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BRIAN J. SHELBURNE 
This article is an addendum to the article “The ENIAC 
at 70” in the February 2017 issue of Math Horizons. It 
presents a more detailed description of the accumulator 
and master programmer units and details how the 
ENIAC could be programmed to execute the Euler-
Heun calculation presented in the article.  
 

Details of the Accumulator  
Unlike today’s computers, in 
which storage (main memory), 
computation (ALU), and 
program control are 
implemented as logically 
distinct units, the ENIAC’s 20 
accumulators combined 
memory with computation and 
program control.  

Figure 1 shows the general 
layout of an accumulator (and 
other computational units). 
Digit neons displayed the 
accumulator’s contents. Digit 
trays functioned as the 
ENIAC’s common data bus. 
Cables connected the digit tray 
terminals (light blue blocks) 
with the five digit-input (red) 
and two digit-output (orange) 
terminals for the accumulator.  

The 12 sets of front panel 
switches (yellow) on the front 

of each accumulator were used to locally program the 
accumulator. To trigger the local programming of an 
accumulator, cables for control pulses (similar to digit 
pulses) were connected to terminals below the front 
panel switches from program lines in the program 
trays. When an accumulator had completed its 
operation, it could emit a control pulse to trigger the 
operations of other accumulators. Thus, a sequence of 
accumulator operations could be chained together. 
 
An Accumulator’s Local Controls  
Figure 2 shows the front-panel switches of an 
accumulator. We see the various digit inputs and 
outputs, switches, and program input/output ports 
used for local program control. 

Figure 1. The front view 
of an accumulator. 

Figure 2. An accumulator’s front panel. 
 



The row of five (red) rectangles on the upper left, 
labeled   α,    β,    γ,    δ,  and   ε,  were the input ports used 
to receive from the digit lines; the two on the right 
(orange) labeled A and S were the output ports used to 
transmit either additively or subtractively (or both).  

Cables used to connect accumulators contained 11 
lines for the 10 decades and the sign of the number 
(PM). Special shifter cables could be employed to shift 
the digits to the left or right for multiplication or 
division by a power of 10 before being added or 
subtracted. Thus, a calculation like 

   yn = yn−1 + yn−1 ⋅ Δx  was easily accomplished for 

   Δx = 0.01  using a –2 shifter cable that shifted the 
digits of    yn−1  to the right two places and then added 
the quantity to    yn−1.  

In the middle were 12 local program control switches 
(yellow) arranged in two banks that were labeled   α,  

  β,    γ,    δ,    ε,  ◌, A, AS, and S to receive on inputs  α  
through   ε,  to do nothing, or to transmit additively 
only, additively and subtractively, or subtractively 
only, respectively. Each local program control switch 
had a clear-correct switch (the brown circle in the 
upper right) to optionally clear the accumulator at the 
end of an operation.  

Underneath was a row of eight repeat switches 
(green) for local program control of switches five 
through 12. They allowed the corresponding operation 
to be repeated up to nine times. 

Multiple accumulators could receive the contents 
transmitted by one accumulator over the same digit 
line (obviously multiple accumulators could not 
simultaneously transmit over the same digit line) or 
mutually exclusive sets of accumulators could be used 
at the same time to transmit using different digit 
lines—both being forms of parallel processing.  

On the lower part were 12 input ports (blue), one for 
each of the 12 switches; they could receive a control 
pulse that would trigger the corresponding operation. 
The eight output ports (purple) corresponded to 
switches five through 12; they could forward a control 
pulse to the next unit when the operation was 
completed.  

 

The Master Programmer 
The master program provided a means of repeating a 
sequence of accumulator operations, and when a preset 
limit was reached, initiating a different sequence of 
accumulator operations. It consisted of 10 units called 
steppers, each with associated decades to count control 
pulses.  

Figure 3 shows the left panel of the master 
programmer for steppers A through E, and figure 4 
shows the schematic for a stepper. Each stepper had 
three input ports (blue) and six output ports (purple), 
one for each stage. Switches on the face of the master 
programmer (yellow) were used to fix a count, nk, for 
each stage k. Control pulses received by the stepper 
input port (middle blue port) incremented that 
stepper’s decade(s) sending a control pulse through the 
output port (purple) of the current stage (like a 
transceiver).  

When the decade count reached the limit for that 
stage, the stepper reset the stepper decades to zero and 
advanced to the next stage,    k + 1.  This is like a for-

Figure 3. The front panel of the master programmer. 

Figure 4. Stepper graphic used in ENIAC 
programming diagrams. 
 



loop in which the loop terminates after the limit, nk, is 
reached. In this way, after a sequence of accumulator 
operations was executed a fixed number of times, 
another sequence could be executed.  

A stepper clear switch (green) fixed the number of 
stages used by the stepper (up to six) so that the 
stages wrapped around to stage 1 when the last stage 
completed. In addition, each stepper had a stepper 
direct input port (left blue port) that immediately 
advanced the stepper to the next stage regardless of 
the current count (used for conditional branching) and 
a stepper clear direct input port (right blue port) that 
cleared (reset) the stepper to the first stage.  

