅yn−1,
or

 yn = yn−1 + h ⋅yn−1,
where y0 is an initial condition and h is some small
value (we used y0 = 1 and h = 0.01).

For the Euler-Heun method, we use

yn = yn−1 + h ⋅yn−1 + yn

2
,

Figure 5. The setup for the Euler-Heun calculation

which is similar to the more efficient trapezoid rule for
integration. However, because yn is not known, we
approximate yn by yn−1 + h ⋅yn−1 to obtain the Euler-
Heun formula

yn = yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1()

2
.

Further Reading
There are many excellent resources on the ENIAC, a
few of which are presented below.

The following article gives a detailed description of
the ENIAC, including a number of excellent and
detailed diagrams. Arthur Burks was on the design
team for the ENIAC.

[1] Arthur Burks, Alice Burks, The ENIAC: First
general-purpose electronic computer, IEEE Annals of
the History of Computing 3 no. 4 (1981) 310–399.

The following reference contains photocopies of the
original 1946 documents, so some of the type is hard to
read. It also contains a set of beautifully drawn
illustrations of the ENIAC units with comments
explaining what each switch and terminal plug was
used for.

[2] Arthur Burks, Harry Huskey, ENIAC Operating
Manual. Reprint of the 1946 original published for the
Ordnance Department, U.S. Army by Periscope Film
LLC (2012) ISBN 978-1-937684-67-9.

The following technical manual was written by the
mathematician Adele Goldstine.

[3] Adele Goldstine, ENIAC Technical Manual.
Reprint of the 1946 original published for the
Ordnance Department, U.S. Army by Periscope Film
LLC (2012) ISBN 978-1-937684-66-2.

If you are going to read only one article about the
ENIAC, we suggest the following one. It’s an excellent
introduction to the ENIAC that was published in 1946,
soon after the announcement of the ENIAC.

[4] Hermann Goldstine, Adele Goldstine, The
Electronic Numerical Integrator and Computer
(ENIAC), Mathematical Tables and Other Aids to
Computation 2 (1946) 97–110. Reprinted in The
Origins of Digital Computers—Selected Papers 3rd
Ed., Ed. by B. Randell, Springer-Verlag, Berlin, 1982;
and in IEEE Annals of the History of Computing 18
no. 1 (1996) 10–16.

[5] Hermann Goldstine, The Computer from Pascal
to von Neumann, Princeton University Press,
Princeton, NJ, 1972.

The following new book is an excellent history of the
ENIAC, from its conception and design to how it was
subsequently used at the BRL. Highly recommended!

[6] Thomas Haigh, Mark Priestley, and Crispin Rope,
ENIAC in Action: Making and Remaking the Modern
Computer, MIT Press, Cambridge, MA, 2016.

The following book deals less with the technical
aspects and more with the human drama that brought
the ENIAC into existence. It covers the subsequent
careers of Eckert and Mauchly, who left the Moore
School in 1946 and formed the Eckert-Mauchly
Computer Company, which produced the UNIVAC-I,
the first commercial computer in the United States.
The appendix contains the complete “First Draft of a
Report on the EDVAC” by von Neumann.

[7] Nancy Stern, From ENIAC to UNIVAC: An
Appraisal of the Eckert-Mauchly Computers, Digital
Press, Educational Services, Digital Equipment
Corporation, Bedford, MA, 1981.

This book contains an excellent and modern
description of the technical aspects of the ENIAC.

[8] J. Van der Spiegel, J. Tau, T. Ala’ilima, L. P.
Ang, The ENIAC: History, operations, and
reconstruction in VLSI in The First Computers,
History and Architectures, Ed. by R. Rojas and U.
Hashagen, MIT Press, Cambridge, MA, 2000.

Brian J. Shelburne is a professor of mathematics and
computer science at Wittenberg University in
Springfield, Ohio.