Each of the two panels for the master programmer 
had 10 sets (columns) of decades that could be 
combined horizontally to increase the capacity of the 
stages for each stepper. For steppers A through E in 
figure 3, columns 2, 4, 5, 6, 8, and 10 were allocated to 
steppers B (2), C (4, 5, and 6), D (8), and E (10). 
Decades in columns 1, 3, 7, and 9 could be allocated to 
the stepper on the left or right, as determined by the 
corresponding decade association switch (orange) 

The ENIAC could also do conditional branching (if-
then-else control statements). Since digit and control 
pulses were the same (except occurring at different 
times within the 200 microsecond addition time), a 
special cable could connect the PM line of the A 
output of an accumulator to the control input of 
another accumulator (which in turn emitted a control 
pulse) or to the stepper direct input terminal of the 
stepper in the master programmer (which immediately 
advanced the stepper to the next stage).  

The PM output was either zero (positive) or nine 
pulses (negative) so a control pulse was sent if the 
source accumulator contained a negative value. 
(Alternately the PM line of the S output was nine 
pulses if the accumulator was positive.) Because of the 
different times at which digit and control pulses 
occurred, an accumulator might be used (called a 
dummy program) to convert the digital pulse into a 
true control pulse.    

 
Wiring the ENIAC  
In the Math Horizons article we described how the 
ENIAC could be used to solve the differential equation 

  
dy
dt = y with initial condition    y 0( ) = 1  using the Euler-

Heun recurrence equation 

   
yn = yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1( )

2
,  

with    y0 = 1.  (A derivation of the Euler-Heun recursion 
equation is given at the end of this article.) Our 
purpose here is to describe the wiring of the ENIAC 
that would carry out these calculations.  

Since the ENIAC was programmed by rewiring units 
and setting switches, graphic wiring diagram were used 
for program setups. The 1946 article by Hermann and 
Adele Goldstine [4] presents a very nice wiring diagram 
for a simple ENIAC calculation of squares and cubes of 
integers (see also [1] and [3]). The diagram of the 
Euler-Heun calculation in figure 5 is based on this 
graphic but using color. 

In the wiring diagram, digit lines on top connect 
AC17 statically to the printer (blue dashed line) and 
link the four accumulators and the constant 
transmitter with a common digit line (green line). Note 
that AC19 and AC20 are connected by   −1  and   −2  
shifter cables, respectively. 

Next are the computational units: the initiating unit, 
the four accumulators, and the constant transmitter. 
Rectangles within each are local programming control 
settings: T for transmit, C for clear, and R for receive. 
Numbers indicate repeats. We do not show the printer 
since it was accessed through the initiating unit.  

Program lines (numbered 1 through 10) with 
connecting red and black arrows link the various units 
together through their local programming controls. A 
red arrow triggers the local programming control of a 
unit; a returning black arrow passes a control pulse 
back, which in turn triggers the local program control 
of the next unit(s) in the programming sequence.  

For example, line 3 triggers AC17 to transmit and 
AC18 and AC20 to receive (red arrows).  When AC17 
is done, it transmits a control pulse (black arrow) to 
line 4. 

Finally, steppers C and D control looping with stage 
1 of stepper C counting 10 iterations and stage 2 
triggering stage 1 of stepper D to eventually restart 
stage 1 of stepper C (for 50 iterations).      



The calculation has three parts: an initialization, an 
integration step repeated 10 times to compute the next 
value of et, and a print step to print et for increments 
of 0.1.  

Initialization: The initialing unit clears the 
accumulators, readies the printer, and then uses line 1 
to transmit 10,000,000 from the constant transmitter 
to AC17, which is set to receive. AC17, now containing 
y0, then transmits a control pulse to stepper C via line 
2 to begin the main sequence. 

Integration: The program uses lines 3 and 4 to 
compute    yn−1 + h ⋅yn−1,  which is stored in AC18.  To 
do so, AC18 and AC20 are both initialized to    yn−1,  
then the   −2  shifter cable from AC20 transmits 

   0.01 ⋅(yn−1)  to AC18. 
Line 5 then transmits AC17 to AC18, so it now 

contains 

   yn−1+ yn−1+h ⋅yn−1( ).  
Note that line 3 triggers AC18 to receive three times 
before transmitting its contents to AC19 five times (via 
line 6).  

To divide by 2 (thus avoiding the use of the 
ENIAC’s divider/square rooter), the contents of AC18 
is transmitted to AC19 five times (via line 6), then line 
7 transmits AC19 times 0.1 (using a   −1  shifter cable) 
to AC20.  

Line 8 then transmits 0.01 times AC20, that is,  

   
h ⋅yn−1 + yn−1 + h ⋅yn−1( )

2
,
 

back to AC17, which now contains the next value of 
yn,  

   
yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1( )

2
.  

The program control pulse from AC17, via line 2, 
increments stage 1 of stepper C of the master 
programmer, which repeats the previous sequence until 
the stage 1 limit of 10 is reached. At this point, the 
decades in stepper C reset to 0 and stepper C advances 
to stage 2. However, stepper C transmits a last stage 1 
control pulse (to complete the 10th iteration), and 
since stepper C is in stage 2, the next control pulse 
goes via line 10 to stepper D. Stage 2 of stepper C also 
reaches its limit (1) so it clears stepper C’s decades to 
0 and wraps around to stage 1.   

Printing: Stepper D sends a control pulse via line 9 
to the print input terminal on the initiating unit, 
which causes the contents of AC17 (yn) to be output. 
At the end, a control pulse on line 2 to stepper C 
restarts the integration steps for 10 iterations. After 
reaching its limit of 50, stepper D advances to the next 
stage, which has no control pulse output, and the 
calculation halts.   

And that demonstrates how the ENIAC was 
programmed. Whew! 

 
Addendum: The Euler-Heun Method  
Euler’s method is a familiar algorithm for numerically 
solving a differential equation. The Euler-Heun method 
is not as well known. So, we will give a brief 
introduction here for the special case of our differential 
equation    

dy
dt = y.  

Euler’s method replaces the differential equation 
with the recursive difference equation    

Δy
Δt = y,  or 

   Δy = Δt ⋅y.  From this we obtain  

   yn = yn−1+Δy = yn−1+Δt ⋅yn−1,  
or  

   yn = yn−1 + h ⋅yn−1,  
where y0 is an initial condition and h is some small 
value (we used    y0 = 1  and    h = 0.01).   

For the Euler-Heun method, we use 

   
yn = yn−1 + h ⋅yn−1 + yn

2
,
 

Figure 5. The setup for the Euler-Heun calculation 
 



which is similar to the more efficient trapezoid rule for 
integration. However, because yn is not known, we 
approximate  yn  by    yn−1 + h ⋅yn−1  to obtain the Euler-
Heun formula 

   
yn = yn−1 + h ⋅yn−1 + yn−1 + h ⋅yn−1( )

2
. 

 
Further Reading  
There are many excellent resources on the ENIAC, a 
few of which are presented below. 

The following article gives a detailed description of 
the ENIAC, including a number of excellent and 
detailed diagrams. Arthur Burks was on the design 
team for the ENIAC. 

[1] Arthur Burks, Alice Burks, The ENIAC: First 
general-purpose electronic computer, IEEE Annals of 
the History of Computing 3 no. 4 (1981) 310–399.  

The following reference contains photocopies of the 
original 1946 documents, so some of the type is hard to 
read. It also contains a set of beautifully drawn 
illustrations of the ENIAC units with comments 
explaining what each switch and terminal plug was 
used for. 

[2] Arthur Burks, Harry Huskey, ENIAC Operating 
Manual. Reprint of the 1946 original published for the 
Ordnance Department, U.S. Army by Periscope Film 
LLC (2012) ISBN 978-1-937684-67-9. 

The following technical manual was written by the 
mathematician Adele Goldstine.  

[3] Adele Goldstine, ENIAC Technical Manual. 
Reprint of the 1946 original published for the 
Ordnance Department, U.S. Army by Periscope Film 
LLC (2012) ISBN 978-1-937684-66-2. 

If you are going to read only one article about the 
ENIAC, we suggest the following one. It’s an excellent 
introduction to the ENIAC that was published in 1946, 
soon after the announcement of the ENIAC. 

[4] Hermann Goldstine, Adele Goldstine, The 
Electronic Numerical Integrator and Computer 
(ENIAC), Mathematical Tables and Other Aids to 
Computation 2 (1946) 97–110. Reprinted in The 
Origins of Digital Computers—Selected Papers 3rd 
Ed., Ed. by B. Randell, Springer-Verlag, Berlin, 1982; 
and in IEEE Annals of the History of Computing 18 
no. 1 (1996) 10–16.  

[5] Hermann Goldstine, The Computer from Pascal 
to von Neumann, Princeton University Press, 
Princeton, NJ, 1972. 

The following new book is an excellent history of the 
ENIAC, from its conception and design to how it was 
subsequently used at the BRL. Highly recommended! 

[6] Thomas Haigh, Mark Priestley, and Crispin Rope, 
ENIAC in Action: Making and Remaking the Modern 
Computer, MIT Press, Cambridge, MA, 2016. 

The following book deals less with the technical 
aspects and more with the human drama that brought 
the ENIAC into existence. It covers the subsequent 
careers of Eckert and Mauchly, who left the Moore 
School in 1946 and formed the Eckert-Mauchly 
Computer Company, which produced the UNIVAC-I, 
the first commercial computer in the United States. 
The appendix contains the complete “First Draft of a 
Report on the EDVAC” by von Neumann. 

[7] Nancy Stern, From ENIAC to UNIVAC: An 
Appraisal of the Eckert-Mauchly Computers, Digital 
Press, Educational Services, Digital Equipment 
Corporation, Bedford, MA, 1981.  

This book contains an excellent and modern 
description of the technical aspects of the ENIAC.  

[8] J. Van der Spiegel, J. Tau, T. Ala’ilima, L. P. 
Ang, The ENIAC: History, operations, and 
reconstruction in VLSI in The First Computers, 
History and Architectures, Ed. by R. Rojas and U. 
Hashagen, MIT Press, Cambridge, MA, 2000.  
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